
Ratneshwar Urman Hemantkumar, Bariya Rajendrasinh N., Prof. Vishal Mishra /

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 3, Issue 3, May-Jun 2013, pp.436-438

436 | P a g e

Implementation and Performance Comparison of Shift-add and

Radix-4 Booth Multiplication for Single Precision Floating Point

on Xilinx Using VHDL

Ratneshwar Urman Hemantkumar
1
, Bariya Rajendrasinh N.

2
, Prof. Vishal

Mishra
3

1,2,3 Department of Electronics and Communication, Marwadi Education Foundation‟s Group of Institutions,

Rajkot, Gujarat, India.

ABSTRACT
This paper presents implementation and

comparison of two multiplication methods which

are currently being used. The multiplication is

carried out between single precision floating

point numbers. There is significant reduction in

number of intermediate computation using

Radix-4 Booth multiplication algorithm.

Comparison of both the methods is done on basis

of number of registers and LUTs used for

designing. The proposed design is implemented

using VHDL on Xilinx ISE.

Keywords - component: Floating-Point, Single

Precision, Shift-add, Radix-4, Multiplication.

I. INTRODUCTION
Real numbers are represented by different

ways on computers. But IEEE Floating-point

representation is so far most used representation.

Single precision floating point numbers are vastly

used in computers, it is known as float in C, C++,

C#, Java and single in MATLAB. Floating point

representation has several advantages over fixed

point representation. Fixed point representation

places a radix point anywhere in the middle of

digits, which has no fixed position, which makes it

more complex while designing arithmetic

operations, whereas floating point representation

doesn‟t have this irregularity. Floating point
numbers supports wide range of values.

With recent advancements in graphic

processors, robotic applications, audio signal

processing and data processing multiplication is a

very important component of computation. Robotic

applications, where complex mathematical

algorithms are required to be calculated such as

inverse kinematics, interpolation, velocity

computations, which are accomplished by repetitive

use of multiplication and addition operations. The

number of logic blocks required to design such
system determines the cost of the system.

This paper concentrates on two multiplication

methods used for binary number: Shift and add

method and Radix-4 booth multiplication method.

These methods are implemented on single precision

floating point numbers. Comparison of the two

methods is done on the basis of logic elements used

to design the algorithm using VHDL.

II. SINGLE PRECISION FLOATING

POINT
The single precision floating point representation

is defined by IEEE 754. Single precision floating

point numbers are represented by 32 bits per

number. 32 bits are divided into three bit fields: sign

bit (1-bit), biased exponent (8-bits) and mantissa

(23-bits).

Fig. 1: Single precision representation

„1‟ for sign bit signifies negative sign and

„0‟ signifies positive number. 23 fraction bits and

one additional bit, left of the radix point in

normalized floating point number, add additional

one bit precision to the number making the number

of 24 bits precision. Range of the biased exponent is

0 to 255 because of 8 bit width, but 0 and 255 are

reserved for special cases so range used for

normalized floating point numbers is 1 to 254. „127‟

is added to exponent of normalized floating point

number for biased exponent field (B.E.) to
accommodate negative values of the exponent.

B.E. = Exponent+127 (1)

So range of exponent of normalized

floating point number will be -126 to 127, which

will be represented as 1 to 254 in B.E. field. At last

23 fraction bits, combination of these three fields

will be used to represent the numbers in the range

from ±1.17549…× 10-38 to ±3.40282…× 1038. The

wide range of real numbers can be represented with
single precision.

The actual value of the double precision floating

point number is the following:

 1 + bitk × 2−k𝑛−1

𝑘=1
 × 2e (2)

Where bitk is the normalized significand‟s k-th bit

from the left and „e‟ is exponent.

Ratneshwar Urman Hemantkumar, Bariya Rajendrasinh N., Prof. Vishal Mishra /

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 3, Issue 3, May-Jun 2013, pp.436-438

437 | P a g e

Special cases:

Zero is represented as B.E.=0 and F=0, +0 and -0

both are possible as per sign bit.

Infinity is represented as B.E.=255 and F=0, +∞ and

-∞ both are possible as per sign bit.

NaN(not a number) is represented as B.E.=255 and
F≠0.

III. SHIFT AND ADD MULTIPLICATION
Shift-and-add multiplier is the basic binary

multiplier and is used commonly in all applications.

Shift-add-multiplication is the simplest way to

perform multiplication. It is derived for binary n-bits

x n-bits integer which can also be used for single

precision floating point number with some minor

changes. Number of intermediate additions
operation for shift-and-add multiplication method is

equal to number „1‟s in the multiplier number.

Below are the steps for shift-and-add multiplication:

Step 1: Divide the multiplicand and multiplier in

three fields and extract each field; those are

sign, biased exponent and fraction.

Step 2: Sign of resultant multiplication will be

XOR of the sign bits of the multiplier and

the multiplicand.

Step 3: Biased exponent of the resultant will be
addition of the biased exponents of the

multiplier and the multiplicand and

subtracting the bias (i.e. 127 for single

precision).

Step 4: Starting from the LSB of the multiplier,

add the multiplicand if there is „1‟ at the

LSB of the multiplier, then shift multiplier

1 place to the right.

Step 5: Repeat step 4, until all the fraction bits

from multiplier are considered shifting

multiplicand to the right per every bit of
multiplier, including the leading „1‟ of the

normalized floating point number.

Step 6: Normalize the final number if necessary,

shifting it right and incrementing the biased

exponent.

Step 7: Round the fraction to the appropriate

number of bits, and renormalize if rounding

generates a carry.

If there are special cases, which means either of the

numbers is ±0, ±∞ or NaN, than above algorithm is

not applied, and following operations are performed:

Any_number × ±0 = ±0

±∞ × ±0 = ±0

NaN × ±0 = ±0

Any_number × ±∞ = ±∞

Any_number × NaN = NaN

There will be maximum of 24 addition operation per

each multiplication. Most digital signal processing

such as filtering, convolution, and various

transforms uses multiplication. In addition robotic

applications where mathematical equations are to be

designed, multiplication is used more than once. So

considering current scenario where multiplication is

vastly used, logic elements required to design the
multiplication should be as minimum as possible. So

for the purpose of logic elements reduction, an

algorithm where intermediate computations are less

should be used. Such an algorithm is Radix-4 booth

multiplication algorithm, which significantly

reduces intermediate computations.

IV. RADIX-4 BOOTH MULTIPLICATION

One of the solutions of reducing number of

logic elements used for designing is reduction of
intermediate calculation stages. Unlike shift-and-add

multiplication method, radix-4 booth multiplication

algorithm considers three bits of the multiplier at a

time, hence reducing number addition stages

required. It is a technique that allows for faster and

smaller multiplication circuit by recoding the

multiplier and multiplicand, which is to be

multiplied. Radix-4 booth multiplication reduces the

number of addition stages by half. Unlike shift-and-

add multiplication, considering three bits of

multiplier at a time and multiply multiplicand by 0,
±1 or ±2, according to the three bits under

consideration. Three bits of the multiplier are

considered such that each block overlaps the

previous by one bit. Grouping starts from least

significant bit and two bits from right and a „0‟ is

considered as the first group. For example, consider

1011010001, than grouping is performed as shown

below:

 1 0 1 1 0 1 0 0 0 1 0

As we can see a „0‟ is added after LSB for

the grouping and every group overlap the previous

one by one bit. According to the groups starting

from LSB, recoding and then further procedure is

followed. Below is the recoding table:

TABLE 1: Radix-4 Booth Recoding [2]

Group Partial Product

000,111 0

001,010 1*Multiplicand

011 2*Multiplicand

100 -2*Multiplicand

101,110 -1*Multiplicand

Here it should be noted that multiplying

any number by two in binary is performed by

shifting the number one bit to the right and negative

numbers are represented by 2‟s complement.

Example of radix-4 multiplication is shown below:

Ratneshwar Urman Hemantkumar, Bariya Rajendrasinh N., Prof. Vishal Mishra /

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 3, Issue 3, May-Jun 2013, pp.436-438

438 | P a g e

Multiplicand 0101000001

Multiplier × 0101101110

Recoding +1 +2 -1 +0 -2

111111110101111110

000000000000000000

111110101111110000
001010000010000000

010100000100000000

011100101011101110

So now by using Radix-4 booth

multiplication algorithm, steps for single precision

floating point multiplication is shown below:

Step 1: Divide the multiplicand and multiplier in

three fields and extract each field; those are

sign, biased exponent and fraction.

Step 2: Sign of resultant multiplication will be

XOR of the sign bits of the multiplier and
the multiplicand.

Step 3: Biased exponent of the resultant will be

addition of the biased exponents of the

multiplier and the multiplicand and

subtracting the bias (i.e. 127 for single

precision).

Step 4: Starting from the LSB of the multiplier,

make groups of three bits as discussed

earlier.

Step 5: Now according to the groups made by step

4, recode the multiplicand for first group.
Step 6: Then shift two bits to the left and recode

the multiplicand for the second group and

add it to the previous recoded number.

Step 7: Repeat step 6 for all the groups.

Step 8: Normalize the final number if necessary,

shifting it right and incrementing the biased

exponent.

Step 9: Round the fraction to the appropriate

number of bits, and renormalize if rounding

generates a carry.

If there are special cases, which means either of the
numbers is ±0, ±∞ or NaN, than above algorithm is

not applied, and following operations are performed:

Any_number × ±0 = ±0

±∞ × ±0 = ±0

NaN × ±0 = ±0

Any_number × ±∞ = ±∞

Any_number × NaN = NaN

There will be maximum of 12 addition

operations per each multiplication, which is half the
number than shift-and-add operation. It will reduce

the addition operations if there is a long sequence of

„1‟s in the multiplier fraction field. Reduction in

computation will result in reduction of number of

logic elements required. It will also reduce the

computation time, which is very important for real

time applications.

V. SIMULATION RESULTS &

PERFORMANCE ANALYSIS

Fig. 2: Simulation result of radix-4 booth single

precision floating point multiplication

Figure shows the simulation result of radix-
4 booth multiplication for single precision

multiplication. The inputs x (multiplicand) and y

(multiplier) are shown in hexadecimal and so is the

output mult. Here first input x is real number 1.71

and second input y is 17.32, which are represented

as single precision floating point numbers in

hexadecimal format. Output mult is 29.6172 in

single precision floating point number hexadecimal

format. Multiplication carried out by both the

methods shift-and-add and radix-4 booth

multiplication algorithm gives exact result but with
vast difference in the number logic elements used

while designing. Comparison of performance

analysis for both the methods is shown below:

TABLE 2: Performance Analysis

 Shift-add Radix 4

Slice Registers 69 29

Slice LUTs 1898 1886

Occupied slices 502 484

VI. CONCLUSION
By looking at the performance analysis, it can be

concluded that radix-4 booth algorithm uses less

hardware than shift-and-add algorithm. There is
significant amount of reduction in logic elements

used in the radix-4 booth algorithm. Speed of the

radix-4 booth algorithm will be more than shift-and-

add algorithm because of the reduction in hardware.

REFERENCES
[1] IEEE Standard for Binary Floating-Point

Arithmetic, ANSI/IEEE Standard 754, 1985.

[2] K. Babulu,G.Parasuram “FPGA Realization
of Radix-4 Booth Multiplication Algorithm

for High Speed Arithmetic Logics”,

(IJCSIT) International Journal of Computer

Science and Information Technologies, Vol.

2 (5) , 2011, 2102-2107.

[3] S.Jagadeesh, S.Venkata Chary “Design of

Parallel Multiplier–Accumulator Based on

Radix-4 Modified Booth Algorithm with

SPST”, International Journal Of Engineering

Research And Applications (IJERA) ISSN:

2248-9622, Vol. 2, issue 5, September-

October 2012, pp.425-431.

