
Dr. P. V. Ingole, Mr. Mangesh K Nichat / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.162-165

162 | P a g e

Landmark based shortest path detection by using Dijkestra

Algorithm and Haversine Formula

Dr. P. V. Ingole, Mr. Mangesh K Nichat
Electronics and Telecommunication Dept. G. H. Raisoni College of Engineering and Management

Amravati, India

Computer Science and Engineering Dept. G. H. Raisoni College of Engineering and Management

Amravati, India

Abstract— In 1900, less than 20 percent of the

world population lived in cities, in 2007, just

more than 50 percent of the world population

lived in cities. In 2050, it has been predicted that

more than 70 percent of the global population

(about 6.4 billion people) will be city inhabitants.

There is more pressure being placed on cities

through this increase in population [1].

With advent of smart cities, information and

communication technology is increasingly

transforming the way city municipalities and city

residents organize and operate in response to

urban growth. In this paper, we create a generic

scheme for navigating a route through out city.

A requested route is provided by using

combination of Dijkestra Algorithm and

Haversine formula. Haversine Formula gives

minimum distance between any two points on

spherical body by using latitude and longitude.

This minimum distance is then provided to

Dijkestra algorithm to calculate minimum

distance. The process for detecting the shortest

path is mention in this paper.

Index Terms—Haversine Formula, Dijkestra

Algorithm, Google Map,XML

I. INTRODUCTION
The aim of Paper is to find the route

between two places within a city entered by user

using the Junctions between Source and Destination

junctions. The motto behind it is to improve

navigation of user within a city; especially in India

where Town Planning policy doesn’t follow a

standard rules for naming the different places. Most

of the times an unknown person can’t find even the

most famous places within the city due to absence of

significant identities. Hence the paper is intended to

give an appropriate route to user by directing it
through various junctions and roads which will be

easily identified by the associated landmarks and a

Google map.

The route is given in two parts as:

1) Text route containing route providing a

junction to junction movement to user along with

the appropriate directions and turnings guiding the

user to get the exact intermediate junctions or

landmarks

2) Google Map for exact requested route.

Paper uses client-server architecture.

Communication between them is strictly in XML for

flexibility. The client has user interface from where
an input is taken in XML for processing. The server

consists of a Java Processing Application and

Database for it. The Database used by processing

application is a Relational database containing

whole information about city. The processing

application after parsing request computes route

between them with all necessary details with

Latitude/Longitude for Google map and sends it as

XML response. Client again parsing response gets it

on User Interface with Google map processing done

in JavaScript.

II. PROBLEM DEFINATION
The Aim of Paper is to find out the route in

between two spots/junctions within a city entered by

user by making use of the Junctions in between the

Source and Destination spots/junctions. The main

motto behind it is to improve the navigation of user

within a city; especially in Indian cities where Town

Planning policy doesn’t follow a standard rules for

numbering or naming the different spots or places.
Most of the times an unknown person can’t find

even the most famous places within the city due to

absence of naming boards or other significant

identities. Hence the project is intended to give an

appropriate route to user by directing it through

various junctions and roads which will be easily

identified by the associated landmarks provided

with the route.

The requested route is given to user in terms of

the junctions present in between the source and

destination route along with landmarks and roads
connecting them. The Landmarks used in the route

may be significant Buildings, Statues, Roads,

Complexes, Monuments, Temples, etc. The use of

Landmarks adds an advantage of getting to the exact

place having no significant identity while travelling

through route supplied to user making the

application friendly to the user unknown of the city

to find out the route in between any two spots or

junctions in the city.

The application is bound to give the shortest route

providing a junction to junction movement to user

Dr. P. V. Ingole, Mr. Mangesh K Nichat / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.162-165

163 | P a g e

along with the appropriate directions and turnings

guiding the user to get the exact intermediate

junctions (with their significant landmarks) or

landmarks in particular areas in between two

junctions/spots supplied by user.

LITERATURE SURVEY:
 This paper contains “great circle distance”

which represents the shortest path for distance

modeling and optimal facility location on spherical

surface. Great circle distances takes into

consideration the geometrical reality of the spherical

Earth and offers an alternative to widely held notion

that travel over water can be exactly modelled by

Euclidean distances. The need for geometrical

presentation of the spherical earth becomes very

relevant when we take into consideration an ever

increasing junctions inside a city. The use of “Great

circle distances” opens up another avenue for
convergence of Navigation and Spherical

Trigonometry into advancement of logistics and

facility location. In this paper an evaluation of

distance location using great circle distances is used

to demonstrate the application of the concept.

This paper proposes and implements a method for

performing shortest path calculations taking

crowdsourced information, in the form of

constraints and obstacles, into account. The method

is built on top of Google Maps (GM) and uses its

routing service to calculate the shortest distance
between two locations. Users provide the constraints

and obstacles in the form of polygons which identify

impassable areas in the real world.

III. HAVERSINE FORMULA
The Haversine formula is an equation

important in navigation, giving great-circle distances

between two points on a sphere from their longitudes

and latitudes. [4]

These names follow from the fact that they are

customarily written in terms of the haversine

function, given by haversin (θ) = sin2 (θ/2).

The haversine formula is used to calculate the
distance between two points on the Earth’s surface

specified in longitude and latitude.

d is the distance between two points with longitude
and latitude (ψ,φ) and r is the radius of the Earth.

Translation to SQL statement[1]

3956 * 2 * ASIN (SQRT (POWER(SIN((orig.lat -

dest.lat)*pi()/180 / 2), 2) +COS(orig.lat *pi()/180)

*COS(dest.lat * pi()/180) *POWER(SIN((orig.lon -

dest.lon) * pi()/180 / 2), 2))) AS distance

IV. DIJKESTRA ALGORITHM
This algorithm is used to find out shortest

path between any two junctions. it makes the use of

greedy loop to find the minimum distance.

Following are the steps to implement Dijkstra’s
algorithm:

1. Assign to every node a distance value. Set

it to zero for our initial node and to infinity

for all other nodes.

2. Mark all nodes as unvisited. Set initial

node as current.

3. For current node, consider all its unvisited

neighbors and calculate their distance
(from the initial node). For example, if

current node (A) has distance of 6, and an

edge connecting it with another node (B) is

2, the distance to B through A will be

6+2=8. If this distance is less than the

previously recorded distance (infinity in the

beginning, zero for the initial node),

overwrite the distance.

4. When we are done considering all

neighbors of the current node, mark it as
visited. A visited node will not be checked

ever again; its distance recorded now is

final and minimal.

5. Set the unvisited node with the smallest

distance (from the initial node) as the next

"current node" and continue from step 3.

4.5.1 Pseudo Code:

 function Dijkstra(Graph, source):

 for each vertex v in Graph: //

Initializations
 dist[v] := infinity // Unknown distance

function from source to v

 previous[v] := undefined // Previous

node in optimal path from source

 dist[source] := 0 // Distance from

source to source

 Q := the set of all nodes in Graph

 // All nodes in the graph are unoptimized - thus

are in Q

 while Q is not empty: // The main

loop

 u := vertex in Q with smallest dist[]
 if dist[u] = infinity:

 break // all remaining vertices are

inaccessible from source

 remove u from Q

 for each neighbor v of u: // where v has

not yet been removed from Q.

 alt := dist[u] + dist_between(u, v)

 if alt < dist[v]: // Relax (u,v,a)

 dist[v] := alt

 previous[v] := u

 return dist[]

 SYSTEM DESIGN

The Aim of the paper is to find out the

route in between any two spots within a city entered

Dr. P. V. Ingole, Mr. Mangesh K Nichat / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.162-165

164 | P a g e

by the user. This can be implemented using a client-

server architecture where a request having two

junctions as Source and Destination is sent from

client to server and requested route is returned to

client as a response from server.

The client-server implementation assumes that

the user accesses the functional application remotely
from client end to server one. This makes a clear

idea of having client at one machine remotely

accessing the application and server at the other.

Therefore the design includes significant

components shown in functional project design

below:

 The client end consists of user interface

from where an input is taken for processing. The

server end consists of a Java Processing Application

and Database for it. The processing application

basically takes only start and end junctions and

computes the route in between them with all
necessary details having intermediate junctions with

landmarks and roads in a particular area. The

Database used by processing application is a

Relational database containing whole information

about city in terms of junctions, landmarks, roads

and areas.

 The input containing source and destination

junctions for the requested route is sent to the server

end as a request from client end. This request is

embedded in a XML file can be called as XML

request to be sent to server. At server on receiving a
XML request; it is supplied to a XML parser for

extracting necessary data i.e. source and destination

junctions which are in turn supplied to Java

Processing application as an input. This application

computes a requested route (a shortest one) by

interacting with the database using SQL queries to

obtain necessary information for computation. For a

computed route to be sent to client, it is again

embedded into a XML forming a XML response.

This response on receiving at client end is again sent

to a parser to extract a route to be displayed to the

user at to user interface.

SHORTEST ROUTE IN THE FORM OF TEXT

ROUTE AND GRAPHICAL WAY:

 A user has provision to know the shortest

path from source to destination in two ways text

based route and graphical route by using Google

map. A text based route gives exact way from

source to destination in the form of directions, turns,

intermediate spots and distance between that spots.

A path is given to user by using SQL query. At last

it gives the total shortest distance from source to

destination.

Dr. P. V. Ingole, Mr. Mangesh K Nichat / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.162-165

165 | P a g e

Text Route

Graphical representation of shortest route is

shown in figure. It highlighted the shortest route

from source to destination. User can use both the

techniques to easily know the route between source

to destination. GPI provides different methods to

access the highlighted route.

Graphical Representation

CONCLUSION
“Landmark Based Routing in Indian Cities”

is bound to give the shortest route providing a

junction to junction movement to user along with the

appropriate directions and turnings guiding the user

to get the exact intermediate junctions (with their

significant landmarks) or landmarks in particular

areas in between two junctions/spots supplied by

user. The user also gets exact route with guidance of

embedded Google Map.

FUTURE SCOPE

 In this paper, we use Djkestra algorithm for
determining shortest path between two junctions.

But this is common algorithm to calculate the

shortest path. Instead of Dijkestra algorithm we can

use A* algorithm to calculate shortest path between

two city. A* algorithm is combination of Dijkestra

algorithm and Breadth First Search algorithm. In

addition to that, A* is heuristic in nature.This System

can be applied as a navigation syatem which can

navigate through out city. Along with intracity

shortest path detection ,we can implement same

concept for intercity.

REFERENCES

[1] By Mr. Reid “Shortest distance between

two points on earth”

http://wordpress.mrreid.org/haversine-

formula/ This is an electronic document.

Date of publishing 20/12/2011.

[2] Samuel Idowu, Nadeem Bari, “A

Development Framework for Smart City,”

Luleå University of Technology,9 Nov.
2012.

[3] Javin J. Mwemzi,Youfang Huang,”Optimal

Facility location on spherical

surfaces”,New York science Journal,April

2011.

[4] Ben Gardiner,Waseem Ahmad,Travis

Cooper, ”Collision Avoidance Techniques

for unmanned Aerial Vehicles”,Auburn

University, 08/07/2011.

[5] Simeon Nedkov,Sisi Zlatanova“Enabling

bstacle Avoidance for Google maps”,June
2011.

[6] Bing Pan,john C. Crotts and Brian

Muller,”Developing Web Based Tourism

Information using Google Map”

Departemnt of Huminity and Tourism

Mangement,Charston ,USA.

[7] ElinaAgapie.jason Ryder,Jeff

Burke,Deborth Estrin,”Probable Path

Interference for GPS traces in

cities”,university of California,2009.

