
 Syed.Asadullah Hussaini, S.Nasira Tabassum, M.Khader Baig / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.111-117

111 | P a g e

Ajax Architecture Implementation Techniques

Syed.Asadullah Hussaini, S.Nasira Tabassum, M.Khader Baig
*Master of Technology, Shadan College, Affiliated to JNTU Hyderabad, AP .India

**Master of Technology, Nizam College, Affiliated to JNTU Hyderabad,A.P.India

***Master of Technology, Nizam College, Affiliated to JNTU Hyderabad,A.P.India

ABSTRACT

Today’s rich Web applications use a mix of Java

Script and asynchronous communication with

the application server. This mechanism is also

known as Ajax: Asynchronous JavaScript and

XML. The intent of Ajax is to exchange small

pieces of data between the browser and the

application server, and in doing so, use partial

page refresh instead of reloading the entire Web

page. AJAX (Asynchronous JavaScript and

XML) is a powerful Web development model for

browser-based Web applications. Technologies

that form the AJAX model, such as XML,

JavaScript, HTTP, and XHTML, are

individually widely used and well known.

However, AJAX combines these technologies to

let Web pages retrieve small amounts of data

from the server without having to reload the

entire page. This capability makes Web pages

more interactive and lets them behave like local

applications. Web 2.0 enabled by the Ajax

architecture has given rise to a new level of user

interactivity through web browsers. Many new

and extremely popular Web applications have

been introduced such as Google Maps, Google

Docs, Flickr, and so on. Ajax Toolkits such as

Dojo allow web developers to build Web 2.0

applications quickly and with little effort.

Keywords - Web applications, Java Script, Web

application 2.0, Ajax architecture technology

INTRODUCTION

Ajax, which consists of HTML, JavaScript™

technology, DHTML, and DOM, is an outstanding

approach that helps you transform clunky Web

interfaces into interactive Ajax applications. Ajax is

shorthand for Asynchronous JavaScript and XML

(and DHTML, and so on). The phrase was coined by

Jesse James Garrett of Adaptive Path and is,

according to Jesse, not meant to be an acronym.

 AJAX is a technique for creating fast and

dynamic web pages. AJAX allows web pages to be

updated asynchronously by exchanging small

amounts of data with the server behind the scenes.

This means that it is possible to update parts of a

web page, without reloading the whole page. AJAX

applications are browser and platform independent!

 AJAX is based on internet standards, and uses a

combination of:

 XMLHttpRequest object (to exchange data

asynchronously with a server)

 JavaScript/DOM (to display/interact with

the information)

 CSS (to style the data)

 XML (often used as the format for
transferring data)

Why AJAX?

AJAX allows feature-rich, dynamic web

applications which use server-side processing

without requiring the traditional "submit data —

retrieve web page" methodology.

 Using XML Http Request, data is transmitted

behind the scenes of your web application and

JavaScript is used to manipulate the application

interface and display dynamic information.

 This allows more streamlined applications that

require less processing and data transmission

because entire web pages do not need to be

generated for each change that occurs. Instead, one

web application reflects all of the changes that

occur. JavaScript can also be used to allow higher

levels of interactivity than allowed through HTML

itself (e.g., keyboard shortcuts, click and drag, etc.

Why Not AJAX?

AJAX will not work in all web browsers. As its

name suggests, AJAX requires JavaScript. This

alone means that AJAX applications will not work

in web browsers and devices that do not support

JavaScript. For this reason it is not accessible to

many typical Web users.

 The Web Content Accessibility Guidelines

external link also require that web applications

function when JavaScript is disabled or not

 Syed.Asadullah Hussaini, S.Nasira Tabassum, M.Khader Baig / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.111-117

112 | P a g e

supported. AJAX also requires that XML Http

Request be supported, which many browsers do not.

The current solution to these problems is to either

provide a non-AJAX alternative to your application

or to allow your AJAX application to continue to

function if JavaScript and XML Http Request are

not supported. Such a requirement may be very

difficult to achieve.

 While developers may choose to require the

users to use a browser that supports AJAX, they

must understand that such requirements may not be

possible for all users - especially those using

portable devices or older web browsers. By its

nature, AJAX tends to update and manipulate

interface elements 'on the fly'.

 AJAX also can submit information to the server

without user interaction or may do so in methods

that are not obvious to the user. For example, most

users expect forms to be submitted, validated, and

processed when a submit button is selected, but with

AJAX this submission and processing can occur at

any time (e.g., every 5 seconds, when a form

element loses focus, etc.). It may not be apparent to

users that information is being processed and saved

- and this confusion can be intensified by the fact

that AJAX can perform these operations very

quickly. Most users expect there to be some delay

before feedback or additional information is

presented and typically expect the entire page to

refresh indicating a new display - with AJAX, none

of these visual cues may be apparent.

 Another issue with AJAX is how the application

interface is updated. When updates to the interface

occur, it may not be visually apparent that a change

has occurred. The problem is even more

troublesome for screen reader users. Screen readers

typically read in a linear fashion. When changes

happen in the interface, the screen reader user may

not be aware of the change and the new content will

likely not be read.

 In short, to allow dynamic interface changes to

be accessible, the application must alert the user that

a change has occurred, allow direct access to the

new content, and then allow continued functionality

of the web application. This process, while difficult

to achieve, especially for screen reader users, is

possible to achieve in many AJAX applications.

Web Page as Application

Ajax blurs the boundary between web pages and

applications. In classic web applications,a web page

is an HTML document that can be rendered by a

browser for information display purpose. It has

limited or often zero intelligence on its own.

 In an Ajax application, the HTML page the

server sends to the browser includes code that

allows the page to be a lot “smarter”. This code runs

in the background acting as the “brain” while the

HTML document is rendered in the browser

window. The code can detect events such as key

strokes or mouse clicks and perform actions

responding to these events, without making a round

trip to the server.

 Through Ajax, a web page feels like a desktop

application. It responds fast, almost immediately to

user actions, without full page refresh. It can further

continuously update the page by asynchronously

fetching data from the server in the background,

achieving desktop application experience.

AJaX Application Architecture

Given the challenges associated with Ajax, it is

particularly important to architect an Ajax

application properly. Otherwise the result can be

either lackluster performance or code maintenance

nightmare, or even both. There are two items

impact Ajax application architecture significantly:

the choice of an Ajax engine and client-side

application logic implementation.

AJAX ENGINE: From the point of view of

software architecture, the significant difference

between an Ajax application and a classic HTML

web application is the introduction of a client-side

 Syed.Asadullah Hussaini, S.Nasira Tabassum, M.Khader Baig / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.111-117

113 | P a g e

engine. This engine, which runs inside the Web

browser, acts as an intermediary between the

applications’s UI and the server. User activity leads

to calls to the client-side engine instead of a page

request to the server. Likewise, data transfer takes

place between the server to the client-side engine,

rather than directly to the Web browser.

 Ajax engine is the key to the AJAX application

model. Without it, every event generated by user

activity must go back to the server for processing.

There are many different ways to implement the

client side Ajax engine. One approach is to write it

from scratch based on the application need. Another

approach is to use an Ajax toolkit that is available in

the market today. There are many Ajax toolkits

today, a lot of which are open source. Some toolkits

are communication libraries, some of them are rich

user interface components and some of them

provide both. Choosing the right toolkit would

significantly lower application development and

maintenance challenge.

WEB APPLICATION: The core of a Web

application is its server-side logic. The Web

application layer itself can be comprised of many

distinct layers. The typical example is a three-

layered architecture comprised of presentation,

business, and data layers. Figure illustrates a

common Web application architecture with common

components grouped by different areas of concern.

Design Considerations

When designing a Web application, the goals of a

software architect are to minimize the complexity by

separating tasks into different areas of concern while

designing a secure, high-performance application.

When designing your Web application, consider the

following guidelines:

 Partition your application logically. Use

layering to partition your application logically

into presentation, business, and data access

layers. This helps you to create maintainable

code and allows you to monitor and optimize

the performance of each layer separately. A

clear logical separation also offers more choices

for scaling your application.

 Use abstraction to implement loose coupling

between layers. This can be accomplished by

defining interface components, such as a façade

with well-known inputs and outputs that

translates requests into a format understood by

components within the layer. In addition, you

can also use Interface types or abstract base

classes to define a shared abstraction that must

be implemented by interface components.

 Understand how components will

communicate with each other. This requires

an understanding of the deployment scenarios

your application must support. You must

determine if communication across physical

boundaries or process boundaries should be

supported, or if all components will run within

the same process.

 Reduce round trips. When designing a Web

application, consider using techniques such as

caching and output buffering to reduce round

trips between the browser and the Web server,

and between the Web server and downstream

servers.

 Syed.Asadullah Hussaini, S.Nasira Tabassum, M.Khader Baig / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.111-117

114 | P a g e

 Consider using caching. A well-designed

caching strategy is probably the single most

important performance-related design

consideration. ASP.NET caching features

include output caching, partial page caching,

and the cache API. Design your application to

take advantage of these features.

 Consider using logging and instrumentation.

You should audit and log activities across the

layers and tiers of your application. These logs

can be used to detect suspicious activity, which

frequently provides early indications of an

attack on the system.

 Avoid blocking during long-running tasks. If

you have long-running or blocking operations,

consider using an asynchronous approach to

allow the Web server to process other incoming

requests.

 Consider authenticating users across trust

boundaries. You should design your

application to authenticate users whenever they

cross a trust boundary; for example, when

accessing a remote business layer from your

presentation layer.

 Do not pass sensitive data in plain text across

the network. Whenever you need to pass

sensitive data such as a password or

authentication cookie across the network,

consider encrypting and signing the data or

using Secure Sockets Layer (SSL) encryption.

 Design your Web application to run using a

least-privileged account. If an attacker

manages to take control of a process, the

process identity should have restricted access to

the file system and other system resources in

order to limit the possible damage.

Web Application Frame

There are several common issues that you must

consider as you develop your design. These issues

can be categorized into specific areas of the design.

The following table lists the common issues for each

category where mistakes are most often made.

APPLICATION LOGIC PARTITION:

Regardless of the client-side Ajax engine is

implemented, how to partition application logic

directly impacts application performance and

maintainability. “Application logic partition” refers

to the amount of application logic that runs on the

client side versus the amount of logic that runs on

the server side.

 On the one side, putting more logic on the client

side would deliver better application performance.

However, client-side logic can easily result in a lot

of hard to maintain JavaScript code. For example,

Google Map is a relatively simple application and

has limited functionality, but it still has more than a

hundred Kilobytes of JavaScript logic on the client

side (after obfuscation and compression). On the

other side, putting more logic on the client side can

potentially create application maintenance problem

that is expensive and hard to scale to large

development teams. What kind of logic should be

put on the client side, how much logic and how the

logic should be implemented? These are key

questions developers must evaluate carefully in

order to build manageable and maintainable

applications. Ajax development model offers a lot

of flexibility in application logic partition. This is a

client-centric model that resembles closely to the

typical desktop application model. This is a server-

centric model that is very similar to the classic

HTML web application model except for the “RIA”

Ajax engine on the client side.

 Obviously, developers can decide to partition

their application anywhere between these two

extreme cases. What is worthy of pointing out is that

the server-centric model is fully capable of

delivering a rich user experience such as rich UI and

asynchronous partial updates. The reason is the

introduction of the RIA Ajax engine.

 In this model, the number of round trips is not

necessarily reduced comparing with the classic

HTML application model, but the amount of data to

be transferred is much smaller. The asynchronous

nature of the Ajax engine still enables the

“continuous” user experience. The popular

JavaServer Faces (JSF) model is such a server-

centric model that encourages all processing

happening on the server side. The benefits of this

model include not only much enhanced user

experience than a classic HTML application by the

introduction of a client-side Ajax engine, but also

good application maintainability. Because all logic

stays on the server side, it is much easier develop

and maintain application code on the server side

than dealing with JavaScript code on the client side.

 Syed.Asadullah Hussaini, S.Nasira Tabassum, M.Khader Baig / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.111-117

115 | P a g e

NON-DISTRIBUTED DEPLOYMENT: In a non-

distributed deployment scenario, all the logically

separate layers of the Web application are physically

located on the same Web server, except for the

database. You must consider how the application

will handle multiple concurrent users, and how to

secure the layers that reside on the same server.

Figure below shows this scenario.

DISTRIBUTED DEPLOYMENT: In a distributed

deployment scenario, the presentation and business

layers of the Web application reside on separate

physical tiers, and communicate remotely. You will

typically locate your business and data access layers

on the same sever. Figure below shows this

scenario.

Load Balancing

When you deploy your Web application on multiple

servers, you can use load balancing to distribute

requests so that they are handled by different Web

servers. This helps to maximize response times,

resource utilization, and throughput. Figure below

shows this scenario.

LOAD BALANCING A WEB APPLICATION:

Consider the following guidelines when designing

your Web application to use load balancing:

 Avoid server affinity when designing scalable

Web applications. Server affinity occurs when

all requests from a particular client must be

handled by the same server. It usually occurs

when you use locally updatable caches, or in-

process or local session state stores.

 Consider designing stateless components for

your Web application; for example, a Web front

end that has no in-process state and no stateful

business components.

 Consider using Windows Network Load

Balancing (NLB) as a software solution to

implement redirection of requests to the servers

in an application farm.

WEB FARM CONSIDERATION

A Web farm allows you to scale out your

application, which can also minimize the impact of

hardware failures. When you add more servers, you

can use either a load-balancing or clustering

approach.

 Consider the following guidelines when

designing your Web application to use a Web farm:

 Consider using clustering to minimize the

impact of hardware failures.

 Consider partitioning your database across

multiple database servers if your application has

high input/output requirements.

 Consider configuring the Web farm to route all

requests from the same user to the same server

in order to provide affinity where this is

required.

 Do not use in-process session management in a

Web farm when requests from the same user

cannot be guaranteed to be routed to the same

server. Use an out-of-process state server

service or a database server for this scenario.

Technology Considerations

On the Microsoft platform, from an ASP.NET

standpoint, you can combine the ASP.NET Web

Forms model with a range of other technologies,

 Syed.Asadullah Hussaini, S.Nasira Tabassum, M.Khader Baig / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.111-117

116 | P a g e

including ASP.NET AJAX, ASP.NET MVC,

Microsoft Silverlight™, and ASP.NET Dynamic

Data.

 Consider the following guidelines:

 If you want to build applications that are

accessed through a Web browser or specialized

user agent, consider using ASP.NET.

 If you want to build applications that provide

increased interactivity and background

processing, with fewer page reloads, consider

using ASP.NET with AJAX.

 If you want to build applications that include

rich media content and interactivity, consider

using ASP.NET with Silverlight controls.

 If you are using ASP.NET, consider using

master pages to implement a consistent UI

across all pages.

 If you are building a data-driven Web

application with pages based on the data model

of the underlying database, consider using

ASP.NET Dynamic Data.

TECHNOLOGIES

The term Ajax has come to represent a broad group

of web technologies that can be used to implement a

web application that communicates with a server in

the background, without interfering with the current

state of the page. In the article that coined the term

Ajax, Jesse James Garrett explained that the

following technologies are incorporated:

 HTML (or XHTML) and CSS for presentation

 The Document Object Model (DOM) for

dynamic display of and interaction with data

 XML for the interchange of data, and XSLT for

its manipulation

 The XMLHttpRequest object for asynchronous

communication

 JavaScript to bring these technologies together

Since then, however, there have been a number of

developments in the technologies used in an Ajax

application, and the definition of the term Ajax.

 XML is not required for data interchange and

therefore XSLT is not required for the manipulation

of data. JavaScript Object Notation (JSON) is often

used as an alternative format for data interchange,

although other formats such as preformatted HTML

or plain text can also be used.

Conclusion

Ajax provides several architectural approaches, and

each approach is supported by various commercial

software products and/or open source projects. The

architectural diversity provides IT managers and

Web developers with the ability to choose the

optimal architectural approach and best products in

order to meet their particular requirements and fit in

with their existing practices.

References
1. Jesse James Garrett (18 February 2005). "Ajax:

A New Approach to Web Applications".

AdaptivePath.com. Retrieved 19 June 2008.

2. Ullman, Chris (March 2007). Beginning Ajax.

wrox.ISBN 978-0-470-10675-4. Archived from the

original on 5 July 2008. Retrieved 24 June 2008.

3. "Dynamic HTML and XML: The

XMLHttpRequest Object". Apple Inc. Retrieved 25

June 2008.

4. Hopmann, Alex. "Story of XMLHTTP". Alex

Hopmann’s Blog. Retrieved 17 May 2010.

5. "A Brief History of Ajax". Aaron Swartz. 22

December 2005. Retrieved 4 August 2009.

6. "JavaScript Object Notation". Apache.org.

Archived from the original on 16 June 2008.

Retrieved 4 July 2008.

7. "Speed Up Your Ajax-based Apps with JSON".

DevX.com.Archived from the original on 4 July

2008. Retrieved 4 July 2008.

8. "Why use Ajax?". InterAKT. 10 November

2005.Archived from the original on 29 May 2008.

Retrieved 26 June 2008.

9. "Deep Linking for AJAX".

10. "HTML5 specification". Retrieved 21 October

2011.

 Syed.Asadullah Hussaini, S.Nasira Tabassum, M.Khader Baig / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.111-117

117 | P a g e

11. Prokoph, Andreas (8 May 2007). "Help Web

crawlers efficiently crawl your portal sites and Web

sites". IBM. Retrieved 22 April 2009.

12. Quinsey, Peter. "User-proofing Ajax".

13. "WAI-ARIA Overview".

http://www.w3.org/. Archivedfrom the

original on 26 October 2010. Retrieved 21 October

2010.

14. Edwards, James (5 May 2006). "Ajax and

Screenreaders: When Can it Work?". sitepoint.com.

Retrieved 27 June 2008.

15. "Access Control for Cross-Site Requests".

World Wide Web Consortium. Archived from the

original on 14 May 2008. Retrieved 27 June 2008.

16. "Secure Cross-Domain Communication in the

Browser". The Architecture Journal (MSDN).

Archived from the original on 29 March 2010.

Retrieved 27 April 2010.

17. Cuthbertson, Tim. "What is asynchronous

programming, and why is it so damn awkward?".

http://gfxmonk.net/. Retrieved 19 October 2010.

18. "Selenium documentation: Fetching a

Page".http://seleniumhq.org/. Retrieved 6 October

2011.

Profiles
Syed.Asadullah hussaini has received his Master of

Technology in Computer Science Engineering from

Shadan college of Engineering & Technology,

affliated to JNTUH Hyderabad,A.P.India. (Email:

syed.asadullah hussaini@ymail.com)

S.Nasira Tabassum has received her Master of

Computer Application from Muffakham Jah College

of Engineering and Technology, Affiliated to

Osmania University, Hyderabad, AP India. She

received her Master in Technology in Software

Engineering from Nizam Institute of Engineering

and Technology, Deshmukhi, Nalgonda Dist,

Affiliated to JNTU, Hyderabad, AP India. (Email:

nasira.tabassum@gmail.com).

M.KHADER BAIG has received his Master of

Technology in Computer Science Engineering from

Nizam Institute of Engineering and Technology,
Deshmukhi, Nalgonda Dist, Affiliated to JNTU

Hyderabad, AP India. (Email:

mogalkhaderbaig@gmail.com

