
 Sapna Prabhu, Dr. R.D. Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.098-102

98 | P a g e

Measuring Performance Degradation in Multi-core Processors

due to Shared resources

Sapna Prabhu, Dr. R.D. Daruwala
*Research Scholar VJTI, Mumbai

**Professor VJTI, Mumbai

Abstract
The effect of resource sharing in multi-

core processors can lead to many more effects

most of which are undesirable. This effect of

Cross-core interference is a major performance

bottleneck. It is important that Chip

multiprocessors (CMPs) incorporate methods

that minimise this interference. To do so, some

accurate measure of Cross Core Interference

needs to be devised. This paper studies the

relation between Instructions per cycle (IPC) of a

core and the cache miss rate across various

workloads of the SPECCPU 2006 benchmark

suite by conducting experimentation on a Full

System simulator and makes some important

observations that need to be taken into account

while allocating resources to a core in multi-core

processors.

Keywords: Chip Multiprocessors (CMPs), Cross-

Core Interference, Pre-fetching, Instructions Per

Cycle (IPC), LLC (Last Level cache)Miss rate

I.INTRODUCTION
The need for better performance from

computing systems has always been on the rise and

is predicted to continue. This has necessitated the

advent of high performance microprocessors with

sophisticated architectures. The increased hardware

has however led to power levels above acceptable

limits. Hence, leading microprocessor

manufacturers like INTEL and AMD have adopted a

shift in computing paradigm by introducing the

concept of Multi-core processing. Multi-core

processing can be achieved by multiple cores on a
single processor die which run at lower clock

frequencies than their single-core counterparts.

Since, these cores work in parallel, the performance

is bound to improve. Also, power consumption can

be kept within limits.

The cores generally share a number of

resources to avoid hardware duplication like the

caches, pre-fetch buffers, Front-Side Bus controllers

to name a few. For eg. Consider the Intel Xeon

Quad core processor where the last level cache is

shared between a pair of cores. (Core 0 and Core 1

share a L2 cache and Core 2 and Core 3 share
another L2) . Resource Sharing can lead to various

effects , some which may enhance the performance

while others that can lead to performance

degradation. For the rest of the paper, Shared

resources will be restricted to sharing of the last

level cache.

The Shared cache can be beneficial for

Inter -Core Communication . Also, if the two cores

need the same data, sharing will improve

performance. The bigger issues related to sharing of

resources however are due to the slowdown of
applications that run in parallel on neighbouring

cores. Section II will explain the phenomenon of

Cross-core Interference.

II. CROSS-CORE INTERFERENCE

To bridge the speed disparity between the

cores and main memory, all the cores are normally

attached to two or more levels of caches. The cache

architecture varies across processors with some

having private caches and others having a

combination of private and shared cache. Generally,
most cores have private caches and share the last

level cache (maybe L2 or L3). Figure 1 shows one

such dual-core dual processor system.

Figure 1: A Dual-core Dual processor system

We shall assume that the last level is L2

throughout the remaining part of the paper. In this

case, Core 0 and Core 1 in a dual core processor
have a private L1 per core and both the cores share

an L2. In such a case, if Core 0 brought in a line of

cache into L2 due to a cache miss, it is possible that

Core 1 may evict that valid line to accommodate a

line required by it. To summarise , Core 0 may

 Sapna Prabhu, Dr. R.D. Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.098-102

99 | P a g e

experience cache misses due to Core 1 and vice

versa. This effect is called Cross-core interference

and is highly undesirable. Due to sharing of L2 ,

performance of an application running on Core 0

will depend on the number of additional cache

misses that it experiences due to the application

running on Core 1.

 One of the main objectives in Multi-core

processing is Performance isolation where-in the

performance of all the cores must be independent of

each other. Cross-Core Interference leads to poor

performance isolation and may result in higher order

system-level effects like priority inversion and

thread starvation as it brings in indeterminism in the

system. The execution time of a thread can vary

greatly depending on its co-running thread. Note

that the performance of a core is therefore

dependent on the nature of its co-running thread on
the neighbouring core. This is termed as

Performance variability and is a result of poor

Performance Isolation between cores [1] .

 Thus, Cross-Core interference can cause a

major performance degradation in a multi-core

system. It is interesting to note that this interference

is workload specific . Thus, measuring the impact of

cache interference on performance is a multi variate

problem that is considerably challenging [2] . The

nature of cross-core interference experienced by an
application due to its co-running application

depends on the nature of both the applications.

A. Factors affecting Cross Core Interference

Some application workloads are compute

intensive and others may be memory intensive.

Applications that contain a large number of memory

accesses are generally prone to more cache misses

than those which make fewer accesses. Another

important characteristic of applications is its

Memory Reuse or Temporal locality [5]. It has been

observed that applications that reuse their data well (
have good temporal locality) may experience less

misses despite having more accesses. Another

important characteristic that needs to be discussed

here is that some applications may cause more

contention and affect co-runners substantially while

may itself not get affected by its co-runners. The

converse is also noted to be true that applications

may get affected by others but may not harm others

performance considerably [3]. The Working set size

of an application also determines performance of the

application as a function of cache size. Some
applications show low miss rates when the amount

of cache allotted to them increases. There are others

who show low performance improvement to larger

caches [4].

B. Effects of Pre-fetching mechanism

Most Multi-core processors include

Hardware Pre-fetchers that are triggered to prefetch

into the cache from main memory. Pre-fetching is

one such technique that helps alleviate potential

bottlenecks, by fetching instructions and/or data

from memory into the cache well before the
processor needs it, thus improving the load-to-use

latency. For eg. Intel Pentium 4 includes Automatic

Hardware Pre-fetch and Adjacent Cache Line Pre-

fetch. The Hardware Pre-fetcher operates

transparently, without programmer intervention, to

fetch streams of data and instruction from memory

into the unified second-level cache. The Pre-fetcher

is capable of handling multiple streams in either the

forward or backward direction. It is triggered when

successive cache misses occur in the last-level cache

and a stride in the access pattern is detected. The

Adjacent Cache-Line Pre-fetch mechanism, like
Automatic Hardware Pre-fetch, operates without

programmer intervention. When enabled through the

BIOS, two 64-byte cache lines are fetched into a

128-byte sector, regardless of whether the additional

cache line has been requested or not [13].

To minimise cross-core interference , it is

important to accurately measure the extent of

interference and also the cause for it. This is done by

performing Workload Characterisation .A

dependable heuristic to measure the interference
needs to be devised which can be easily obtained in

on-line as well as off-line studies. Section III

discusses related work in Workload Characterisation

as well as interference measurement.

III. Related Work
Several other studies have proposed

various methods to perform workload

characterisation of applications which is an
important step in measuring Cross-core interference.

As mentioned in the earlier Section, application

characteristics play an important role in determining

the effect on their own as well as their co-running

application’s performance when both applications

are sharing resources.

A. Workload Characterization

Qureshi et al. ,in his paper has studied

characteristics of various applications based on their

response to size of cache [4]. The general

observation is that some applications demonstrate
lower miss rates as the size of cache allotted to them

is increased . These are called high utility

applications while those who do not show any

substantial change in miss rate are called low-utility

applications. Another category of applications called

saturating utility applications show a good response

as cache size increases to a certain point after which

their response remains almost constant. Tang et al.

propose two metrics namely Contentiousness and

 Sapna Prabhu, Dr. R.D. Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.098-102

100 | P a g e

Sensitivity [3]. An application’s contentiousness is

defined as the potential performance degradation it

can cause to co-running application(s) due to its

heavy demand on shared resources. On the other

hand, an application’s sensitivity to contention is

defined by its potential to suffer performance

degradation from the interference caused by its
contentious co-runners. The paper concludes that

applications’ Contentiousness and Sensitivity are

not strongly co-related and all all applications can

be 1) contentious and sensitive; 2) not contentious

and insensitive; 3) contentious but not highly

sensitive; 4) not highly contentious but sensitive.

Xie et al. in his paper has proposed a classification

algorithm for determining the “personalities” of the

programs with respect to their cache sharing

behaviors [8]. They classify benchmarks into

intuitive “animal” personalities based on a few

simple heuristic metrics. Applications are classified
into four categorized namely Turtles, Sheep, Rabbits

and Devils. Turtles are some applications that

simply do not make much use of the shared last-

level (L2) cache. This may be because the program

simply has very few memory instructions to begin

with, or it may be that the program has a very small

working set that completely fits within the level-one

caches and therefore rarely accesses the L2 cache.

Sheep applications are those which are not sensitive

to the number of ways allocated to them. These

applications may actually exhibit a high rate of L2
accesses, but even with an allocation of only a few

ways, these programs can achieve a low L2 miss

rate. Some applications are very sensitive about the

number of ways allocated to them. Such

applications access the L2 cache fairly frequently,

but if provided with a sufficient number of ways, the

overall miss rate can be kept low. These are called

Rabbit applications. The last class of applications

called Devils simply do not “play well with others.”

These applications access the L2 cache very

frequently, but still have very high miss rates. As a

result, such applications do not derive much benefit
from occupying the cache (in terms of hit-rate

reduction), and furthermore they tend to negatively

impact other applications

B.LLC Miss Rate as an indicator of Cross-core

Interference ?

Several studies have proposed different

heuristcs , direct and indirect , which can be used to

measure cross-core interference. Zhuravlev et al.

have summarised classification schemes namely

Stack distance Competition(SDC), Animal Classes,
Miss rate and applications based on a metric called

Pain proposed by them. The paper indicates that a

simple metric like the cache miss rate can be used to

classify applications and this scheme performs

almost if not better than the other methods [6]. Tang

et al. have concluded that miss rate cannot be used

to measure the contentiousness and sensitivity of all

types of applications as low miss rate applications

are also noted to cause contention to other co-

running applications [3].

 The next section discusses the relation

between IPC and LLC Miss rate when applications

share caches with other applications.

IV . EXPERIMENTAL SETUP

For our experimentation , we use Virtutech

SIMICS full system simulator which has been

extended to include a cache hierarchy [10] . For the

setup, we have used a X86-440BX target .This

target supports various configurations namely tango,

enterprise, cosmo or hippie.

Tango has Fedora Core 5 installed. The

base configuration has a single 20 MHz Pentium 4

processor, 256 MB memory, one 19GB IDE disk

and one IDE CD-ROM [5]. There is also an AGP

based Voodoo3 graphics card and a PCI based
DEC21143 network adapter. Our setup comprises of

a dual core processor using the tango configuration

with each core having a separate code and data

Level 1 cache and Level 2 cache being shared

between the two cores . Table 1 explains the setup in

more detail .

Number of

Cores

2

Level 1 (L1)

cache/Core

32 KB Instruction cache+ 32 KB

Data cache ,lru replacement

policy, Read/Write penalty =3

cycles

Level 2
(L2)cache

1 MB Unified cache, lru
replacement policy, Read/write

penalty =10 cycles

Table 1: Baseline Configuration

The experimentation has been carried out

by running programs of the SPECCPU 2006

Benchmark suite. The SPEC CPU2006 benchmark

suite consists on a set of 12 programs for integers

(SPECCPUint2006) written in C and C++ and 17

programs for floating point (SPEC CPUfp2006)

written in C, C++ and FORTRAN [12]. The

objective of these computer-intensive programs is to
provide portable, credible and real-world

application-based benchmarks for quantifying the

performance of the set processor, memory and

compiler.

The experimentation has been carried out

in two steps. First, the programs are run solo in the

dual core processor by binding it to Core 0 and

statistics are collected. The application is bound to

the core using the taskset utility. Secondly, the each

program is run with different co-runner applications,
by binding the applications to Core 0 and Core 1

and paired statistics are collected [11].

 Sapna Prabhu, Dr. R.D. Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.098-102

101 | P a g e

Since the SPECCPU 2006 has a large

instruction set as compared to its predecessor , the

SPECCPU 2000 suite , the simulation times

involved are huge. Hence, a representative subset

for the same is used for the experimentation [9]. Ten

benchmarks from the SPEC2006 benchmark suite

have been selected to represent a wide range of
cache access behaviours. The cache miss rates and

access rates for every application in the SPEC2006

benchmark suite were obtained from a third party

characterization report [6] and a clustering

technique was employed to select the ten

representative applications namely mcf, lbm, milc,

soplex, astar, sphinx3, libquantum, namd, gamess,

povray.

Also, all the programs are run using the

runspec utility with ref inputs. As running the

programs in a simulated setup takes several orders
of time more than running the programs on a real

machine, a sampled window of instructions has been

chosen to run the experiments. All the applications

are fast-forwarded past their initialization codes and

then run for 1 billion instructions [7]. Then after

caches have been attached, they are further run for

100 million instructions to “warm” up the caches.

After the caches have been flushed to eliminate the

effect of of compulsory cache misses, the

benchmarks are further run for 500 million

instructions before collecting statistics.

V. RESULTS

The statistics were collected or solo as well

as paired run for the benchmarks. The statistics

collected are IPC (Instructions per cycle) for core

and Level 2 cache misses (Data read+ data write+

Instruction fetch).

Figure 2 shows the solo characteristics of the

benchmarks.

Figure 2 Solo IPC and Miss rates of SPECCPU 2006 programs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

mcf lbm povray libquantum gamess namd astar soplex sphinx3 milc

IP
C

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

M
is

s
 R

a
te

ipc

miss rate

From the above solo characteristics, we can broadly

classify the programs as high miss rate (milc, soplex

,mcf, libquantum, lbm) and low miss rate

applications (povray, namd, astar,gamess,sphinx3).

Further, each application was run with

different co-runners and statistics were collected.

Since the number of combinations is considerable,

some of the readings are shown in the table below

 Solo soplex astar milc namd sphinx3

mcf IPC

MR

0.148

11.98%

0.25

13.82%

0.106

14.16%

0.096

15.75%

0.108

10.59%

0.093

13.88%

astar IPC

MR

0.3472

3.1966%

0.285

16.7%

0.309

8.87%

0.33

4.56%

0.342

3.53%

0.346

1.02%

povray IPC

MR

0.351

0.166%

0.351

3.38%

0.351

1.156%

0.351

5.96%

0.351

0.61%

0.351

0.26%

milc IPC

MR

0.2

27.47%

0.47

1.43%

0.29

7.02%

0.319

3.18%

0.27

7.52%

0.342

4.35%

sphinx3 IPC

MR

0.366

0.723%

0.362

9.13%

0.292

7.21%

0.361

5.31%

0.364

0.223%

0.349

3.55%

Table 2 : IPC and miss rates of applications (solo

and paired)

Interpretation of results:

Applications under test are categorised as

high miss rate and low miss rate applications. Low

miss rate applications may have low miss rates

either because they have less memory accesses or

may have more accesses but show low miss rates
due to excellent memory reuse.

For eg. Low miss rate applications like

astar show variation in miss rate almost upto 16.7%

depending on co-runner and a proportional variation

in IPC is also noted. However, another low miss rate

application like povray shows lesser variation in

miss rate and its IPC remains constant . This is

 Sapna Prabhu, Dr. R.D. Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.098-102

102 | P a g e

because povray has excellent temporal locality (

good memory reuse). Also . it is less sensitive as

compared to astar to co-running applications but

because the number of accesses is large , the small

variation in miss rate does not change IPC. Another

low miss rate application sphinx3 shows variation in

miss rate upto 9.13% and a proportional change in
IPC.

However, high miss rate application like

mcf shows a decrease in IPC with increasing miss

rates. However the IPC gets impacted largely for

small changes in miss rate as the number of misses

is large. Another high miss rate application like milc

however shows speedups rather than slowdown

when run with other applications, This can be

attributed to the pre-fetching mechanism in Pentium

4 as discussed in Section II. As milc hardly reuses

its data, prefetching benefits are more prominent as
compared to mcf.

VI. CONCLUSIONS
From the above experiments , two

conclusions can be made . The LLC miss rate is not

a dependable measure of cross-core interference

across different workloads as it does not

clearly quantify the extent of interference which is

crucial in resource allocation The variation also
depends on the number of accesses as well as misses

experienced by the application (solo

characteristics). Another important conclusion is

that by using workload characterisation to study

effects of pre-fetching across different workloads,

better performance benefits can be derived. For

effective Shared resource management in Multi-core

processors, both these conclusions are important.

Future work may include studying the effectiveness

of pre-fetching across application workloads .

REFERENCES
1. Alexandra Fedorova, Margo Seltzer ,

Michael D. Smith, Improving Performance

Isolation on Chip Multiprocessors via an

Operating System Scheduler, Proceedings

of the 16th International Conference on

Parallel Architecture and Compilation

Techniques(PACT’07), Page(s): 25-36.

2. Alex Settle, Dan Connors, Enric Gilbert,
Antonio Gonzalez, A dynamically

reconfigurable cache for multithreaded

processors, Journal of Embedded

Computing, Volume 2 Issue 2, April 2006,

Page(s):221-233.

3. Lingjia Tang, Jason Mars, Mary Lou Soffa,

Contentiousness vs Sensitivity: improving

contention aware runtime systems on

multicar architectures, Proceedings of 1st

International Workshop on Adaptive Self-

tuning Computing Systems for the Exaflop

Era (EXADAPT’11), Pgs. 12-21

4. Moinuddin K. Qureshi and Yale N. Patt,

Utility-Based Cache Partitioning: A Low-

Overhead, High-Performance, Runtime

Mechanism to Partition Shared Caches, in

Proceedings of the 39th Annual

IEEE/ACM International Symposium on

Microarchitecture (MICRO 39). IEEE
Computer Society: Orlando, Florida, USA,

2006, Pgs. 423–432

5. Nikrouz Faroughi, Profiling of parallel

processing programs on shared memory

multiprocessors using Simics, ACM

SIGARCH, Pgs.51-56.

6. Sergey Zhuravlev, Sergey Blagodurov,

Alexandra Fedorova, Addressing Shared

Resource Contention in Multi-core

Processors via Scheduling , Proceedings of

the fifteenth edition of ASPLOS on

Architectural support for programming
languages and operating

systems,ASPLOS’10, Pgs.129-142.

7. Xiaomin Jia,Jiang Jiang , Tianlei

Jhao,Shubo Qi,Minxuan Zhang, Towards

Online Application Cache Behaviors

Identification in CMPs, Proceedings of the

High Performance Computing and

Communications (HPCC), 2010 , Pgs. 1-8

8. Y Xie, G H Loh. Dynamic classification of

program behaviors in CMPs. Proc

Workshop on Chip Multiprocessor
Memory Systems and Interconnects.

Beijing, China, 2008., Pgs .28–36.

9. Rafael Rico, SPEC CPUint2006

characterization, Technical Report TR-

HPC -01-2009

10. Simics Programming Guide, Version 3.0.

11. Simics User Guide for Unix , Version 3.0.

12. www.spec.org

13. www.software.intel.com

http://www.spec.org/

