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ABSTRACT 
The problem of onset of convective 

instability in a horizontal inert porous layer 

saturated with a couple-stress fluid subject to 

zero-order chemical reaction is investigated by 

the method of small perturbation. Modified 

Darcy-couple-stress model is used to describe the 

fluid motion. The horizontal porous layer is 

cooled from the upper boundary while an 

isothermal boundary condition is imposed at the 

lower boundary. Closed form solution pertaining 

to the equilibrium state is obtained. The resulting 

eigenvalue problem, subject to realistic flow 

boundary conditions, is solved approximately 

using the Galerkin method. The media Darcy-

Rayleigh number, characterizing the stability of 

the system, is calculated as a function of the 

Frank-Kamenetskii number, wavenumber and 

the couple-stress parameter. It is found that the 

destabilizing effect of chemical reaction on the 

system is more pronounced and the aspect ratio 

of convection cells becomes uniform provided 

that the couple-stress parameter is large.  

 
Keywords - Chemical reaction, Couple stress, 
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I.  INTRODUCTION 

In hydrodynamic stability, experiments 

have led to theory all along and the main source of 

arriving at a mathematical breakthrough is to have a 

feeling for the right result that may have been 

suggested from nowhere or through the application 

of intuitive reasoning based on experience and 

observation. Conventional hydrodynamic stability 

theory is mainly concerned with the determination 

of critical values of Rayleigh number and it 

demarcates a region of stability from that of 

instability. Right from the conceptualizations of 
turbulence, instability of fluids is being regarded at 

its root. Thermal instability of a fluid layer with 

maintained adverse temperature gradient by heating 

the underside plays an important role in geophysics, 

interiors of the Earth, oceanography, atmospheric 

physics, and so forth. A comprehensive account of 

thermal instability in a viscous fluid layer under 

varying  assumptions  of  hydrodynamics  has  been  

 

 

summarized in the celebrated monograph by 

Chandrashekar [1]. The Boussinesq approximation 
has been used throughout, which states that the 

density changes are disregarded in all other terms in 

the equation of motion except in the external force 

term.  

     Thermal convective instability in a layer of 

porous medium has merited extensive attention over 

the years and is now emerged as an important field 

of study in the general area of fluid dynamics and 

heat transfer. The formulation and derivation of the 

basic equation of a layer of fluid heated from below 

in a porous medium using Boussinesq 
approximation has been given in a treatise by Joseph 

[2]. When a fluid flows in an isotropic and 

homogenous porous medium, the gross effect is 

represented by Darcy’s law. The flow through 

porous media is of considerable interest for 

petroleum engineers, for geophysical fluid 

dynamicists and has importance in chemical 

technology and industry. The rotation of the Earth 

distorts the boundaries of a hexagonal convection 

cells in a fluid through a porous medium and this 

plays an important role in the extraction of energy in 

the geothermal regions. The growing volume of 
work pertaining to this field is well documented by 

Ingham and Pop [3], Vafai [4] and Nield and Bejan 

[5]. 

     Buoyancy driven convection of reacting fluids 

within porous media occurs during oxidation of 

solid materials in large containers or the synthesis of 

ceramic material. Moreover, free convection within 

porous medium can remove heat from radioactive 

waste products or delay the thermal explosion of 

coal piles or waste dumps. When an exothermic 

reaction takes place in a fluid-saturated porous 
medium, the heat generated by the reaction changes 

the fluid density and free convection may occur. The 

induced natural convection, in turn, affects the rate 

of heat release by the reaction. 

     Kordylewski and Krajewski [6] were the first to 

perform a stability analysis based on Darcy’s law 

with the Boussinesq approximation and a zero-order 

exothermic reaction. Farr et al. [7] carried out 

stability analysis on free convection in confined 

porous medium with zero-order exothermic 

reactions. Vilijoen and Hlavacek [8] and 
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Subramanian and Balakotaiah [9] carried out 

numerical studies of systems under similar 

conditions. Malashetty et al. [10] performed a linear 

stability analysis to study the onset of convective 
instability in a horizontal inert porous layer 

saturated with a fluid undergoing a zero-order 

exothermic chemical reaction. McKay [11] studied 

the onset of buoyancy driven convection in 

superposed reacting fluid and porous layers. It is 

found that, with chemical reactions, the fluid in the 

porous medium is more prone to instability as 

compared to the case in which chemical reactions 

are absent. More recently, Akbar et al. [12] 

investigated the problem of onset of convective 

instability in a horizontal inert porous layer 
saturated with a Maxwell viscoelastic fluid subject 

to zero-order chemical reaction by linear stability 

analysis. The possibility of oscillatory instability, 

which is inherent in viscoelastic fluid convection, is 

discussed. 

     Newtonian fluids cannot precisely describe the 

characteristics of fluid flow in many practical 

problems. Owing to the development of modern 

machine apparatus, the increasing use of fluids 

containing a microstructure such as those containing 

additives, suspensions, granular matter or long-

chained polymers has been emphasized. These 
fluids deform and produce a spin field due to the 

microrotation of suspended particles forming a 

micropolar fluid. The theory of micropolar fluids 

was developed by Eringen [13] which takes care of 

local effects arising from the microstructure as well 

as the intrinsic motion of microfluidics. The spin 

field due to microrotation of the freely suspended 

particles sets up an anti-symmetric stress known as 

couple stress. The couple stress effects are 

considered as a consequence of the action of a 

deforming body on its neighbourhood. The couple-
stress fluid is a special case of micropolar fluid 

when microrotation balances with the natural 

vorticity of the fluid. Since flow behaviour of these 

kinds of non-Newtonian fluids cannot be described 

accurately by the classical continuum theory, many 

micro-continuum theories have been proposed [14-

16]. Stokes micro-continuum theory is the simplest 

theory of fluids that allows for the presence of 

couple stresses, body couples and non-symmetric 

tensors. The governing equations of the couple- 

stress fluid flows are similar to the classical Navier-
Stokes equations with an increase in the order of the 

equation by two. The structure of the equations 

facilitates a comparison with the results for the 

classical Newtonian fluid which is nonpolar. This 

couple-stress fluid model has implications for fluids 

such as animal blood, liquid crystals, polymer-

thickened oils, synthetic fluids, synovial fluids 

present in synovial joints and theory of lubrication.  

     A good number of fluid flow problems that are 

present in the realm of viscous fluid theory have 

been investigated in the context of the couple-stress 

fluid theory in the last couple of decades. Srivastava 

[17] investigated the problem of peristaltic transport 

of a couple-stress fluid under a zero Reynolds 
number and long wavelength approximation. Since 

the long chain hyaluronic acid molecules are found 

as additives in synovial joints, Walicki and Walicka 

[18] modeled synovial fluid as couple-stress fluid in 

human joints. Sharma and Sharma [19] considered 

the thermal instability of a couple-stress fluid with 

suspended particles. The magnetic field and rotation 

are found to have stabilizing effects on the 

stationary convection and introduce oscillatory 

modes in the system. Malashetty et al. [20] analysed 

the onset of double diffusive convection in a couple-
stress fluid saturated horizontal porous layer using 

linear and weak nonlinear stability analyses. 

Sarvanan and Premalatha [21] studied the effect of 

couple stress on the onset of thermo-vibrational 

convection in a porous medium. These diverse flow 

problems indicate the continuing interest among 

researchers in couple-stress fluid flows.  

     In the present paper, the convective instability of 

a chemically reacting couple-stress fluid in a porous 

medium heated from below is investigated using 

modified Darcy model. We assume that the fluid is 

undergoing a zero-order exothermic chemical 
reaction and that there exists a local thermal 

equilibrium between the fluid and the solid phases. 

Closed form solution for temperature distribution of 

basic undisturbed state corresponding to the thermal 

boundary condition is first obtained and the ignition 

conditions are indicated. A linear stability analysis 

is then performed and the resulting eigenvalue 

problem is solved by the Galerkin technique. 

 

II.  MATHEMATICAL  FORMULATION  

 
Figure 1.  Physical configuration. 

     

     We consider a horizontal constant porosity layer 

of finite thickness bounded between z = 0 and z = d                     

(with z-axis directed vertically upward) and of 

infinite extent in the horizontal xy plane. The inert 

porous layer is saturated with a chemically reactive 

couple-stress fluid subject to weakly exothermic 

chemical reactions and is cooled from the top at a 

temperature of cT . If the temperature in the whole 
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domain of interest varies slightly from cT , a zero-

order reaction can be assumed. Moreover, it is 

assumed that local thermal equilibrium exists 

between the solid matrix and the saturated fluid. The 

system of equations describing the problem under 

consideration is the following: 

0. q                                   (1) 

   2o 1 1
. cp

t k

 
        


  

 

q
q q g q 

 

(2) 

  2 exp.
T E

M T T Q
t RT

  
     

  
q       (3) 

 o c1 T T                              (4) 

where  , ,u v wq  is the mean filter velocity, t  the 

time, p
 
the pressure,   the fluid density,   the 

reference density, g  the acceleration due to gravity, 

  the fluid viscosity, 
 

the porosity, k  the 

permeability of the porous medium,   the effective 

thermal diffusivity, c  the couple-stress viscosity, 

M  the ratio of the specific heat of the solid due to 

porous medium and that of the fluid at constant 

pressure,   the coefficient of thermal expansion, T
 

the temperature, Q  the product of the heat of 

reaction, a pre-exponential factor and reactant 

concentration, E  the activation energy, R  the 

universal gas constant,   the vector differential 

operator and  , ,x y z  are the spatial coordinates.      

The thermal boundary conditions are given by  

 , , cT x y d T                                  (5) 

 , ,0 hT x y T                                  (6) 

where h cT T . We assume that the couple-stress 

fluid in the porous medium is subject to high-

activation energy. With this approximation, Eq. (3) 

can be simplified to  
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  with rT  being the prescribed reference 

temperature for a reacting fluid. Eqs. (5) and (6), in 

terms of  , reduce to  

0    at
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h    at  * 0z                              (9) 

where h c
h

r

T T

T


  and the asterisk denotes a 

dimensionless quantity.    

At an undisturbed state, the variables are taken to be 

   , , 0,0,0u v w q , ( )b z  , ( )bp p z ,

( )b z  .                           (10) 

     The quiescent state solutions are therefore given 

by the following equations 

 0b
b
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Eq. (13) can be recast in the dimensionless form 

 
2
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where 
2d

F 



. The dimensionless number F  is 

the Frank-Kamenetskii number. On integration, Eq. 

(14) leads to (after suppressing the asterisk) the 

following general solution  
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where 1C  and 2C  are the integration constants to 

be determined. Application of the following 

boundary conditions   

b h 
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(16) 

gives 1C  implicitly through the following equation
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and 2C  by the relation 
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1
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     The reaction in the fluid is self-sustainable and 

the nature of the lower boundary changes to 
adiabatic beyond a certain value of the Frank-

Kamanetskii number F . We consider only Frank-

Kamanetskii numbers below this critical value. The 

critical value of the Frank-Kamanetskii number F  
is found to be 0.878455 when 1.19h  . 

Computations for 1C  and 2C  were performed for 

selected values of h  
and for different values of F  



Mubeen Taj, S. Maruthamanikandan, Syeda Khudeja Akbar / International Journal of 

Engineering Research and Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 3, Issue 2, March -April 2013, pp.1742-1748 

1745 | P a g e  

up to its ignition value. The results of these 

computations for 1h   are presented in Fig. 2. It is 

seen that, for small values of F , the basic 

temperature profile is well-nigh linear. However, the 

basic temperature profile turns out to be more and 

more nonlinear as the value of F is increased in that 

the heat generated due to the chemical reaction also 

increases. 

 
Figure 2.  Basic temperature profile for different 

values of F  and 1h  . 

 

III.  STABILITY  ANALYSIS 
We now perform a linear stability analysis by letting 

 ' , ', ' , ',

', '

b b

b b

u v w p p p

     

    

   

q q q

      
(19) 

where the primes indicate infinitesimally small 
perturbations. On substituting (19) into Eqs. (1), (2), 

(4) and (7), neglecting the nonlinear terms, 

incorporating the quiescent state solutions and 

eliminating the pressure term, we obtain the 

following equations  
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. According to the normal 

mode analysis, convective motion is assumed to 

exhibit horizontal periodicity [1]. Then the 

perturbed quantities can be expressed as 

 
( )

exp ( )
( )

w W z
i l x my t

z

   
         




        (22) 

where l
 
and m  are the wavenumbers in the x

 
and 

y  directions respectively and   is the growth rate. 

Substitution of (22) into Eqs. (20) and (21) leads to 

the following equations    
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  and 2 2 2
h

k l m  . Non-

dimensionalizing Eqs. (23) and (24) using the 

transformations 
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we obtain (after suppressing the asterisks) the 

equations in the following dimensionless form 
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 is the Vadasz number (the so-

called Darcy-Prandtl number), o rgT d k
Ra 

 


 is 

the media Darcy-Rayleigh number and 
2

c

d






 

is the couple-stress parameter. Noting that the 

principle of exchange of stabilities is valid [10, 20], 

we arrive at the following stability equations  

   2 2 2 2 21 0D D W Ra     
  

            

(28) 

   2 2 exp 0b
b

d
D F W

dz
   


    .    (29) 

The realistic flow boundary conditions are 

0 at 0,1W DW z     .                 (30) 

     It is no longer possible to obtain a closed form 

solution to the system of equations (28) – (30) 

inasmuch as the differential equation (29) consists 

of variable coefficients. We therefore employ a 

numerical method and the relevant details of it are 

given in the following section.  

 

IV. METHOD OF SOLUTION 
The system comprising Eqs. (28) and (29) 

and the homogeneous boundary conditions (30) is 
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an eigenvalue problem, with Ra  being the 

eigenvalue. An approximate solution of this 

eigenvalue problem can be obtained by the well-

known Galerkin method [22]. To this end, we let   

,i i i iW A W B                      (31) 

where iA
 
and iB  are constants and iW  and i  are 

trial functions. Appealing to the Galerkin method, 

one obtains the following system of homogenous 

algebraic equations 
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     The following trial functions are chosen guided 
by the boundary conditions and variational 

considerations 
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V. RESULTS  AND  DISCUSSION 
The problem of Rayleigh-Bénard 

convection in a couple-stress fluid saturated densely 

packed porous medium with chemical reaction is 

studied using method of small perturbation. Closed 

form solution for the basic quiescent state is first 

obtained. The resulting eigenvalue problem is 

solved numerically by the Galerkin technique.      

The convergence of the results is achieved, in 

general, by considering three or four terms in the 

series expansion of Eq. (31). The error in the 

approximate solutions estimated by the difference 

between the solution with three trial functions and 
that with four trial functions is about 0.01%. The 

results obtained for fourth order are presented 

graphically through Figs. 3 and 4. For the problem 

under consideration it is well known that stationary 

instability is preferred to oscillatory instability. It is 

well known that rigid-rigid boundaries offer most 

stabilizing effect against the fluid motion and the 

least suppression is offered by free-free boundaries 

[1].   

     Fig. 3 depicts the variation of critical media 

Darcy-Rayleigh number cRa  as a function of the 

couple-stress parameter Γ  for different values of 

the Frank-Kamenetskii number F. Physically the 

parameter F is the ratio of the characteristic flow 

time to the characteristic reaction time. We observe 

from this figure that cRa  decreases with an increase 

in F indicating that the effect of chemical reaction is 

to advance the onset of convection. This feature of 

chemical reaction on the onset of convection should 

be comprehended in conjunction with the 

implications of the basic temperature profile for the 

stability of the system. The couple-stress parameter 
Γ  is indicative of the concentration of suspended 

particles. We find that cRa  increases with an 

increase in Γ  and hence its effect is to reinforce the 

stability the system. Furthermore, it is worth noting 

that the destabilizing effect of chemical reaction is 

more pronounced when Γ  is large. 

 

 
Figure 3. Plot of cRa  as a function of the couple-

stress parameter Γ  for different values  

of  F. 

 
Figure 4. Plot of c  as a function of the couple-

stress parameter Γ  for different values  

of  F. 
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     Fig. 4 shows the variation of critical wavenumber 

cα  
with the couple-stress parameter Γ  for a range 

of values of the Frank-Kamenetskii number F. It is 

seen that the critical wavenumber, characterizing the 

size of convection cell pattern at the onset of 

instability, is sensitive to the variation in Γ  and F . 

Indeed, as both Γ  and F increase, the critical 

wavenumber cα  decreases monotonically. 

Meaning, the effect of both Γ  and F  is to enlarge 

the size of convection cell at the onset of 

convection. Noticeably, it is follows from Fig. 4 

that, the size of convection cells tends to be uniform 

when Γ  is large. This future of the aspect ratio of 

convection cells could be ascribed to the stabilizing 

influence of the presence of couple stresses. It is 

advantageous to mention that the effect of internal 

heating on the tessellation of the convection cells 
depends largely on the type of boundary 

combinations used in the convective stability 

analyses (Maruthamanikandan, [23]). The problem 

at hand would offer useful insights into heat transfer 

applications if the radiation and magnetic effects are 

factored in [24, 25]. We believe that the findings of 

the present study could have considerable bearing 

on the heat transfer mechanisms concerning fluids 

with couple stresses.  

 

VI. CONCLUSIONS 
On the basis of Stokes micro-continuum 

theory, the combined effect of couple stresses 

signifying non-Newtonian characteristics of the 

fluid and chemical reaction on a densely packed 

porous medium heated from below is examined. The 

modified Darcy equation that includes the time 

derivative and the inertia term is used to model the 

momentum equation. The central conclusions of the 

present study are the following:   

(i) The effect of couple stresses is to enhance 
the stability of the system.  

(ii) Chemical reaction, giving rise to a nonlinear 

basic temperature distribution, destabilizes 

the system. 

(iii) The destabilizing effect of chemical reaction 

on the threshold of convection in a porous 

layer is more pronounced when the couple-

stress parameter Γ  is large. 

(iv) The stabilizing effect of couple stresses is 

not attenuated by the countervailing 

influence of chemical reaction and vice 
versa. 

(v) The dimension of convection cells is 

considerably influenced by the presence of 

chemical reaction. 

(vi) The aspect ratio of convection cells 

becomes uniform provided that the couple-

stress parameter Γ  is large.  
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