Ankit Sharma, Vinod Kumar, Surabhi Jain / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 2, March - April 2013, pp.1715-1718 Survey on Minutiae Coordinates of X-Axis and Y- Axis in Fingerprint Captured Image using Optical Fingerprint Scanner

Ankit Sharma*, Vinod Kumar**, Surabhi Jain***

*(Department of Computer Science, Guru Kashi University, Talwandi Sabo) ** (Department of Computer Science, Guru Kashi University, Talwandi Sabo) *** (Department of Computer Science, Lovely Professional University, Phagwara)

ABSTRACT

Fingerprint recognition is the most effective biometric to provide authentication. Fingerprint images are captured using an optical fingerprint scanner. The fingerprint images are then marked for unique points like bifurcation or ridge termination called minutiae. In this paper, we have surveyed fingerprints of 40 subjects and proposed a new factor in fingerprint image captured from the optical sensor. X-Axis and Y-Axis of the minutiae in the captured fingerprint images are analyzed using coordinate measurement system in order to find an improved and effective way of minutiae coordinates storage as a database for further recognition. This technique acts as an effective way for fingerprint database compression.

Keywords – Biometric, Compression Technique, Coordinate System, Fingerprint Image, Fingerprint Minutiae.

I. INTRODUCTION

Fingerprint recognition is one of the most flexible and secured way of biometric identification. Fingerprint is the feature pattern of one finger [1]. All human being posses fingerprint and these fingerprints are result of unique ridge and valley structure formed by skin over the fingers[2]. They are also used for controlling access to highly secured places such as offices, equipment rooms, control centers and so on [3].A number of biometric characteristics are being used in various applications as Universality, Uniqueness, Permanence, Measurability, Performance, Acceptability, and Circumvention [4]..The technique fetches minutiae points and these minutiae are stored in the database for further use in the form of coordinates (X-Axis and Y-Axis) and angle[5].In the fingerprint, Bifurcation and Ridge End are the two commonly used Minutiae[6]. The processes of biometric recognition system have four steps[7]: Acquisition, Representation, Feature Extraction, and Matching. The storage of these unique values using less space is very important for the speedy authentication in case of bulk database. In previous researches, the coordinates are stored in database simply without any effective strategy. This paper will analyze fingerprints in order to

calculate new factor which will help in more efficient storage of the minutiae in the database.

II. SURVEY AND ITS STATISTICS

The survey of fingerprint is done using Digital Persona U.are.U 4000 Optical Fingerprint Scanner [8]. Ridge and furrow image pattern is captured in grey scale as shown in the figures[9]. Each minutia is shown with a solid circle which marks its x and y coordinates along with an arrow which marks the angle direction of the minutiae.

Inter-minutiae distance is also marked with the interconnecting lines. Survey takes the x-axis and y-axis coordinate points of minutiae on extreme edges of fingerprint image into consideration and measures the distance between them. A related table is shown along with each figure with the coordinates of extreme x-axis, y-axis points and the distance between them.

III. FIGURES AND TABLES

Generally Index finger is used for identification purpose in fingerprint image scanners [10] so we have surveyed index finger of 40 subjects in total for this survey out of whom 10 sample images are shown in this paper as follows. Difference is calculated between the Y-Axis coordinates which mark topmost and bottommost minutiae in a fingerprint and of X-Axis coordinates which mark the leftmost and rightmost minutiae in a fingerprint.

The minutiae measurements and distance between the coordinated are calculated in pixels using Adobe Photoshop 7.0 software [11].

Each value is measured with an accuracy of 1 pixel. The Fingerprint Images captured are the exact original outputs from the fingerprint scanner and are used in survey.

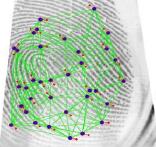


Figure 1. Subject 1 Index Fingerprint

Ankit Sharma, Vinod Kumar, Surabhi Jain / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 2, March -April 2013, pp.1715-1718

Finger 1	X-Axis Coordinate	Y-Axis Coordinate	Difference
Тор	202	22	325
Bottom	151	347	525
Left	27	314	234
Right	261	204	234

Table 1. Coordinate Values for Subject 1Fingerprint

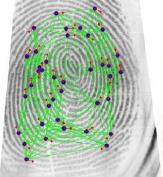


Figure 2. Subject 2 Index Fingerprint

Figure 2. Subject 2 muex Fingerprint			
Finger 2	X-Axis Coordinate	Y-Axis Coordinate	Difference
Тор	199	20	310
Bottom	58	330	
Left	43	275	102
Right	252	150	102

Table	2.	Coordinate	Values	for	Subject	2
Finger	orint					

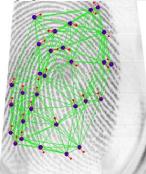


Figure 3. Subject 3 Index Fingerprint

Finger 3	X-Axis Coordinate	Y-Axis Coordinate	Difference
Тор	211	15	304
Bottom	145	319	501
Left	27	275	212
Right	239	134	212

Table 3.CoordinateValuesforSubject3Fingerprint

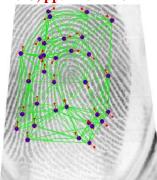


Figure 4. Subject 4 Index Fingerprint

	subject i much		
Finger 4	X-Axis Coordinate	Y-Axis Coordinate	Difference
Тор	102	16	270
Bottom	187	286	
Left	36	259	196
Right	232	36	170

Table 4. CoordinateValues forSubject 4Fingerprint

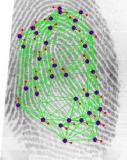


Figure 5. Subject 5 Index Fingerprint

Finger 5	X-Axis Coordinate	Y-Axis Coordinate	Difference
Тор	127	20	273
Bottom	139	293	
Left	41	221	170
Right	211	229	170

Table5.CoordinateValuesforSubject5Fingerprint

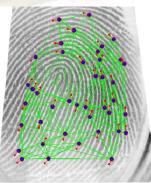


Figure 6. Subject 6 Index Fingerprint

Ankit Sharma, Vinod Kumar, Surabhi Jain / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 2, March -April 2013, pp.1715-1718

Finger 6	X-Axis Coordinate	Y-Axis Coordinate	Difference
Тор	196	18	301
Bottom	242	319	
Left	48	304	223
Right	271	121	225

Table 6. Coordinate Values for Subject 6 Fingerprint

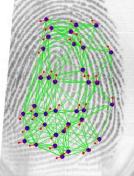


Figure 7. Subject 7 Index Finger

rigure 7. Bubject 7 mack ringer			
Finger 7	X-Axis Coordinate	Y-Axis Coordinate	Difference
Тор	100	40	288
Bottom	134	328	100
Left	51	238	185
Right	236	110	105

Table7.CoordinateValuesforSubject7Fingerprint

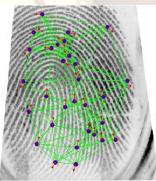


Figure 8. Subject 8 Index Finger

Finger 8	X-Axis Coordinate	Y-Axis Coordinate	Difference
Тор	93	19	318
Bottom	163	337	
Left	53	162	218
Right	271	160	210

Table 8. Coordinate Values for Subject 8 Fingerprint

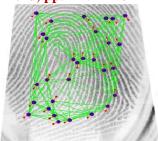


Figure 9. Subject 9 Index Finger

Finger 9	X-Axis Coordinate	Y-Axis Coordinate	Difference
Top	77	24	282
Bottom	124	306	
Left	62	286	202
Right	264	32	202

Table 9.CoordinateValuesforSubject9Fingerprint

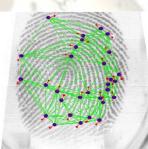


Figure 10. Subject 10 Index Finger

Finger 10	X-Axis Coordinate	Y-Axis Coordinate	Difference
Тор	102	15	274
Bottom	114	289	
Left	45	114	85
Right	246	161	05

Table 10.CoordinateValuesforSubject10Fingerprint

	Difference in X-	Difference in Y-
	Axis Extreme	Axis Extreme
	Coordinates	Coordinates
Finger 1	234	325
Finger 2	102	310
Finger 3	212	304
Finger 4	196	270
Finger 5	170	273
Finger 6	223	301
Finger 7	185	288
Finger 8	218	318
Finger 9	202	282
Finger	85	274
10		

Table11.ComparisontableforExtremeCoordinate Differences

Ankit Sharma, Vinod Kumar, Surabhi Jain / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 2, March -April 2013, pp.1715-1718

Clearly, according to Table 11, we can state that in each fingerprint the difference between extreme X-Axis coordinates and Y-Axis coordinates we find that Y-Axis difference values are larger as compared to X-Axis difference values.

IV. CONCLUSION

With this paper, we conclude that Y-Axis coordinate values covers more distance between extreme minutiae as compared to X-Axis coordinate values. This will help in developing more efficient database storage technique for fingerprint minutiae. Still there would be some exceptions, but overall survey proves that more compression will be achieved using Y-Axis coordinates. Also this paper will help in designing of the high quality and easy to use fingerprint scanner which are image dimension oriented. Further studies on this survey can help in developing fingerprint minutiae database storage and extraction techniques for a faster, reliable and prompt identification and authentication. Moreover cheaper hardware can be effectively used to handle large fingerprint database.

REFERENCES

- [1] P. Komarinski, P. T. Higgins, and K. M.. Higgins, K. Fox Lisa, "Automated Fingerprint. Identification Systems (AFIS)", Elsevier cademic Press, pp. 1-118, 2005.
- [2] *Woodward*, *J.* ,*Orlans*, *P.* , *Higgins* T.(2003), Biometrics, McGraw-Hill/Osborne.
- [3] Gabriel I, Oluwole A, Boniface A, Olatubosun O (2012) Fingerprint image enhancement: segmentation to thinning. Department of Computer Science. Int J Adv Comp Sci Appl 3(1).
- [4] A. Jain, R. Bolle, and S. Pankanti, "Biometrics Personal Identification in Networked Society", Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow, pp. 1-64, 2002.
- [5] Vishal Shrivastava, Sumit Sharma, Data Compression of Fingerprint Minutiae, International Journal of Engineering Science and Technology, Vol. 4 No. 02 Feburary 2012.
- [6] Wikipedia, The free encyclopedia. wikipedia.org/wiki/Fingerprint_recognitio n.
- [7] Anil K. Jain and Umut Uldag: Hiding Fingerprint Minutiae in Images.
- [8] Digital Persona Biometric Fingerprint Devices <u>http://www.digitalpersona.com/Biometrics</u> /Hardware-Products/Hardware-Overview.
- [9] Salil Prabhakar, Anil K. Jain, Sharath Pankanti: Learning Fingerprint Minutiae

Location and Type. Pattern recognition 36 (2003) 1847 – 1857.

- [10] The History of Fingerprints, onin.com/fp/fphistory.html
- [11] Image editor software, Adobe Photoshop 7.0, www.adobe.com/in/products/photoshop.ht ml