
Ryan Saptarshi Ray, Prof. Utpal Kumar Ray a / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1533-1540

1533 | P a g e

Different Approaches for improving Performance of Software

Transactional Memory

*Ryan Saptarshi Ray,**Prof. Utpal Kumar Ray
*PhD Scholar Jadavpur University Kolkata, West Bengal, India

**Associate Professor Department of Information Technology Jadavpur University Kolkata, West Bengal,India

Abstract

The past few years have marked the start of a

historic transition from sequential to parallel

computation. Earlier a transition of a processor

from one generation to another meant that its

speed increased. So programmers knew that a

program would run faster if a next-generation

processor was bought. But, currently, that is not

the case. While the next-generation chip will have

more CPUs, each individual CPU will be no

faster than the previous year’s model. If one

wants programs to run faster, one must learn to

write parallel programs as currently multi-core

processors are becoming more and more

popular. Thus the necessity to write parallel

programs is increasing as systems are getting

more complex while processor speed increases

are slowing down. Current parallel

programming uses low-level programming

constructs like threads and explicit

synchronization (for example, locks, semaphores

and monitors) to coordinate thread execution.

Parallel programs written with these constructs

are difficult to design, program and debug. Also

locks have many drawbacks which make them a

suboptimal solution.

Software Transactional Memory (STM)

is a promising new approach for programming in

parallel processors having shared memory. It is a

concurrency control mechanism that is widely

considered to be easier to use by programmers

than other mechanisms such as locking. It allows

portions of a program to execute in isolation,

without regard to other, tasks of the program

which are executing at the same time. A

programmer can reason about the correctness of

code within a transaction and need not worry

about complex interactions with other, parts of

the program which are executing simultaneously.

Despite its advantages in

programmability, currently the performance of

code using STM is worse than that of code using

locks. The primary reason for the low

performance is due to the extra overheads

associated with maintaining the modification logs

and aborting/committing the transactions.

Consequently, various designs have been

proposed to improve the execution speed of

STMs.

This paper gives a brief overview of STM and

shows different techniques which are currently

being used to improve the performance of STM.

1. Introduction
Transactional memory (TM) is an

alternative paradigm to lock-based concurrent

programming. Derived from transactional databases,

TM uses transactional semantics for critical code

regions that require synchronization. Programmers

utilizing TM have to enclose segments of code that

access shared variables in transactions.

Consequently, the TM system guarantees the

atomicity, consistency, isolation and durability (the

ACID properties) of executing critical regions.
Atomicity means that a critical section will execute

completely or not at all. No other threads will be

able to see a state of memory where a critical

section is only partially complete. Consistency

means that data will never get corrupted. Isolation

means that the execution of a critical section of a

thread will never be affected by the actions of other

threads. Durability means that any committed

memory modifications are reliable. Another big

advantage of transactional memory is that it makes

synchronization simple to implement which is not

the case with locks. Also code using transactions is
very readable and understandable. If transactions are

successfully executed then the changes they make

are permanent, so to say they “commit”. If conflict

occurs, a contention manager is consulted in order to

resolve the conflict. After conflict resolution, a

single conflicting transaction will continue

execution, while the remaining conflicting ones will

be “aborted”. A number of hardware and software

TM systems have been developed. Currently even

hybrid approaches are being proposed. [4]

Software Transactional Memory solves all

the problems which occur while using code with

locks. Software Transactional Memory (STM)

supports flexible transactional programming of

synchronization operations in software. STMs also

support lightweight transactions in concurrent

applications. STM has advantages in terms of

applicability to today's machines, portability and

resiliency in the face of timing anomalies and

processor failures. It is a concurrency control

mechanism that is widely considered to be easier to

Ryan Saptarshi Ray, Prof. Utpal Kumar Ray a / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1533-1540

1534 | P a g e

use by programmers than other mechanisms such as

locking. It allows portions of a program to execute

in isolation, without regard to other, concurrently

executing tasks. A programmer can reason about the

correctness of code within a transaction and need

not worry about complex interactions with other,

concurrently executing parts of the program. [4]
 Different types of STMs which can be implemented

by different programming languages have been

proposed.

2. Software Transactional Memory
2.1 Software Transactional Memory Overview

Software Transactional Memory (STM) is

a promising new approach to programming shared-

memory parallel processors. It is a concurrency

control mechanism that is widely considered to be
easier to use by programmers than other

mechanisms such as locking. It allows portions of a

program to execute in isolation, without regard to

other, concurrently executing tasks. A programmer

can reason about the correctness of code within a

transaction and need not worry about complex

interactions with other, concurrently executing parts

of the program.

Implementation of Transactional Memory

entirely in software is called Software Transactional
Memory (STM). In STM it is possible to implement

lock-free, atomic, multi-location operations entirely

in software. STM is a novel design that supports

flexible transactional programming of

synchronization operations in software. STM is a

promising technique for controlling concurrency in

modern multi-processor architectures. In STM also

any critical section of code that one wants made

atomic must be enclosed within a transaction. The

STM system also guarantees the atomicity,

consistency, isolation and durability (the ACID
properties) of executing critical regions. STM is

more scalable than explicit coarse-grained locking

and easier to use than fine-grained locking. STMs

also support lightweight transactions in concurrent

applications. STM has advantages in terms of

applicability to today's machines, portability and

resiliency in the face of timing anomalies and

processor failures.

STM is emerging as a highly attractive

programming model due to its ability to mask

concurrency management issues to the overlying
applications. [4], [10]

2.2 Pros and Cons of Software Transactional

Memory

Pros

STM gives all the benefits which are given by

Transactional Memory.

STM overcomes all the problems which occur while

performing synchronization using locking. STM is

easier to use than locks. STM offers a simpler

alternative to mutual exclusion by shifting the

burden of correct synchronization from a

programmer to the STM system. The programmer

only needs to identify a sequence of operations on
shared data that should appear to execute atomically

to other, concurrent threads. After that through

different mechanisms the STM system ensures that

synchronization is performed. STM allows portions

of a program to execute in isolation, without regard

to other, concurrently executing tasks. A

programmer can reason about the correctness of

code within a transaction and need not worry about

complex interactions with other, concurrently

executing parts of the program.

 STM also ensures composition in synchronization.
A programming abstraction is said to support

composition if it can be correctly combined with

other abstractions without needing to understand

how the abstractions operate. Through different

other mechanisms the STM system also overcomes

the problems of priority inversion, deadlocks and

convoying which occur while performing

synchronization using locks.

STM itself also provides some additional

advantages which are discussed below.

STM is more scalable than explicit coarse-grained

locking and easier to use than fine-grained locking.

STMs also support lightweight transactions in

concurrent applications. STM has advantages in

terms of applicability to today's machines,

portability and resiliency in the face of timing

anomalies and processor failures. [10], [14]

Cons

STM faces a number of challenges which are

discussed here.
Firstly, there is the problem of transactional code

interacting with non-transactional code. There will

always be systems with legacy code and thus this

issue needs to be considered. It is unclear how to

deal with shared data outside of a transaction (i.e.

how to tolerate weak atomicity) and how to deal

with locks being used inside transactions. Secondly,

some code cannot be transactionalized, such as

when I/O is required. In optimistic STM, a

transaction that executed an I/O operation may roll

back at a conflict. I/O in this case consists of any
interaction with the world outside of the control of

the TM system. If a transaction aborts, its I/O

operations should roll back as well, which may be

difficult or impossible to accomplish in general.

Buffering the data read or written by a transaction

permits some rollbacks, but buffering fails in simple

situations, such as when a transaction writes a

Ryan Saptarshi Ray, Prof. Utpal Kumar Ray a / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1533-1540

1535 | P a g e

prompt and then waits for user input. Thirdly, the

overhead involved in case a transaction has to roll

back due to a conflict is also huge. Fourthly, till now

it has been seen that the performance of code using

STM is either equal to or worse than that of code

using locks and threads.

Despite its advantages in programmability, in
practice STM suffers a performance hit by as much

as 50% relative to fine-grained lock-based code. The

primary reason

for the low performance of STM is due to the extra

overheads associated with maintaining the

modification logs and aborting/committing the

transactions. Consequently, various designs have

been proposed to improve the execution speed of

STMs. STM systems either impose substantial

overhead (performance degradation) in order to

guarantee that user code always executes in a

"consistent"state, or allows inconsistent states to be
observed, which can lead to arbitrary behaviour. The

performance of an STM depends highly on the

target application, the workload, the underlying

architecture and the number of threads used for

parallelizing

the code. Performance of STM may decrease after a

certain point even if the number of threads goes on

increasing. This occurs because the contention

becomes too high after a certain point.

So to ensure that STM becomes still more widely
used different approaches must be tried so that the

performance of codes using STM becomes better

than that of codes using locks. Some of these

approaches are discussed next. [4], [10]

3. Different Approaches for improving

performance of Software Transactional

Memory
Different types of approaches to improve

performance of STM are discussed below.

3.1 Approach based on Early Abort Mechanism

Early abort is one of the important techniques to

improve the execution speed of STMs. Early abort

helps improve the performance of STMs especially

when the contention level is low. Early abort means

eager conflict detection and aborting a transaction to
resolve the conflict. It saves the computational

resources which might be wasted if an

uncommitable transaction continues to execute.

Early abort can be formally characterized as

follows: if a STM design allows a transaction to be

aborted before it reaches the commit point (where

the changes made by a transaction are to be

validated and made permanent), the design belongs

to

the early abort category and is denoted as STM-EA;

if a STM design only allows a transaction to be
aborted at the commit point, the design belongs to

the none early abort

category and is denoted as STM-NEA.

Early abort outperforms STM-NEA when the

contention level is low. When the system contention

level is low and performance is the most significant

consideration then STM-EA is a good choice. STM-

EA detects conflicts earlier than STM-NEA because

STM-EA checks more frequently and is able to

detect the conflicts right after the failures of lock

acquiring or version number checking.

Performance of Early Abort Mechanisms
The graph below shows the performances of STM-EA and STM-NEA.

Graph 1: Graph showing performance of STM-EA and STM-NEA

Ryan Saptarshi Ray, Prof. Utpal Kumar Ray a / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1533-1540

1536 | P a g e

From the above graph we can see that STM-EA

performs better than STM-NEA as its transaction

completion time is less. [18]

3.2 Approach based on Variable Granularity

Access

Typical STM implementations employ a
conflict detection scheme, which works with

uniform access granularity, tracking shared data

accesses either at word/cache line or at object level.

It is well known that a single fixed access tracking

granularity cannot meet the conflicting goals of

reducing false conflicts without impacting

concurrency adversely. A fine grained granularity

while improving concurrency can have an adverse

impact on performance due to lock aliasing, lock

validation overheads, and additional cache pressure.

On the other hand, a coarse grained granularity can

impact performance due to reduced concurrency.
Thus, in general, a fixed or uniform granularity

access tracking (UGAT) scheme is application

unaware and rarely matches the access patterns of

individual application or parts of an application,

leading to sub-optimal performance for different

parts of the application. Variable Granularity

Access Tracking (VGAT) overcomes these

problems. It is a compiler based approach where the

compiler uses inter-procedural whole program static

analysis to select the access tracking granularity for

different shared data structures of the application
based on the application’s data access pattern.

VGAT scheme can improve the performance of

STM by 21%.

Access tracking granularity has a significant impact

on the performance of STM. These impacts can be

classified under 3 categories namely

(a) Impact on false conflicts and hence on

concurrency

(b) Impact on cache

(c) Impact on read set validation costs and lock

acquire/release costs
A false conflict occurs in an STM when

two different addresses are mapped to the same

lock and this results in two transactions which are

accessing truly disjoint data, getting falsely

diagnosed as conflicting when they are not. Such

false conflicts result in increased number of

aborts/rollbacks and hence can impact the execution

time. Based on how false conflicts occur, they are

classified into two types, namely intra-conflicts and

inter-conflicts. Intra-conflicts occur when two

different data items getting accessed in independent
transactions are mapped to the same lock due to

both of them falling within the same unit granularity

region which gets mapped to a single lock. Intra-

conflicts occur when concurrent transactions access

data which have high inter-transaction data locality.

Inter-conflicts occur when two different data items

getting accessed in independent transactions are

mapped to the same lock, even when they are not in

the same unit granularity region. This happens due

to the limited size of the lock table. Since the

number of locks is often fewer than the numbers of

shared data (grouped at a fixed access tracking

granularity), multiple uncorrelated data items can

get mapped to the same lock. This is known as
lockaliasing. When such uncorrelated data items

which have been mapped to the same lock are

accessed in concurrently executing transactions,

they cause false conflicts between the transactions,

which are called inter-conflicts. The terms intra and

inter refer to the fact that the data accesses are

within the same memory region (of size equal to the

access tracking granularity) or across two different

memory regions.

Access tracking granularity also has a significant

impact on the cache performance of STM

applications. Use of fine grained access tracking
granularity also leads to more number of lock

accesses in a transaction. This can impact the

performance adversely for transactions which touch

a large volume of data. Every unit granularity

memory region of shared data accessed in a

transaction results in a corresponding programmer

invisible lock access corresponding to that shared

data.

Smaller the access tracking granularity, higher is the

number of lock accesses for the volume of shared

data accessed in a transaction. While on one hand,
fine grained locking granularity improves

concurrency, but it also increases the pressure on the

cache.

 The granularity at which accesses are tracked and

conflicts are detected also has an impact on the read-

set validation costs and write-set lock acquire costs.

Read-set validation needs to validate each shared

data read by tracking their consistency at the level

of unit granularity. Similarly a transaction needs to

acquire locks for each data item in the write-set at

the level of unit granularity. Smaller the access

tracking granularity, higher is the number of locks
associated with a given volume of shared data

accessed/updated in a given transaction, hence

greater is the number of validation operations and

lock acquire/release operations. This in turn

increases the total lock operation costs and

validation costs of the STM.

The three factors discussed above have

conflicting requirements with respect to the access

tracking granularity. Reducing the access tracking

granularity reduces the intra

false conflicts, while it can end up increasing the
number of lock accesses. This in turn can end up

increasing the inter false conflicts, the cache

pressure due to lock accesses, readset validation cost

and the write-set locking cost. On the other

hand,increasing/coarsening the access tracking

granularity can reduce the number of lock accesses

in given transaction, and can reduce the inter-

Ryan Saptarshi Ray, Prof. Utpal Kumar Ray a / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1533-1540

1537 | P a g e

conflicts, cache pressure due to lock accesses, and

read-validation and writelocking costs, but it can

increase the intra-conflicts leading to a reduction in

concurrency, and hence STM performance.

Quantification of the impact of these factors on

STM performance would depend on the shared

data access patterns of the STM application. Hence
the selection of access tracking granularity that

results in higher performance needs to factor in

these complex and conflicting requirements, while

taking into account the data access patterns of a

given STM application. However most of the

current STM implementations use a fixed size

uniform access tracking granularity. Variable

Granularity Access Tracking (VGAT) scheme

overcomes all the problems associated with uniform

granularity access tracking (UGAT). In VGAT the

compiler selects the access tracking granularity for

different shared data structures of the application
based on the application’s data access patterns. In

VGAT the performance improvement increases with

increasing number of threads. VGAT scheme also

helps improve the memory performance of the

application by reducing the number of lock accesses

(due to the variable access tracking granularity).

[19]

3.3 Approach based on Performance Prediction

of STM

In real world scenarios all parameters
affecting the performance of an STM system change

for different set-ups. So it is critical to know how an

STM will perform under a particular setup to ensure

the fact that shifting from lock based approach to

STM is really useful. So, knowing about the

performance of an STM in advance is much desired.

This will help us to know exactly in which situations

STM should be used and can also help to improve

the performance of STM.

Predicting performance of STM based on some

key parameters
The factors which affect the performance of STM

are:

 Mean number of restarts for a transaction (ER).

 Mean number of steps of a transaction (ES).

 Mean number of locks held by a transaction (EQ).

The two parameters ER and ES represent the quality

of conflict management scheme implemented for the

concerned STM. It is clear that having smaller mean

number of restarts for a transaction (ER) indicates

the better performance for an STM. Similarly, a

smaller value of mean number of steps of a
transaction ES represents that that lesser number of

steps were performed every time a transaction was

restarted. In other words, a smaller value of ES

means that having a conflict between two or more

transactions, a better contention manager would

restart transaction which costs lowest. Mean

number of locks held by a transaction EQ represents

the total cost measurement for maintaining lock

related information in the system during lifetime of

the transaction. Based on these parameters the

performance of STM can be predicted. The most
important task is to find out how STM behaves as

the number of processors goes on increasing.

Machine-learning approaches

In lock based systems, a user has to take

care of locking resources whereas transactional

memory systems manage locks internally. Due to

this fact, performance prediction approach used for

a non-STM system might also be applied to an STM

system. Artificial neural networks (ANNs) can be

used for predicting the function performance i.e. the

runtime information of functions and tasks for a
certain amount of input parameters are collected.

This information is used to train the network. ANN

predicts the optimal task scheduling based on the

training and a part of the collected data is used to

compare the predicted results and the actual results

for higher number of cores. Another approach

named as loop cost prediction through test driving

decomposes the loops, checks their dependency and

systematically assigns and schedules the loops to

available processors. Another approach is described

for task partitioning and scheduling using MCP
(modied critical path) algorithm for directed acyclic

graphs (DAGs). These three approaches can be

combined to evaluate the performance of STM. [20]

3.4 SkySTM Approach

Existing software transactional memory

(STM) implementations often exhibit poor

scalability, usually because of nonscalable

mechanisms for read sharing, transactional

consistency, and privatization; some STMs also

have nonscalable centralized commit mechanisms.

SkySTM eliminates all these bottlenecks. SkySTM
supports privatization and scales on modern

multicore multiprocessors with hundreds of

hardware threads on multiple chips. It eliminates

frequent updates to centralized metadata, especially

for multi-chip systems, in which the cost of

accessing centralized metadata increases

dramatically.This scalable privatization mechanism

imposes only about 4%

overhead in low-contention experiments; when

contention is higher, the overhead still reaches only

35% with over 250 threads. In contrast, prior
approaches have been reported as imposing over

100% overhead in some cases, even with only 8

threads.

Ryan Saptarshi Ray, Prof. Utpal Kumar Ray a / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1533-1540

1538 | P a g e

Performance of SkySTM
The graph below shows the performance of SkySTM and some other types of STM.

Graph 2: Graph showing performance of SkYSTM and some other types of STM

So we can see form the above graph that the throughput of SkySTM is higher than that of both OneLock and
SkySTM-NoSNZI. [21]

3.5 Approach based on Open Nesting

 Nesting in STM can be of two types which

are:

1) Open-nesting- In this case when the inner

transaction commits, then the changes it has

made are visible to all other transactions.

2) Closed-nesting- In this case when the inner

transaction commits, then the changes it has
made are visible to only the outer transaction

which encloses it.

STM implementations operate by tracking loads

and stores to memory and by detecting concurrent

conflicting accesses by different transactions. By

automating this process, they greatly reduce the

programmer’s burden, but they also are forced to

be conservative. In certain cases, conflicting

memory accesses may not actually violate the

higher-level semantics of a program, and a

programmer may wish to allow seemingly

conflicting transactions to execute concurrently.
Open nested transactions enable expert

programmers to differentiate between physical

conflicts, at the level of memory, and logical

conflicts that actually violate application semantics.

A TM system with open nesting can permit

physical conflicts that are not logical conflicts, and

thus increase concurrency among application

threads. Open nested transactions enable

programmers to obtain the precision of locks while

retaining the benefits of transactional memory

including serializability, composability and

deadlock-freedom. Some of this power comes at
the cost of increased complexity since a system

cannot automatically reason at the level of

application semantics. But for expert programmers,

the scalability benefits of open nesting outweighs

the costs. Open nesting enables expert library

programmers to build software components that

average programmers can compose together in a

scalable way using transactions. Average

programmers can use these software components

without being aware of open nesting, so they still

benefit from the productivity advantage of

transactions but also get good performance. Open
nesting scales much better than closed nesting.

So using open nesting in transactions is much

better than using closed nesting.

Ryan Saptarshi Ray, Prof. Utpal Kumar Ray a / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1533-1540

1539 | P a g e

Performance of Open Nesting
The graph below shows the performances of Open Nesting and Closed Nesting in STM.

Graph 3: Graph showing performance of Open nesting and Closed nesting in STM

We can see from the above graph that Open Nesting performs better than Closed Nesting in STM as it takes less

execution time. [22]

3.6 Approach based on Commit-time

Invalidation

To improve the performance of

transactional memory (TM), researchers have found

many eager and lazy optimizations for conflict

detection, the process of determining if transactions

can commit. Despite these optimizations, nearly all

TMs perform one aspect of lazy conflict detection in

the same manner to preserve serializability. That is,

they perform commit-time validation, where a

transaction is checked for conflicts with previously

committed transactions during its commit phase.
Commit-time validation is a strategy where a single

transaction’s read elements, and sometimes its write

elements, are checked for consistency at commit

time. While commit-time validation is efficient for

workloads that exhibit limited contention, it can

limit transaction throughput for contending

workloads. Commit time invalidation is a strategy

where transactions resolve their conflicts with in-

flight (uncommitted) transactions before they

commit. This is because it does not determine how

many in-flight transactions will be aborted due to a

transaction’s commit.
Commit-time invalidation is a conflict-

detection strategy in which transactional conflicts

are found by comparing the memory of a

committing transaction against the memory of in-
flight transactions. Commit-time invalidation differs

from commit-time validation in that all a

committing transaction’s conflicts with in-flight

transactions are found and resolved before the

transaction commits. Conflicts are sent to the

contention manager (CM), to decide which

transactions will make forward progress . The CM

resolves con-

flicts by either

 (1) aborting all conflicting in-flight transactions

 (2) aborting the committing transaction or
 (3) stalling the committing transaction until the

conflicting in-flight transactions have commited or

aborted.

Through this mechanism, commit-time invalidation

can notably increase transaction throughput when

compared to commit-time validation for contending

workloads.

Commit-time invalidation supplies the contention

manager (CM) with data that is unavailable through

commit-time validation, allowing the CM to make

decisions that increase transaction throughput.

Commit-time invalidation also requires notably
fewer operations than commit-time validation for

memory-intensive transactions. Commit-time

invalidation enables CM to make highly efficient

Ryan Saptarshi Ray, Prof. Utpal Kumar Ray a / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1533-1540

1540 | P a g e

and informed decisions. In case of high contention

commit-time invalidation is up to 3 times faster than

commit-time validation.

So we can say that commit-time

invalidation is much better to use than commit-time

validation in STM especially in cases of high

contention. [23]

3.7 Approach based on Single processor for

Contention Management

From the available processors if at least

one processor is used exclusively for contention

management and the remaining processors are used

for parallel programming purposes then it is seen

that the performance of STM is much better than the

case in which all processors are used for parallel

programming.

4. Conclusion
STM has been shown in many ways to be a

good alternative to using locks for writing parallel

programs. While locks are messy and complicated,

STM primitives are elegant and allow code

synchronization sections to be easily implemented

and understood by developers. STM by itself is

unlikely to make multicore computers readily

programmable. Many other improvements to

programming languages, tools, runtime systems, and
computer architecture are also necessary. STM,

however, does provide a timetested model for

isolating concurrent computations from each other.

This model raises the level of abstraction for

reasoning about concurrent tasks and helps avoid

many parallel programming errors.

However currently the performance of code using

STM is worse than that of code using locks. This

paper gives a brief overview of STM and a survey

of different techniques which can improve the

performance of STM.

References
[1] “Transactional Memory: Architectural

Support for Lock-Free Data Structures” by

Maurice Herlihy, J. Eliot B. Moss

[2] “LogTM: Log-based Transactional

Memory” by Kevin E. Moore, Jayaram

Bobba, Michelle J. Moravan, Mark D. Hill,

David A. Wood
[3] “Beautiful concurrency” by Simon Peyton

Jones

[4] “A Survey Paper on Transactional

Memory” by Elan Dubrofsky

[5] “Towards Transactional Memory Support

for GCC” by Martin Schindewolf, Albert

Cohen, Wolfgang Karl, Andrea Marongiu,

and Luca Benini

[6] “Lowering the Overhead of Nonblocking

Software Transactional Memory” by

Virendra J. Marathe, Michael F. Spear,

Christopher Heriot, Athul Acharya, David

Eisenstat, William N. Scherer III, Michael

L. Scott

[7] “Serializability of Transactions in Software

Transactional Memory” by Utku Aydonat,

Tarek S. Abdelrahman, Edward S. Rogers

Sr.

[8] “Time-Based Software Transactional
Memory” by Pascal Felber, Christof Fetzer,

Patrick Marlier, Torvald Riegel

[9] “Performance Evaluation of Adaptivity in

Software Transactional Memory” Mathias

Payer, Thomas R. Gross

[10] “Transactional Memory” by James Larus

and Christos Kozyrakis

[11] “Dynamic Performance Tuning of Word-

Based Software Transactional Memory” by

Pascal Felber, Christof Fetzer, Torvald

Riegel

[12]
http://en.wikipedia.org/wiki/Transactional_

memory

[13] “The Art of Multiprocessor Programming”

by Maurice Herlihy, Nir Shavit

[14] “Transactional Memory” by Tim Harris,

James Larus, Ravi Rajwar

[15] “Transactional Locking II” by Dave Dice

, Ori Shalev , Nir Shavit

[16] http://tmware.org

[17] “G22.2631 project report: software

transactional memory” by Brendan Linn,
Chanseok Oh

[18] “Impact of Early Abort Mechanisms on

Lock-Based Software Transactional

Memory” by Zhengyu He, Bo Hong

[19] “Variable Granularity Access Tracking

Scheme for Improving the Performance of

Software Transactional Memory” by

Sandhya S.Mannarswamy, Ramaswamy

Govindarajan

[20] “Analytic Performance Modelling for

Software Transactional Memory” by

Waheed Aslam Ghumman
[21] “Anatomy of a Scalable Software

Transactional Memory” by Yossi Lev,

Victor Luchangco, Virendra J. Marathe,

Mark Moir, Dan Nussbaum, Marek

Olszewski

[22] “Open Nesting in Software Transactional

Memory” by Yang Ni, Vijay Menon,

Richard L. Hudson, Ali-Reza Adl-

Tabatabai, J. Eliot, B. Moss, Bratin Saha,

Antony L. Hosking, Tatiana Shpeisman

[23] “An Efficient Software Transactional
Memory Using Commit-Time

Invalidation” by Justin E. Gottschlich,

Manish Vachharajani, Jeremy G. Siek

http://en.wikipedia.org/wiki/Transactional_memory
http://en.wikipedia.org/wiki/Transactional_memory

