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Abstract 

The past few years have marked the start of a 

historic transition from sequential to parallel 

computation. Earlier a transition of a processor 

from one generation to another meant that its 

speed increased. So programmers knew that a 

program would run faster if a next-generation 

processor was bought. But, currently, that is not 

the case. While the next-generation chip will have 

more CPUs, each individual CPU will be no 

faster than the previous year’s model. If one 

wants programs to run faster, one must learn to 

write parallel programs as currently multi-core 

processors are becoming more and more 

popular. Thus the necessity to write parallel 

programs is increasing as systems are getting 

more complex while processor speed increases 

are slowing down. Current parallel 

programming uses low-level programming 

constructs like threads and explicit 

synchronization (for example, locks, semaphores 

and monitors) to coordinate thread execution. 

Parallel programs written with these constructs 

are difficult to design, program and debug. Also 

locks have many drawbacks which make them a 

suboptimal solution. 

Software Transactional Memory (STM) 

is a promising new approach for programming in 

parallel processors having shared memory. It is a 

concurrency control mechanism that is widely 

considered to be easier to use by programmers 

than other mechanisms such as locking. It allows 

portions of a program to execute in isolation, 

without regard to other, tasks of the program 

which are executing at the same time. A 

programmer can reason about the correctness of 

code within a transaction and need not worry 

about complex interactions with other, parts of 

the program which are executing simultaneously. 

Despite its advantages in 

programmability, currently the performance of 

code using STM is worse than that of code using 

locks. The primary reason for the low 

performance is due to the extra overheads 

associated with maintaining the modification logs 

and aborting/committing the transactions. 

Consequently, various designs have been 

proposed to improve the execution speed of 

STMs. 

 

 

This paper gives a brief overview of STM and 

shows different techniques which are currently 

being used to improve the performance of STM. 

 

1. Introduction 
Transactional memory (TM) is an 

alternative paradigm to lock-based concurrent 

programming. Derived from transactional databases, 

TM uses transactional semantics for critical code 

regions that require synchronization. Programmers 

utilizing TM have to enclose segments of code that 

access shared variables in transactions. 

Consequently, the TM system guarantees the 

atomicity, consistency, isolation and durability (the 

ACID properties) of executing critical regions. 
Atomicity means that a critical section will execute 

completely or not at all. No other threads will be 

able to see a state of memory where a critical 

section is only partially complete. Consistency 

means that data will never get corrupted. Isolation 

means that the execution of a critical section of a 

thread will never be affected by the actions of other 

threads. Durability means that any committed 

memory modifications are reliable. Another big 

advantage of transactional memory is that it makes 

synchronization simple to implement which is not 

the case with locks. Also code using transactions is 
very readable and understandable. If transactions are 

successfully executed then the changes they make 

are permanent, so to say they “commit”. If conflict 

occurs, a contention manager is consulted in order to 

resolve the conflict. After conflict resolution, a 

single conflicting transaction will continue 

execution, while the remaining conflicting ones will 

be “aborted”. A number of hardware and software 

TM systems have been developed. Currently even 

hybrid approaches are being proposed. [4] 

 
Software Transactional Memory solves all 

the problems which occur while using code with 

locks. Software Transactional Memory (STM) 

supports flexible transactional programming of 

synchronization operations in software. STMs also 

support lightweight transactions in concurrent 

applications. STM has advantages in terms of 

applicability to today's machines, portability and 

resiliency in the face of timing anomalies and 

processor failures. It is a concurrency control 

mechanism that is widely considered to be easier to 
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use by programmers than other mechanisms such as 

locking. It allows portions of a program to execute 

in isolation, without regard to other, concurrently 

executing tasks. A programmer can reason about the 

correctness of code within a transaction and need 

not worry about complex interactions with other, 

concurrently executing parts of the program. [4] 
 Different types of STMs which can be implemented 

by different programming languages have been 

proposed.  

 

2. Software Transactional Memory 
2.1 Software Transactional Memory Overview 

Software Transactional Memory (STM) is 

a promising new approach to programming shared-

memory parallel processors. It is a concurrency 

control mechanism that is widely considered to be 
easier to use by programmers than other 

mechanisms such as locking. It allows portions of a 

program to execute in isolation, without regard to 

other, concurrently executing tasks. A programmer 

can reason about the correctness of code within a 

transaction and need not worry about complex 

interactions with other, concurrently executing parts 

of the program. 

 

Implementation of Transactional Memory 

entirely in software is called Software Transactional 
Memory (STM). In STM it is possible to implement 

lock-free, atomic, multi-location operations entirely 

in software. STM is a novel design that supports 

flexible transactional programming of 

synchronization operations in software. STM is a 

promising technique for controlling concurrency in 

modern multi-processor architectures. In STM also 

any critical section of code that one wants made 

atomic must be enclosed within a transaction. The 

STM system also guarantees the atomicity, 

consistency, isolation and durability (the ACID 
properties) of executing critical regions. STM is 

more scalable than explicit coarse-grained locking 

and easier to use than fine-grained locking. STMs 

also support lightweight transactions in concurrent 

applications. STM has advantages in terms of 

applicability to today's machines, portability and 

resiliency in the face of timing anomalies and 

processor failures. 

 

STM is emerging as a highly attractive 

programming model due to its ability to mask 

concurrency management issues to the overlying 
applications. [4], [10] 

 

2.2 Pros and Cons of Software Transactional 

Memory 

Pros 

STM gives all the benefits which are given by 

Transactional Memory.  

 

STM overcomes all the problems which occur while 

performing synchronization using locking. STM is 

easier to use than locks. STM offers a simpler 

alternative to mutual exclusion by shifting the 

burden of correct synchronization from a 

programmer to the STM system. The programmer 

only needs to identify a sequence of operations on 
shared data that should appear to execute atomically 

to other, concurrent threads. After that through 

different mechanisms the STM system ensures that 

synchronization is performed. STM allows portions 

of a program to execute in isolation, without regard 

to other, concurrently executing tasks. A 

programmer can reason about the correctness of 

code within a transaction and need not worry about 

complex interactions with other, concurrently 

executing parts of the program. 

 

 STM also ensures composition in synchronization. 
A programming abstraction is said to support 

composition if it can be correctly combined with 

other abstractions without needing to understand 

how the abstractions operate. Through different 

other mechanisms the STM system also overcomes 

the problems of priority inversion, deadlocks and 

convoying which occur while performing 

synchronization using locks. 

 

STM itself also provides some additional 

advantages which are discussed below. 
 

STM is more scalable than explicit coarse-grained 

locking and easier to use than fine-grained locking. 

STMs also support lightweight transactions in 

concurrent applications. STM has advantages in 

terms of applicability to today's machines, 

portability and resiliency in the face of timing 

anomalies and processor failures. [10], [14] 

 

Cons 

STM faces a number of challenges which are 

discussed here. 
Firstly, there is the problem of transactional code 

interacting with non-transactional code. There will 

always be systems with legacy code and thus this 

issue needs to be considered. It is unclear how to 

deal with shared data outside of a transaction (i.e. 

how to tolerate weak atomicity) and how to deal 

with locks being used inside transactions. Secondly, 

some code cannot be transactionalized, such as 

when I/O is required. In optimistic STM, a 

transaction that executed an I/O operation may roll 

back at a conflict. I/O in this case consists of any 
interaction with the world outside of the control of 

the TM system. If a transaction aborts, its I/O 

operations should roll back as well, which may be 

difficult or impossible to accomplish in general. 

Buffering the data read or written by a transaction 

permits some rollbacks, but buffering fails in simple 

situations, such as when a transaction writes a 
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prompt and then waits for user input. Thirdly, the 

overhead involved in case a transaction has to roll 

back due to a conflict is also huge. Fourthly, till now 

it has been seen that the performance of code using 

STM is either equal to or worse than that of code 

using locks and threads.   

Despite its advantages in programmability, in 
practice STM suffers a performance hit by as much 

as 50% relative to fine-grained lock-based code. The 

primary reason 

for the low performance of STM is due to the extra 

overheads associated with maintaining the 

modification logs and aborting/committing the 

transactions. Consequently, various designs have 

been proposed to improve the execution speed of 

STMs. STM systems either impose substantial 

overhead (performance degradation) in order to 

guarantee that user code always executes in a 

"consistent"state, or allows inconsistent states to be 
observed, which can lead to arbitrary behaviour. The 

performance of an STM depends highly on the 

target application, the workload, the underlying 

architecture and the number of threads used for 

parallelizing 

the code. Performance of STM may decrease after a 

certain point even if the number of threads goes on 

increasing. This occurs because the contention 

becomes too high after a certain point.  

 

So to ensure that STM becomes still more widely 
used different approaches must be tried so that the 

performance of codes using STM becomes better 

than that of codes using locks. Some of these 

approaches are discussed next. [4], [10] 

 

3. Different Approaches for improving 

performance of Software Transactional 

Memory 
Different types of approaches to improve 

performance of STM  are discussed below. 

 

3.1 Approach based on Early Abort Mechanism 

Early abort is one of the important techniques to 

improve the execution speed of STMs. Early abort 

helps improve the performance of STMs especially 

when the contention level is low. Early abort means 

eager conflict detection and aborting a transaction to 
resolve the conflict. It saves the computational 

resources which might be wasted if an 

uncommitable transaction continues to execute. 

Early abort can be formally characterized as 

follows: if a STM design allows a transaction to be 

aborted before it reaches the commit point (where 

the changes made by a transaction are to be 

validated and made permanent), the design belongs 

to 

the early abort category and is denoted as STM-EA; 

if a STM design only allows a transaction to be 
aborted at the commit point, the design belongs to 

the none early abort 

category and is denoted as STM-NEA. 

Early abort outperforms STM-NEA when the 

contention level is low. When the system contention 

level is low and performance is the most significant 

consideration then STM-EA is a good choice. STM-

EA detects conflicts earlier than STM-NEA because 

STM-EA checks more frequently and is able to 

detect the conflicts right after the failures of lock 

acquiring or version number checking. 

Performance of Early Abort Mechanisms  
The graph below shows the performances of STM-EA and STM-NEA.   

  

Graph 1: Graph showing performance of STM-EA and STM-NEA 
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From the above graph we can see that STM-EA 

performs better than STM-NEA as its transaction 

completion time is less. [18] 

 

3.2 Approach based on Variable Granularity 

Access 

Typical STM implementations employ a 
conflict detection scheme, which works with 

uniform access granularity, tracking shared data 

accesses either at word/cache line or at object level.  

It is well known that a single fixed access tracking 

granularity cannot meet the conflicting goals of 

reducing false conflicts without impacting 

concurrency  adversely. A fine grained granularity 

while improving concurrency can have an adverse 

impact on performance due to lock aliasing, lock 

validation overheads, and additional cache pressure.  

On the other hand, a coarse grained granularity can 

impact performance  due to reduced concurrency. 
Thus, in general, a fixed or uniform granularity 

access tracking (UGAT) scheme is application 

unaware and rarely matches the access patterns of 

individual application or parts of an application, 

leading to sub-optimal performance for different 

parts of  the application. Variable Granularity 

Access Tracking (VGAT) overcomes these 

problems. It is a compiler based approach where the 

compiler uses inter-procedural whole program static 

analysis to select the access tracking granularity for 

different shared data structures of the application 
based on the application’s data access pattern.  

VGAT scheme can improve the performance of 

STM by 21%. 

Access tracking granularity has a significant impact 

on the performance of STM. These impacts can be 

classified under 3 categories namely 

  

(a)   Impact on false conflicts and hence on 

concurrency  

(b)   Impact on cache  

(c)   Impact on read set  validation costs and lock 

acquire/release costs  
A false conflict occurs in an STM when 

two different addresses are mapped to the same  

lock and this results in two transactions which are 

accessing truly disjoint data, getting falsely 

diagnosed as conflicting when they are not. Such 

false conflicts result in increased number of 

aborts/rollbacks and hence can impact the execution 

time.  Based on how false conflicts occur, they are 

classified into two types, namely intra-conflicts and 

inter-conflicts. Intra-conflicts occur when two 

different data items getting accessed in independent 
transactions are mapped to the same lock due to 

both of them falling within the same unit granularity 

region which gets mapped to a single lock. Intra-

conflicts occur when concurrent transactions access 

data which have high inter-transaction data locality.    

Inter-conflicts occur when two different data items 

getting accessed in independent transactions are 

mapped to the same lock, even when they are not in 

the same unit granularity region. This happens due 

to the limited size of the lock table. Since the 

number of locks is often fewer than the numbers of 

shared data (grouped at a fixed access  tracking 

granularity), multiple uncorrelated data items can 

get mapped to the same lock. This is known as 
lockaliasing. When such uncorrelated data items 

which have been mapped to the same lock are 

accessed in concurrently executing transactions, 

they cause false conflicts between the transactions, 

which are called inter-conflicts.  The terms intra and 

inter refer to the fact that the data accesses are 

within the same memory region (of size equal to the 

access tracking granularity) or across two different 

memory regions.    

Access tracking granularity also has a significant 

impact on the cache performance of STM 

applications. Use of fine grained access tracking 
granularity also leads to more number of lock 

accesses in a transaction. This can impact the 

performance adversely for transactions which touch 

a large volume of data.  Every unit granularity 

memory region of shared data accessed in a 

transaction results in a corresponding programmer 

invisible lock access corresponding to that shared 

data.  

Smaller the access tracking granularity, higher is the 

number of lock accesses for the volume of shared 

data accessed in a transaction. While on one hand, 
fine grained locking granularity improves 

concurrency, but it also increases the pressure on the 

cache. 

 The granularity at which accesses are tracked and 

conflicts are detected also has an impact on the read-

set validation costs and write-set lock acquire costs. 

Read-set validation needs to  validate each shared 

data read by  tracking their consistency at the level 

of unit granularity. Similarly a transaction needs to 

acquire locks for each data item in the write-set at 

the level of unit granularity. Smaller the access 

tracking granularity, higher is the number of locks 
associated with a given volume of shared data 

accessed/updated in a given transaction, hence 

greater is the number of validation operations and 

lock acquire/release operations.  This in turn 

increases the total lock operation costs and 

validation costs of the STM.   

The three factors discussed above have 

conflicting requirements with respect to the access 

tracking granularity. Reducing the access tracking 

granularity reduces the intra  

false conflicts, while it can end up increasing the 
number of lock accesses. This in turn can end up 

increasing the inter false conflicts, the cache 

pressure due to lock accesses, readset validation cost 

and the write-set locking cost.  On the other 

hand,increasing/coarsening the access tracking 

granularity can reduce the number of lock accesses 

in given transaction, and can reduce the inter-
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conflicts, cache pressure due to lock accesses, and 

read-validation and writelocking costs, but it can 

increase the intra-conflicts leading to a reduction in 

concurrency, and hence STM performance.   

Quantification of the impact of these factors on 

STM performance   would depend on the shared 

data access patterns of the STM application.   Hence 
the selection of access tracking granularity that 

results in higher performance needs to factor in 

these complex and conflicting requirements, while 

taking into account the data access patterns of a 

given STM application. However most of the 

current STM implementations use a fixed size 

uniform access tracking granularity. Variable 

Granularity Access Tracking (VGAT) scheme 

overcomes all the problems associated with uniform 

granularity access tracking (UGAT). In VGAT the 

compiler selects the access tracking granularity for 

different shared data structures of the application 
based on the application’s data access patterns. In 

VGAT the performance improvement increases with 

increasing number of threads. VGAT scheme also 

helps improve the memory performance of the 

application by reducing the number of lock accesses 

(due to the variable access tracking granularity). 

[19]  

 

3.3 Approach based on Performance Prediction 

of  STM 

In real world scenarios all parameters 
affecting the performance of an STM system change 

for different set-ups. So it is critical to know how an 

STM will perform under a particular setup to ensure 

the fact that shifting from lock based approach to 

STM is really useful. So, knowing about the 

performance of an STM in advance is much desired. 

This will help us to know exactly in which situations 

STM should be used and can also help to improve 

the performance of STM. 

 

Predicting performance of  STM based on some 

key parameters 
The factors which affect the performance of STM 

are: 

 Mean number of restarts for a transaction (ER). 

 Mean number of steps of a transaction (ES). 

 Mean number of locks held by a transaction (EQ). 

The two parameters ER and ES represent the quality 

of conflict management scheme implemented for the 

concerned STM. It is clear that having smaller mean 

number of restarts for a transaction (ER) indicates 

the better performance for an STM. Similarly, a 

smaller value of mean number of steps of a 
transaction ES represents that that lesser number of 

steps were performed every time a transaction was 

restarted. In other words, a smaller value of ES 

means that having a conflict between two or more 

transactions, a better contention manager would 

restart transaction which costs lowest.  Mean 

number of locks held by a transaction EQ represents 

the total cost measurement for maintaining lock 

related information in the system during lifetime of 

the transaction. Based on these parameters the 

performance of STM can be predicted. The most 
important task is to find out how STM behaves as 

the number of processors goes on increasing. 

 

Machine-learning approaches 

In lock based systems, a user has to take 

care of locking resources whereas transactional 

memory systems manage locks internally. Due to 

this fact, performance prediction approach used for 

a non-STM system might also be applied to an STM 

system. Artificial neural networks (ANNs) can be 

used for predicting the function performance i.e. the 

runtime information of functions and tasks for a 
certain amount of input parameters are collected. 

This information is used to train the network. ANN 

predicts the optimal task scheduling based on the 

training and a part of the collected data is used to 

compare the predicted results and the actual results 

for higher number of cores. Another approach 

named as loop cost prediction through test driving 

decomposes the loops, checks their dependency and 

systematically assigns and schedules the loops to 

available processors. Another approach is described 

for task partitioning and scheduling using MCP 
(modied critical path) algorithm for directed acyclic 

graphs (DAGs). These three approaches can be 

combined to evaluate the performance of STM. [20] 

 

3.4 SkySTM Approach 

Existing software transactional memory 

(STM) implementations often exhibit poor 

scalability, usually because of nonscalable 

mechanisms for read sharing, transactional 

consistency, and privatization; some STMs also 

have nonscalable centralized commit mechanisms. 

SkySTM eliminates all these bottlenecks. SkySTM 
supports privatization and scales on modern 

multicore multiprocessors with hundreds of 

hardware threads on multiple chips. It eliminates 

frequent updates to centralized metadata, especially 

for multi-chip systems, in which the cost of 

accessing centralized metadata increases 

dramatically.This scalable privatization mechanism 

imposes only about 4% 

overhead in low-contention experiments; when 

contention is higher, the overhead still reaches only 

35% with over 250 threads. In contrast, prior 
approaches have been reported as imposing over 

100% overhead in some cases, even with only 8 

threads.  
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Performance of SkySTM 
The graph below shows the performance of SkySTM and some other types of STM.  

 

 
 

 

Graph 2: Graph showing performance of SkYSTM and some other types of STM  

So we can see form the above graph that the throughput of SkySTM is higher than that of both OneLock  and 
SkySTM-NoSNZI. [21]  

 

 

3.5 Approach based on Open Nesting 

 Nesting in STM can be of two types which 

are: 

1) Open-nesting- In this case when the inner 

transaction commits, then the changes it has 

made are visible to all other transactions. 

2) Closed-nesting- In this case when the inner 

transaction commits, then the changes it has 
made are visible to only the outer transaction 

which encloses it. 

STM implementations operate by tracking loads 

and stores to memory and by detecting concurrent 

conflicting accesses by different transactions. By 

automating this process, they greatly reduce the 

programmer’s burden, but they also are forced to 

be conservative. In certain cases, conflicting 

memory accesses may not actually violate the 

higher-level semantics of a program, and a 

programmer may wish to allow seemingly 

conflicting transactions to execute concurrently. 
Open nested transactions enable expert 

programmers to differentiate between physical 

conflicts, at the level of memory, and logical 

conflicts that actually violate application semantics. 

A TM system with open nesting can permit 

physical conflicts that are not logical conflicts, and 

thus increase concurrency among application 

threads. Open nested transactions enable 

programmers to obtain the precision of locks while 

retaining the benefits of transactional memory 

including serializability, composability and 

deadlock-freedom. Some of this power comes at 
the cost of increased complexity since a system 

cannot automatically reason at the level of 

application semantics. But for expert programmers, 

the scalability benefits of open nesting outweighs 

the costs. Open nesting enables expert library 

programmers to build software components that 

average programmers can compose together in a 

scalable way using transactions. Average 

programmers can use these software components 

without being aware of open nesting, so they still 

benefit from the productivity advantage of 

transactions but also get good performance. Open 
nesting scales much better than closed nesting. 

So using open nesting in transactions is much 

better than using closed nesting.  
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Performance of Open Nesting   
The graph below shows the performances of Open Nesting and Closed Nesting in STM.  

 

      
 

Graph 3: Graph showing performance of Open nesting and Closed nesting in STM 

 

We can see from the above graph that Open Nesting performs better than Closed Nesting in STM as it takes less 

execution time. [22] 

 

3.6 Approach based on Commit-time 

Invalidation 

To improve the performance of 

transactional memory (TM), researchers have found 

many eager and lazy optimizations for conflict 

detection, the process of determining if transactions 

can commit. Despite these optimizations, nearly all 

TMs perform one aspect of lazy conflict detection in 

the same manner to preserve serializability. That is, 

they perform commit-time validation, where a 

transaction is checked for conflicts with previously 

committed transactions during its commit phase. 
Commit-time validation is a strategy where a single 

transaction’s read elements, and sometimes its write 

elements, are checked for consistency at commit 

time. While commit-time validation is efficient for 

workloads that exhibit limited contention, it can 

limit transaction throughput for contending 

workloads. Commit time invalidation is a strategy 

where transactions resolve their conflicts with in-

flight (uncommitted) transactions before they 

commit. This is because it does not determine how 

many in-flight transactions will be aborted due to a 

transaction’s commit. 
Commit-time invalidation is a conflict-

detection strategy in which transactional conflicts 

are found by comparing the memory of a 

committing transaction against the memory of in-
flight transactions. Commit-time invalidation differs 

from commit-time validation in that all a 

committing transaction’s conflicts with in-flight 

transactions are found and resolved before the 

transaction commits. Conflicts are sent to the 

contention manager (CM), to decide which 

transactions will make forward progress . The CM 

resolves con- 

flicts by either  

 (1) aborting all conflicting in-flight transactions 

 (2) aborting the committing transaction or  
 (3) stalling the committing transaction until the 

conflicting in-flight transactions have commited or 

aborted.  

Through this mechanism, commit-time invalidation 

can notably increase transaction throughput when 

compared to commit-time validation for contending 

workloads. 

Commit-time invalidation supplies the contention 

manager (CM) with data that is unavailable through 

commit-time validation, allowing the CM to make 

decisions that increase transaction throughput. 

Commit-time invalidation also requires notably 
fewer operations than commit-time validation for 

memory-intensive transactions. Commit-time 

invalidation enables CM to make highly efficient 
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and informed decisions.  In case of high contention 

commit-time invalidation is up to 3 times faster than 

commit-time validation.  

So we can say that commit-time 

invalidation is much better to use than commit-time 

validation in STM especially in cases of high 

contention. [23] 

 

3.7 Approach based on Single processor for 

Contention Management 

From the available processors if at least 

one processor is used exclusively for contention 

management and the remaining processors are used 

for parallel programming purposes then it is seen 

that the performance of STM is much better than the 

case in which all processors are used for parallel 

programming.        

 

4. Conclusion  
STM has been shown in many ways to be a 

good alternative to using locks for writing parallel 

programs. While locks are messy and complicated, 

STM primitives are elegant and allow code 

synchronization sections to be easily implemented 

and understood by developers. STM by itself is 

unlikely to make multicore computers readily 

programmable. Many other improvements to 

programming languages, tools, runtime systems, and 
computer architecture are also necessary. STM, 

however, does provide a timetested model for 

isolating concurrent computations from each other. 

This model raises the level of abstraction for 

reasoning about concurrent tasks and helps avoid 

many parallel programming errors. 

However currently the performance of code using 

STM is worse than that of code using locks. This 

paper gives a brief overview of STM and a survey 

of different techniques which can improve the 

performance of STM. 
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