A.Jayalakshmi, C.Janaki / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 2, March - April 2013, pp.1286-1290 On wgrα-Closed and wgrα-Open Maps In Topological Spaces

1. A.Jayalakshmi & 2.C.Janaki

Department of Mathematics, Sree Narayana Guru College, Coimbatore, TN,India.
Department of Mathematics, L.R.G.Govt.Arts.College for Women, Tirupur, TN,India.

Abstract

The aim of this paper is to introduce wgra-closures and obtain a characterization of wgra-continuous functions. Also we introduce and discuss the properties of wgra-closed and wgra-open maps.

1. Introduction

Generalized closed sets in a topological space were introduced by N.Levine[10] in order to extend many of the properties of closed sets. Regular open and regular α -open sets have been introduced and investigated by Stone[16], A. Vadivel and K.Vairamanickam[17] respectively. Balachandran, Sundram and Maki[4], Bhattacharyya Arockiarani^[2], Dunham^[7], and Lahiri^[5], Gnanambal[8], Malghan [11], Palaniappan and Rao[13], Park J.K and Park J.H[14], Arya and Gupta[3], Devi[6] ,C.Janaki[9], A.Vadivel and K.Vairamanickam[17] have worked on generalized closed sets and studied some of their properties. Balachandran et al [4] introduced the concept of generalized continuous maps and generalized irresolute maps of a topological space. In this paper, we study the properties of wgra-continuous functions and introduce the concept of a new class of maps called wgr α -closed and wgr α -open maps.

2. Preliminaries

In this section we recall some definitions which are used in this paper.

Definition: 2.1

A subset A of a topological space (X,τ) is called α closed [14] if A \subset int(cl(int(A)).

Definition: 2.2

A subset A of a topological space (X,τ) is called gaclosed [6] if $\alpha cl(A) \subset U$, when ever $A \subset U$ and U is α -open in X.

Definition: 2.3

A subset A of a topological space (X,τ) is called swg-closed [12] if cl(int(A)) \subset U, whenever $A \subset U$ and U is semi-open in X.

Definition: 2.3

A subset A of a topological space (X,τ) is called rwg-closed [12] if cl(int(A)) \subset U, whenever $A \subset U$ and U is regular-open in X.

Definition: 2.4

A subset A of a topological space (X,τ) is called rga-closed [17] if $\alpha cl(A) \subset U$, whenever $A \subset U$ and U is regular α -open in X.

Definition: 2.5

A subset A of a topological space (X,τ) is called ω closed [1,15] if $cl(A) \subset U$, whenever $A \subset U$ and U is semi-open in X.

3. wgra-continuous functions Theorem:

Theorem: 3.1 If A and B are subsets of a space X. Then (i)wgra-cl(X)=X and wgra-cl(ϕ)= ϕ .(ii)A \subset wgracl(A).

(iii) If B is any wgra-closed set containing A, then wgra-cl(A) \subset B.

(iv) If $A \subset B$ then $wgra - cl(A) \subset wgra - cl(B)$. (v) wgra - cl(A) = wgra - cl(wgra - cl(A)).

Proof

Straight forward.

Theorem: 3.2

If A and B are subsets of a space X, then wgra-cl(A) \cup wgra-cl(B) \subset wgra-cl (A \cup B).

Theorem: 3.3

If A and B are subsets of a space X, then wgra-cl(A \cap B) \subset wgra-cl(A) \cap wgra-cl(B).

Theorem: 3.4

Let A be subset of (X,τ) and $x \in X$. Then $x \in wgra$ cl(A) if and only if $V \cap A=\phi$ for every wgra-open set V containing x.

Proof

Suppose there exist a wgra-open set V containing x such that $V \cap A = \varphi$. Since $A \subset X - V$, wgra-cl(A) $\subset X - V$ and this implies $x \notin wgra$ -cl(A), a contradiction. Conversely, suppose that $x \notin wgra$ cl(A), then there exist a wgra-closed set F containing A such that $x \notin F$. Then $x \in X - F$ and X - F is wgraopen. Also $(X - F) \cap A = \varphi$, a contradiction.

Theorem: 3.5

If $A \subset X$ is wgra-closed, then wgra-cl(A)=A.

Proof

Straight forward. **Remark:**

3.6

Converse of the above theorem need not be true as seen from the following example.

Example: 3.7

Let $X=\{a,b,c,d\}, \tau = \{\phi,X,\{a\},\{b\},\{a,b\}, \{a,b,c\}\}$, then WGR α C(X)= $\{\phi,X,\{c\}, \{d\}, \{a,b\},\{c,d\},\{a,b,c\},\{a,b,d\}\{a,c,d\},\{b,c,d\}\}$. Now wgr α -cl($\{a,c\}$)= $\{a,c\}$,but $\{a,c\}$ is not wgr α -closed subset in X.

Theorem: 3.8

If $f:(X,\tau) \rightarrow (Y,\sigma)$ is wgra-continuous, then $f(wgra-cl(A)) \subset cl(f(A))$ for every subset A of X. **Proof**

A.Jayalakshmi, C.Janaki / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 2, March -April 2013, pp.1286-1290

Let $A \subseteq X$. Since f is wgra-continuous and $A \subseteq f$ ¹(cl(f(A))),we obtain wgra-cl(A) $\subseteq f$ ¹(cl(f(A))).Hence f(wgra-cl(A)) \subset cl(f(A)).

Remark: 3.9

Converse of the above theorem need not be true as seen in the following example.

Example: 3.10

Let $\hat{X}=\{a,b,c,d\}, \tau = \{\phi,X,\{b\},\{c\},\{b,c\},\{b,c,d\}\}, \sigma=\{\phi,Y,\{a\},\{a,c,d\}\}.$ If $A=\{a\}$, then $f(wgra-cl(A)) \subset cl(f(A), but f is not wgra-continuous.$

Definition: 3.11

For a topological space X, (i) $\tau^*_{\text{wgra}} = \{U \subset X: \text{wgra} - \text{cl}(X-U) = X-U\}$ (ii) $\tau^*_{\text{rga}} = \{U \subset X: \text{rga} - \text{cl}(X-U) = X-U\}$ (iii) $\tau^*_{\text{rwg}} = \{U \subset X: \text{rwg} - \text{cl}(X-U) = X-U\}$ (iv) $\tau^*_{\alpha} = \{U \subset X: \alpha \text{cl}(X-U) = X-U\}$

Theorem: 3.12

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a function .The following statements are equivalent. (i)For each $x \in X$ and each open set V containing f(x), there exists a wgra-open set

U containing x such that f (U) \subset V. (ii) For every subset A of X, f(wgra-cl(A)) \subset cl(f(A)).

(iii)Suppose τ^*_{wgra} is a topology,the function $f: (X, \tau^*_{wgra}) \rightarrow (Y, \sigma)$ is continuous.

(i) \Longrightarrow (ii) Let $y \in f(wgr\alpha - cl(A))$ and let V be any open neighborhood of Y. Then there exists a $x \in X$ and a wgr\alpha-open set U such that $f(x) = y, x \in U, x \in$ wgr\alpha-cl(A) and $f(U) \subset V$.By lemma 3.4, $U \bigcap A \neq \phi$ and hence $f(A) \bigcap V \neq \phi$. Therefore, $y=f(x) \in$ cl(f(A)).

(ii) \Rightarrow (iii) Let B be closed in (Y, σ).By hypothesis, f(wgra-cl(f ⁻¹ (B))) \subset cl(f(f ⁻¹(B))) \subset cl(B)=B, which implies wgra-cl(f¹(B)) \subset f ¹(B).Hence f¹(B) is closed in (X, τ^{*}_{wgra}).

(ii) \Rightarrow (i) Let $x \in X$ and V be any open set in (Y,σ) containing f(x). Let $A=f^{-1}(Y-V)$. Since f(wgra $cl(A)) \subset cl(f(A)) \subset Y-V$, then wgra-cl(A)=A. Since $x \notin wgra-cl(A)$, there exists a wgra-open set U containing x such that $U \bigcap A=\phi$ and hence $f(U) \subset$ $f(X-A) \subset V$.

(iii) \Rightarrow (ii) Let A be any subset of X .Since cl(f(A)) is closed in (Y, σ) and f:(X, τ^*_{wgra}) \rightarrow (Y, σ) is continuous,f¹ (cl(f(A)) is closed in (X, τ^*_{wgra}) and hence wgra-cl(f¹(cl(f(A))= f ¹(cl(f(A)).Also since A \subset f¹(f(A)) \subset f¹(cl(f(A))).By lemma 3.1,we have wgra-cl(A) \subset wgra-cl(f ¹(cl(f(A))= f¹ (cl(f(A))).So f(wgra-cl(A)) \subset cl(f(A)).

Theorem: 3.13

If WGRaO(X, $\tau)$ is a topology, then $\tau^*_{\ wgra}$ is a topology.

Proof

Clearly, ϕ , $X \in \tau^*_{wgra}$.Let $\{A_i : i \in \nabla\} \in \tau^*_{wgra}$.Then $wgra-cl(X-(\bigcup A_i))= wgra-cl(\bigcap (X-A_i)=\bigcap$ $\begin{array}{ll} (X-A_i)=X-(\bigcup A_i). \text{Hence, } \bigcup A_i \in \tau^*_{wgr\alpha}. \text{Let } A, B \in \\ \tau^*_{wgr\alpha}. \text{ Now } wgr\alpha\text{-cl}((X-A)\bigcup (X-B))= wgr\alpha\text{-cl}(X-A)\bigcup (X-B). \\ \text{Hence, } A \bigcap \end{array}$

 $B \in \, \tau^{*}_{\,\, wgr\alpha} \, .$ Thus $\tau^{*}_{\,\, wgr\alpha} \, is \, a \, topology.$

Theorem: 3.14

(a) Every wgra-closed is a-closed if and only if $\tau^*_{wgra} = \tau^*_{a}$.

(b) Every wgra-closed is closed if and only if $\tau^*_{wgra} = \tau$.

(c) Every wgra-closed is rga-closed if and only if $\tau^*_{wgra} = \tau^*_{rga}$.

(d) Every rwg-closed is wgra-closed if and only if $\tau^*_{wgra} = \tau^*_{rwg}$.

Proof

(a) $A \in \tau^*_{wgra}$, Then $wgra \cdot cl(X-A)=X-A$.By hypothesis, $\alpha cl(X-A)=wgra \cdot cl(X-A) = X-A$.This implies $A \in \tau^*_{\alpha}$. Conversely, let A be $wgra \cdot closed$, then $wgra \cdot cl(A)=A$. Hence $X-A \in \tau^*_{wgra}$ implies $X-A \in \tau^*_{\alpha}$. Therefore A is $\alpha \cdot closed$.

(b) $A \in \tau^*_{wgra}$. Then wgra - cl(X-A) = X - A.Byhypothesis,X - A = cl(X - A). This implies $A \in \tau$. Conversely, let A be wgra-closed, then wgracl(A)=A. Hence X-A

 $\in \tau^*_{wgra}$ implies X-A $\in \tau$. Therefore A is closed.

(c) $A \in \tau^*_{wgra}$, then wgra - cl(X-A) = X - A. By hypothesis, rga - cl(X-A) = wgra - cl(X-A)= X - A. This implies $A \in \tau^*_{rga}$. Conversely, let A be wgra - closed, then wgra - cl(A) = A. Hence $X - A \in$ τ^*_{wgra} implies $X - A \in \tau^*_{rga}$. Therefore A is rgaclosed.

(d) $A \in \tau^*_{rwg}$, Then rwg-cl(X-A)=X-A.By hypothesis, $wgr\alpha\text{-cl}(X-A) = rwg\text{-cl}(X-A) = X-A$.This implies $A \in \tau^*_{wgr\alpha}$. Conversely, let A be rwg-closed, then rwg-cl(A)=A. Hence $X-A \in \tau^*_{rwg}$ implies $X-A \in \tau^*_{wgr\alpha}$. Therefore A is $wgr\alpha\text{-closed}$.

4. wgra- $T_{1\backslash 2}$ Spaces

Definition: 4.1

A space (X,τ) is called wgr α -T_{1/2} space if every wgr α closed set is α -closed.

Definition: 4.2

A space (X,τ) is called $T_{wgr\alpha}$ -space if every wgr\alpha closed set is closed.

Theorem:

4.3

For a topological space(X, τ) the following conditions are equivalent (i)X is wgr α -T_{1/2} space. (ii) Every singleton of X is either regular α -closed (or) α -open.

Proof

(i) \Leftrightarrow (ii)Let $x \in X$ and assume that $\{x\}$ is not regular α -closed. Then clearly $X - \{x\}$ is not regular α -open and $X - \{x\}$ is trivially wgr α -closed set. By (i) it is α -closed and thus $\{x\}$ is α -open. (ii) \Leftrightarrow (i) let $A \subset X$ be wgr α -closed. Let $x \in$ cl(int(A)). To show $x \in A$. Case (i) The set $\{x\}$ is regular α -closed. Then if $x \notin A$, then

The set $\{x\}$ is regular α -closed. Then if $x \notin A$, then $A \subset X$ - $\{x\}$. Since X is wgr α -closed and X- $\{x\}$ is

A.Jayalakshmi, C.Janaki / International Journal of Engineering Research and Applications **ISSN: 2248-9622** www.iiera.com (IJERA) Vol. 3, Issue 2, March - April 2013, pp.1286-1290

regular- α -open, cl(int(A)) \subset X-{x}and hence x \notin cl(int(A)). This is a contradiction. Therefore, $x \in A$. Case(ii)

The set $\{x\}$ is α -open. Since $x \in cl(int(A))$, then $\{x\}$

 $\cap A \neq \phi$ implies $x \in A$. In both the cases $x \in A$. This shows that A is α -closed.

Theorem: 4.4

Let (X,τ) b	be any	topological space	and (Y,σ) be a
T_{wgra} -space and $f:(X,\tau) \rightarrow (Y,\sigma)$ be a map. Then the			
following		are	equivalent.
(i)	f	is	wgra-irresolute.
(ii) f is wgrα-continuous.			

Proof

(i) \Rightarrow (ii) Let U be a closed set in (Y, σ). Since f is wgra-irresolute, $f^{1}(U)$ is wgra-closed in (X,τ) . Thus f is wgra-continuous. (ii) \Rightarrow (i) Let F be a wgra-closed set in (Y, σ). Since Y is a T_{wgra}-space, F is closed in Y.By hypothesis f ¹(F) is wgra-closed in(X, τ). Therefore f is wgrairresolute.

Theorem: 4.5

 $\alpha O(X,\tau) \subset WGR\alpha O(X,\tau).$ (i) (ii) A space is wgr α -T_{1/2} space if and only if $\alpha O(X,\tau) = WGR\alpha O(X,\tau).$

Proof

(i) Let A be α -open. Therefore X-A is α -closed. Every α -closed set is wgr α -closed. Therefore X-A is wgra-closed, which implies A is wgra-open. (ii) Let X be wgra- $T_{1/2}$ space. Let $A \in$ WGR α O(X, τ),X –A is wgr α -closed implies X–A is α -closed. $A \in \alpha O(X, \tau)$. Therefore Hence WGR α O(X, τ) $\subset \alpha$ O(X, τ) $\alpha O(X,\tau) \subset$ and WGR α O(X, τ). Which implies $\alpha O(X,\tau) =$ WGR $\alpha O(X,\tau)$. Conversely, let $\alpha O(X,\tau) =$ WGR $\alpha O(X,\tau)$. A is wgr α -closed implies X-A is wgra-open. By assumption X-A is α -open and hence A is α -closed.

Theorem: 4.6

Let (Y,σ) be a T_{wgra} -space, f: $(X,\tau) \rightarrow (Y,\sigma)$ and g: $(Y,\sigma) \rightarrow (Z,\eta)$ be two wgra-continuous functions, then $g \circ f: (X,\tau) \rightarrow (Z,\eta)$ is also wgra-continuous. Proof

Let V be any closed set in (Z,η) . Since $g^{-1}(V)$ is wgra-closed in (Y,σ) .wgra-continuity of f implies that $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is wgra-closed. Hence (g \circ f) is wgra-continuous.

5. wgra-closed maps and wgra-open maps **Definition: 5.1**

A map f: $X \rightarrow Y$ is said to be wgra-open if the image of every open set set in X is wgr α -open in Y. **Definition: 5.2**

A map f: $X \rightarrow Y$ is said to be prewgra-closed if the image of every wgra-closed set set in X is wgraclosed in Y.

Theorem: 5.3

Every open map is wgra-open, but not conversely. Proof

Let f: $X \rightarrow Y$ is an open map and V be an open set in X. Then f(V) is open and hence wgr α -open in Y. Thus f is wgrα-open.

Example: 5.4

Let

 $X = \{a,b,c\} = Y, \tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}, \sigma = \{\phi, Y, \{a,b\}\}$ and let f be the identity map. Thus f is wgr α -open, but not open.

Theorem: 5.5

A map $f: X \rightarrow Y$ is wgra-closed if and only if subset S of Y and for each open set U containing $f^{1}(S)$ there is a wgr α -open set V of Y such that $S \subset V$ and $f^{1}(V) \subset U.$

Proof

Suppose f is wgra-closed.Let S be a subset of Y and U be an open set of X such that $f^{-1}(S) \subset U$, then V=Y-f(X-U) is a wgr α -open set containing S such that $f^{1}(V) \subset U$.Conversely, suppose that f is a closed set of X, then $f^{-1}(Y-f(F)) \subset X-F$ and X-F is open.By hypothesis, there is a wgr α -open set V of Y such that $Y-f(F) \subset V$ and $f^{1}(V) \subset X-F$. Therefore, $F \subset X - f^{1}(V)$. Hence $Y - V \subset f(F) \subset f(X - f^{1}(V)) \subset f(V)$ Y-V, which implies (F)=Y-V. Since Y-V is wgraclosed, f(F) is wgra-closed and thus f is wgra-closed map.

Theorem: 5.6

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is wgra-closed and A is closed subset of X, then f $|A:A \rightarrow Y$ is wgra-closed. Proof

Let $B \subset A$ be closed in A, then B is closed in X, since A is closed in X.f(B) is wgra-closed in Y as f is wgra-closed map. But f(B)=(f|A)(B).So(f|A)(B) is wgra-closed in Y. Therefore f |A is wgra-closed.

Theorem: 5.7

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is wgra-closed and A is closed subset of X, then f $|A:A \rightarrow Y$ is continuous and wgra-closed.

Proof

Let F be a closed set of A . Then F is wgra-closed set of X.By theorem 5.9, (f | A)(F) = f(F) is wgra-closed set of Y.(f |A) is wgra-closed and continuous.

Theorem: 5.8

If a map f: $X \rightarrow Y$ is closed and a map g: $Y \rightarrow Z$ is wgra-closed, then $g \circ f: X \to Z$ is wgra-closed.

Proof

Let H be a closed in X, then f(H) is closed and (g°) f)(H)=g(f(H)) is wgra-closed.

Theorem: 5.9

Every α -open, ω -open, $g\alpha$ -open, $rg\alpha$ -open ,swg-open maps are wgrα-open, but not conversely.

Proof

Straight forward.

Example: 5.10

Let $X=Y=\{a,b,c,d\}, \tau = \{\phi,X,\{a\},\{a,b\},\{a,b,c\}\}$ and $\{a,b,c\}\}$. Define f is $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{a, b\},$ an identity map. Hence f is wgr α -open map, but not α-open,

A.Jayalakshmi, C.Janaki / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 2, March -April 2013, pp.1286-1290

ω-open,gα-open,swg-open maps.Example: 5.11

Let $X=Y=\{a,b,c,d\}, \tau = \{\phi,X,\{a\},\{c\},\{a,b,c\}\}$ and $\sigma = \{\phi,Y,\{a\},\{c,d\},\{a,c,d\}\}$. Define f is an identity map.Hence f is wgra-open map, but not rga-open. **Remark:5.12**

The above discussions are summarized in the following diagram.

Remark: 5.13

Composition of two wgra-closed maps need not be wgra-closed map.

Example: 5.14

Let

X=Y=Z={a,b,c}, τ ={ ϕ ,X,{a},{a,b}}, σ ={ ϕ ,Y,{c},{a, c}} and η ={ ϕ ,X,{a},{b}, {a,b}}.Define f: X \rightarrow Y is an identity map. f and g are wgr α -closed, but g \circ f is not wgr α -closed.

Theorem: 5.15

If f: X \rightarrow Y is a closed map and g: Y \rightarrow Z is a wgra closed map, then g \circ f: X \rightarrow Z is wgra closed. **Proof**

Let H be a closed set in X. Then f(H) is closed. ($g \circ f$) (H=g(f(H)) is wgra closed as g is wgra closed map. Thus $g \circ f$ is wgra closed.

Theorem: 5.16

Every prewgra-closed map is a wgra-closed map. **Remark:** 5.17

Converse of the above theorem need not be true as seen in the following example.

Example: 5.18

Let $X=Y=Z=\{a,b,c\}, \tau = \{\phi,X,\{a\},\{b\},\{a,b\}\}, \sigma = \{\phi,Y,\{a\},\{a,b\} and \eta = \{\phi,X,\{a\}, \{b\}, \{a,b\}\}.$ Define f: $X \rightarrow Y$ as a identity map.f is a wgr α -closed map, but f is not pre-wgr α -closed.

Theorem: 5.19

If f: $X \rightarrow Y$ is a bijective mapping, then the following statements equivalent are (i) f is а wgra-open map f (ii) is а wgra-closed map (iii) $f^1: Y \rightarrow X$ is wgra-continuous

Proof

(i) \Longrightarrow (ii)Let U be closed in X and f be a wgr α -open map. Then X–U is open in X. By assumption, we get f(X–U) is a wgr α -open set in Y.That is Y–f(X–U)=f(U) is wgr α -closed in Y. (ii) \Rightarrow (iii) Let U be closed in X .By assumption, f(U) is wgra-closed in Y.As f (U) =(f¹)⁻¹ (U),f¹ is wgra-continuous.

 $(iii) \Longrightarrow (i)$ Let U be open in X.By assumption $(f^{1})^{-1}(U) = f(U)$.That is, f(U) is wgr α -open in Y.Hence f is a wgr α -open map.

Theorem: 5.20

Suppose WGR α O(X, τ) is closed under arbitrary unions. Let f: X \rightarrow Y be a mapping. Then the following statements are equivalent (i)f is a wgr α -open . (ii) For a subset A of (X, τ),f(int(A)) \subset wgr α int(f(A)).

(iii) For each $x \in X$ and for each neighborhood U of x in (X,τ) , there exists a wgr α -neighborhood W of f(x) in (Y,σ) such that $W \subset f(U)$.

Proof

(i) \Rightarrow (ii) Suppose f is a wgra-open mapping.Let A $\subset X$.Since int(A) is open in (X,τ) .f(int(A)) is wgraopen in (Y,σ) .Hence f(int(A)) \subset f(A) and we have f(int(A)) \subset wgra-int(f(A)).

(ii) \Rightarrow (iii) Let U be any arbitrary neighborhood of x in (X, τ). Then there exists an open set G such that x $\in G \subset U$. By assumption, f(G)=f(int(G)) \subset wgr α int(f(G)) and f(G)=wgr α -int(f(G)). Hence f(G) is wgr α -open in (Y, σ) and f(x) \in f(G) \subset f(U) and by taking W=f(G). (iii) holds.

(iii) \Rightarrow (i) Let U be an open set in (X,τ) such that $x \in U$ and f(x)=y. Then $x \in U$ and for each $y \in f(U)$, there exists a wgr α -neighborhood W_y of y in (Y,σ) such that $W_y \subset f(U)$. Since W_y is a neighborhood of y there exists a wgr α -open set V_y in (Y,σ) such that $y \in V_y \subset W_y$. Therefore $f(U)=\bigcup \{V_y: y \in f(U)\}$. Hence f(U) is a wgr α -open set of (Y,σ) and f is a wgr α -open mapping.

Definition: 5.21

A function $f: X \rightarrow Y$ is said to be strongly wgrairresolute if $f^{1}(V)$ is open in X for every wgra-open set V of Y.

Theorem: 5.22

For any bijective $f:X \rightarrow Y$, then the following statements are equivalent (i)

 $\begin{array}{cccc} f^1:Y \rightarrow X & \text{ is } & wgr\alpha\text{-irresolute} \\ (ii) & f & \text{ is } & a & \text{ pre-wgr\alpha-open} & \text{ map.} \end{array}$

(iii) f is a pre-wgrα-closed map.

Proof

(i) \Rightarrow (ii) Let U be wgra-open in X .By (i) (f¹)⁻¹(U)=f(U) is wgra-open in Y. So f is a pre-wgra-open map.

(ii) \Rightarrow (iii) Let V be wgra-closed in X. By (ii) f(X-V)=Y-f(V) is wgra-open in Y. That is f(V) is wgra-closed in Y and so f is an pre-wgra-closed map.

(iii) \Rightarrow (i) Let V be a wgra-closed set in X. By (iii), $f(V)=(f^{1})^{-1}(V)$ is wgra-closed in Y.Hence (i) holds.

Theorem: 5.23

A.Jayalakshmi, C.Janaki / International Journal of Engineering Research and Applications **ISSN: 2248-9622** (IJERA) www.iiera.com Vol. 3, Issue 2, March - April 2013, pp.1286-1290

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ and g: $(Y,\sigma) \rightarrow (Z,\eta)$ be two mappings and let $g \circ f : (X,\tau) \rightarrow (Z,\eta)$ be wgraclosed. Then

(i) If f is continuous and surjective, then g is wgraclosed. (ii)

If g is wgra-irresolute and injective, then f is wgraclosed (iii) If f is

wgra-continuous, surjective and (X,τ) is a wgraspace. then is wgra-closed. g (iv) If g is strongly wgr α -irresolute and injective, then f is closed.

Proof

(i)If f is continuous, then for any closed set A of Y. $f^{1}(A)$ is closed in X. Also $g \circ f$ is wgra-closed implies $(g \circ f)(f^{1}(A))=g(f(f^{1}(A)))=g(A)$ is wgraclosed in Z and g is wgr α -closed map.

(ii)Let A be a closed set in (X,τ) . Then $(g \circ f)(A)$ is wgra-closed in Z and $g^{-1}(g \circ f)$ (A) = f(A) is wgraclosed in Y. Hence f is wgra-closed.

(iii)Let A be a closed set of (Y,σ) . Then $f^{1}(A)$ is wgra-closed set in (X,τ) and g(A) is wgra-closed set in (Z,η) .

(iv) Let A be closed in (X,τ) , then $(g \circ f)(A)$ is wgraclosed in (Z,η) ,g is strongly wgra-irresolute implies $g^{-1}(g \circ f)(A) = f(A)$ is closed in (Y,σ) and f is a closed map.

References

- Ahmad Al-omari and Salmi Md Noorani, [1] Generalized ω -closed Regular sets. International Journal of Mathematics and mathematical Sciences, Volume 2007. article(ID),16292.
- [2] I.Arockiarani, Studies on Generalizations of Generalized Closed Sets and Maps in Topological Spaces, Ph.D Thesis, Bharathair University, Coimbatore, (1997).
- [3] S.P.Arya and R.Gupta, On Strongly Continuous Mappings, Kyung pook Math..J.14(1974).131-143.
- K.Balachandran, P.Sundaram and H. Maki, [4] On Generalized Continuous Maps in Topological Spaces, Mem.I ac Sc. Kochi Univ. Math., 12(1991),5-13.
- [5] P.Bhatttacharyya and B.K.Lahiri, Semigeneralized Closed Sets in Topology, Indian J. Math., 29(1987), 376-382.
- R.Devi,K.Balachandran and H.Maki, On [6] Genaralized α -continuous maps,Far. East J. Math. Sci.Special Volume, part 1(1997),1-15.
- [7] W.Dunham, A New Closure Operator for Non- T_1 Topologies, Kyunpook Math.J., 22(1982),55-60.
- Y.Gnanambal, On Generalized Pre-regular [8] closed sets in Topological Spaces, Indian J. Pure Appl.Math., 28(1997),351-360.

- C.Janaki, Studies On $\pi g\alpha$ -Closed Sets in [9] Topology, Ph.D Bharathair Thesis, University 2009.
- N.Levine, Generalized closed [10] sets in Topology, Rend.Circ. Mat.Palermo , 19 (1970),89-96.
- [11] S.R.Malghan, Generalized closed Maps, J. Karnatak Univ. Sci..27(1982).82-88.
- N.Nagaveni.Studies on Generalizations of [12] Homeomorphisms in Topological Spaces.Ph.D Thesis, Bharathair University, Coimbatore, (1999).
- [13] N.Palaniappan and K.C .Rao,Regular Generalized Closed Sets, Kyung-pook, Math.J.,33(1993),211-219.
- J.H.Park and J.K.Park .On π gp Continuous [14] functions in topological Spaces, chaos, Solitons and fractals 20(2004), 467-477.
- [15] R.Parimelazhagan and N.Nagaveni, Weak Generalized Closed Map .World Academy of Science, Engineering and Technology 50 2009(1041-1045).
- [16] Stone.M, Application of the theory of Boolean Rings to General Topology, Trans. Amer.Math.Soc.,41(1937),374-481.
- [17] A.Vadivel and K. Vairamanickam, rga-Closed Sets and rga-Open Sets in Topological Spaces, Int. Journal of Math. Analysis, Vol. 3, 2009, no. 37, 1803-1819.