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ABSTRACT 
Engineers and architects have always held 

a special interest for structural systems that 

enable them to cover large spans with minimal 

interference from internal supports. It is perhaps 

no surprise then that dome structures, capable of 

encompassing maximum volume with minimum 

surface area, are one of the oldest structural 

forms and has been used in architecture since the 

earliest times. The processing of geodesic forms 

has always been an extremely difficult task. The 

constraint of the processing difficulties, however, 

did not allow the designers to take full advantage 

of the whole spectrum of possibilities and their 

scope remained rather limited. In contrast, the 

conceptual methodology that is presented in this 

paper combined with suitable computer software 

such as Formian, provides a means for dealing 

with the processing of any kind of polyhedric 

configuration and geodesic with relative ease and 

elegance. In this paper the generation of geodesic 

forms is solved in two stages. 

 

Keywords – Formex algebra, Formian, Geodesic 

Forms, Polyhedric forms, retronorms 
 

I. INTRODUCTION 
Formex configuration processing uses the 

concepts of formex algebra through the programming 

language Formian to generate and process 

configurations. Being modeled on formex algebra, 

the language allows statements to be written in a 

concise and yet readily understood manner. It also 

has simple to use graphics facilities and a built –in 
editor, enabling problems of data generation to be 

accomplished in one programming environment. 

Also, in Formian the generated data may be stored in 

the form of a rule thus enabling information about a 

structural system to be represented in just a few lines 

of formulation [1], [2]. This allows the data to be 

modified easily and provides a convenient means of 

keeping the information for future reference. In 

dealing with formex formulation of a configuration, 

it is usual to begin by formulating a topological 

description of the configuration using formex 

functions. The next stage involves the employment of 
a transformation for associating geometric 

coordinates with nodes of the configuration. A 

transformation of this kind is referred to as a 

retronorm. Two categories of retronorms are 

employed in the Formian. Firstly, there are the 

standard retronorms that are incorporated in the 

Formian Interpreter. The second category of  

 

retronorms is referred to as supplementary 

retronorms [3]. A supplementary retronormic 

function is introduced through a program segment 

which is supplied by the user in order to create a 

nonstandard retronorm. The program segment is 

linked to the body of the Formian Interpreter. This 
paper deals with the implementation of a 

supplementary retronormic function called the 

“tractation retronorm”. The tractation retronorm 

enables a configuration to be projected on different 

types of surfaces such as spheres or ellipsoids, 

paraboloids, cylinders, hyperbolic paraboloids or 

planes. The term tractation is used to imply 

projection of a configuration on a surface or surfaces. 

Tractation is derived from the Latin word “tractus” 

meaning “drawing”. The projection may be central, 

axial parallel or radial and these types of projection 

will be discussed in due course [4], [5]. 
Furthermore, this paper deals with the 

establishment of the concepts and constructs through 

which polyhedric and geodesic configurations may 

be created with the polyhedron function. The 

polyhedron function provides a basis for the 

configuration processing of geodesic configurations 

in a compact and readily understood manner and it 

allows one to work with the same set of tools in all 

data generation problems eliminating the need for the 

employment of an assortment of programs which are 

dealing with specific problems. Hence, the emphasis 
is on the manner in which the concepts of formex 

algebra are employed for the generation of 

polyhedric and geodesic domes rather than the details 

of the formulations and no prior knowledge of 

formex algebra is necessary for following the 

material. The preliminary concepts and ideas of 

formex configuration processing were evolved 

during the last four decades [6].  The paper does 

contain some formex formulations but these are 

included to give a feel for the appearance of formex 

formulations rather than their details being essential 
for understanding of the material. 

 

II. ARCHIMEDEAN POLYHEDRA 
The first stage in the generation of a 

geodesic form is the creation of the polyhedric 

configuration. The approach presented in this paper 

provides a methodology that allows polyhedric 

configuration of all kinds to be generated in a 

convenient manner. However, polyhedric 

configurations based on semi-regular (Archimedean) 
polyhedral are used in this paper to demonstrate the 

concepts and constructs through which polyhedric 
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configurations may be created. There are thirteen 

semi-regular polyhedra, and are as shown in Tables 

1-3. These polyhedra consist of various combinations 

of triangles, squares, pentagons, hexagons, octagons 

and decagons [7], [8], [9], [10].  Ten of the 

Archimedean polyhedra utilize only two kinds of 

polygons and the remaining three utilize three kinds 

of polygons, as  

 

Table 1. The Archimedean Polyhedra and the polyhedron code P for each one 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Truncated Tetrahedron P=6 Cuboctahedron P=7 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Truncated Cube P=8 Truncated Octahedron P=9 

 

 

 

Small Rhombicuboctahderon P=10 Great Rhombicuboctahedron P=11 
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Table 2.  The Archimedean Polyhedra and the polyhedron code P for each one 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Icosidodecahedron P=12 Truncated Dodecahedron P=13 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Truncated Icosahedron P=14 Snub Cube P=15 

 

shown in Table 4.  In these Tables each polyhedron is 

shown together with the global Cartesian x-y-z 

coordinate system. The origin of the coordinate system 

is at the centre of the polyhedron and is indicated with 

a large dot. The point where the positive side of the x-

axis intersects the polyhedron is indicated by a little 

circle with an enclosed x. This point is referred to as 

the “x-point”. The positions of the positive directions 

of y- and z- axes are indicated by arrows with z being 
always vertical. Each face of the polyhedron is 

identified with a “face code” which is given at one 

corner of the face. 

A face code consists of a number followed by a letter 

and possibly followed by an asterisk. The number in a 

face code is the identification number of the face. The 

letter in a face code determines the points A, B, C,…, 

etc of the configuration that is to be placed on the 

indicated corner of the face. These letters for 

configurations corresponding to different shapes of 

polyhedral faces are as shown in Fig. 1. If a face code 
has an asterisk, it implies that the configuration which 

is to be placed on the face is the reflection, with 

respect the x-y plane, of the given configuration. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 1. Types of polygons in Archimedean Polyhedra 
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Table 3. The Archimedean Polyhedra and the polyhedron code P for each one 

 

 

 

 

 

 

 
 

Small Rhombicosidodecahedron P=16 

 

 

 

 

 

 

 

 

Great Rhombicosidodecahedron P=17 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Snub Dodecahdeon P=18 
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Table 4  The type of polygons in each of the 

Archimedean polyhedral 

 

Polyhedron 
Type and Number 

of Faces 

Truncated 

Tetrahedron 

4                   4 

 

 

Cuboctehedron 

 

8                     6 
 

 

Truncated Cube 
 

8                  6 

Truncated Octahedron 
 

                  6                   8 

Small 

Rhombicuboctehedron 

 

                 8                    18 

Great 

Rhombicuboctehedron 

 

                12              8               6 

Icosidodecahedron 

 

20                 12 

Truncated 
Dodecahedron 

20     12 

Truncated 

Icosahedron 

 

12                 20 

 

 

Snub Cube 

 

32                    6 

 

Small Rhombi 
Icosidodecahedron 

 

                20               30           12 
 

Great Rhombi 

Icosidodecahedron 

 

                30            20  12 
 

Snub 

Dodecahedron 

 

                 80                     12 

 

 

 

III. POLYHEDRON FUNCTION 
Consider the triangular and square 

configurations of Figs 2, 3. In this figures the 

configurations are shown together with their normat 
U1-U2-U3 for the formex formulation and may be 

represented in terms of the formex variables P5 and 

P6 which are given as, 

 

P5 = GENID(6,6,2,SQRT|3,1, -1) | ROSAD(1,SQRT 

|3/3,3, 120) | [0,0; 2,0] 

 

and 

 

P6 = LUX([6,6]) | ROSAD(6,6) | BB(1,1/SQRT|3) | 

P5 

 

A "formex" (singular) is a mathematical entity which 

may be used to represent a configuration. A reader 

encountering the above formices (plural) for the first 

time is bound to find it a little confusing but once the 

basic principles of formex algebra are understood, 

the formex approach is found to be a simple way of 
describing a configuration. 

To explain the above formulations, one may begin by 

describing formex P5 which represents only a part of 

the configuration of Fig. 4.  

 
Fig. 4. A graphical representation of the 

cuboctahedron 

 

The triangular configuration is formulated 

with respect to a suitable reference system as shown 

in Fig 2. The construct [0,0; 2,0] represents the first 

horizontal member of the triangular configuration 

and the construct ROSAD [1,SQRT | 3/3, 3, 120) 

represents the small triangle near the origin of the 

reference system.  The "function" ROSAD implies 
rotational replication. This function effectively, 

creates a rotational replication of the horizontal 

member with the centre of rotation given by 

(1,SQRT|3/3). The other two parameters (3, 120) in 

the ROSAD function imply number of members to 

be created at an angle of 120
o
. The entire 

configuration is generated by repeating the triangular 

pattern using another formex function. The function 

GENID(6,6,2,SQRT|3,1,-1) is used to imply 6 

replicational translations in the first direction and 6 in 

the second, with a step of 2 and SQRT|3 units in first 

and second direction, respectively. The parameters 1, 
-1 demonstrate the step and the amount of triangles 

eliminated in each row.  

 

Moreover, the square configuration is 

formulated with respect to a suitable reference 

system shown in Fig. 3.  The function BB(1, 

1/SQRT|3) is referred to as a basibifect retronorm 

effecting scaling in the first and second directions by 

factors 1 and 1/SQRT|3, respectively. The formex 

function ROSAD(6,6) is used to imply rotational 

replication, with the centre of rotation given by (6,6).  
The function LUX stands for “luxum” which is a 

latin word  



 Dimitra Tzourmakliotou / International Journal of Engineering Research and Applications 

(IJERA)                   ISSN: 2248-9622                 www.ijera.com 

Vol. 3, Issue 2, March -April 2013, pp.1075-1086 

1080 | P a g e  

 
Fig. 2.  A triangular configuration   Fig. 3. A square configuration 

 

used in formex algebra to imply “disconnected parts” 

and is used here to imply the disconnection of the 

four elements whose apex is at point (6,6). 

 

Finally, let it be required to map these configurations 

onto all the faces of a cubotetrahedron. A Formian 
statement describing this operation may be given as 

 

C = PEX | (POL(7,10,[0,0; 12,0], [1; 8] | P5 # 

POL(7,10,… [0,0; 12,0], [9; 14]) | P6) 

 

As it is shown in Table 1 the cuboctahedron 

has a top x-y square face, eight triangular, four 

square non x-y faces and a bottom x-y square face. 

The constructs POL(7,10,[0,0; 12,0], [1; 8] ) and 

POL(7,10, [0,0; 12,0], [9; 14]) are formex functions 

representing a rule for transformation of given 
formices P5 and P6 into a formex C. The parameters 

7, 10, [0,0; 12,0], [1; 8] and [9; 14] are parts of the 

rule defining the particulars of the transformation and 

are referred to as canonic parameters. The above 

function is referred to as a “polyhedron function”. 

The polyhedron function can be used to create single 

layer or multi layer polyhedric configurations. The 

general form of the polyhedron function for single 

layer polyhedric configurations may be written as 

POL(P,R,[A1,A2; B1,B2] < <, {F1, F2,…,Fn}> >) 

where the first canonic parameter P is referred to as 

the “polyhedron code”. The polyhedron code 
specifies the type of polyhedron which is to be used 

as the basis for the operation. Tables 1 to 3 list the 

code numbers for the Archimedean polyhedra. The 

integer 7 given as the polyhedron code in the above 

polyhedron function specifies a cuboctahedron. The 

“radius specifier” determines the size of the 

polyhedron by specifying the radius of the 

circumsphere, that is, the sphere that contains all the 

vertices of the polyhedron. This parameter is given as 

10 units of length. The “locator” specifies the manner 

in which a given configuration is to be mapped onto 
a face of the polyhedron. To elaborate, consider the 

configurations shown in Figs 2&3. Two corners of 

the configurations are denoted by the letters A and B. 

The configurations are intended to be placed on the 

triangular and the square faces of the cuboctahedron 

in such a way that AB fits an edge of the 

cuboctahedron. This convention in conveyed by 

including the U1-U2 coordinates of A and B in the 

locator. 

The last canonic parameter is referred to as 

the “face list”. The role of the face list is to specify 
those faces of the polyhedron onto which the 

configuration is to be mapped. The face list is 

enclosed in special brackets which are referred to as 

option brackets. Absence of the face list in the 

polyhedron function implies that the configuration is 

to be mapped onto all the faces of that polyhedron. 

However, one has the option of generating only a 

part of the polyhedric configuration by specifying the 

required face numbers through the face list. The face 

numbers for the Archimedean polyhedra are given in 

Tables 1 to 3. For instance, the polyhderic 
configuration of Fig. 4 is based on a cuboctahedron 

and is obtained by mapping the configuration of Figs 

2 and 3 onto the triangular and square faces, 

respectively. 

 

IV. THE TRACTATION RETRONORM 
The next stage in the creation of a geodesic form 

evolves the projection of the polyhedric 

configuration on one or more specified surfaces.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. A single layer grid pattern together with the 

global coordinate system x-y-z and the normat U1-

U2-U3 
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Fig. 6.  The plan view and elevation of the grid, together with the sphere on which the central projection is to be 

carried out. 

 
Fig.7. A formex variable D that implies central projection 
 

 
Fig. 8.  A general descriptor of the tractation retronorm 

To obtain the projection of the polyhedric 

configuration the tractation retronorm is employed. 
Consider a single layer grid pattern which is to be 

projected on a sphere. The grid together with the 

global coordinate system x-y-z and the normat U1-

U2-U3 for the formex formulation are shown in Fig.  

 

5. The grid may be represent in terms of a formex F 

where 
F = PEX | LUX(ROSAD(10,10)|GENID(3,3,2,0,-

1)|[0,0]|… RINID(10,10,2,2) | ROSAD(1,1) | 

{[0,0;2,0],[0,0;0,1]}  

 

D = TRAC(1,10,10,-10,1,10,10,-5,20,13) | F 

  selector 

radius of the sphere 

centre of the sphere 

 surface specifier (S=1 sphere) 

centre of projection 

projection specifier (P=1 central )projection) 

abbreviation for tractation 
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Fig. 6 shows the plan view and elevation of the 

grid, together with the sphere on which the 

projection is to be carried out. For the specification 

of the sphere, the centre C(xc, yc, zc) and the radius 

R, have been defined. The centre of projection is 

specified as the point A(xa,ya,za). The above 

specifications, together with another three 
parameters may be given as shown in Fig. 7.  

 

These three parameters may be the type of 

projection, the type of surface and the required 

solution. The first parameter is referred to as 

“projection specifier” and the second parameter is 

referred to as “surface specifier”. The last parameter 

is referred to as the “selector” and will be described 

in detail below. TRAC in Fig. 7 is an abbreviation 

for “tractation” and is followed by a sequence of 

parameters enclosed in parentheses. The construct 

that consists of TRAC together with the ensuing 
parameter list is referred to as the “tractation 

retronorm” and what is enclosed in parentheses is 

called the “descriptor”. A general descriptor is of 

the form given in Fig. 8. The significance of the 

values of the projection specifier P, the centre of 

projection, the axis or direction of projection, the 

selector and the coefficients of the surface are 

discussed in detail in the sequel. However, as far as 

the significance of the values of h and U these will 

be discussed in detail below. A graphical 

representation of formex D, projected on the sphere 
is shown in Fig. 9.  

 
Fig. 9.  A graphical representation of formex 

variable D, projected on the sphere using central 

projection. 

 

4.1 Projection specifier 

The projection specifier P in Fig. 7 is given 

as 1. The centre of projection A(xa,ya,za) is 

specified by the coordinates 10,10 and -10 relative 

to the global coordinate system. The projection 

specifier P is a nonzero positive integer defining the 

type of projection. The value of the projection 

specifier P may be from 1 to 4, as given in Table 5. 

 

4.2. Surface Specifier 

The surface specifier S in Fig. 7 is given as 

1, where 1 stands for a sphere. The surface specifier 

S is an integer expression whose value is a nonzero 

positive integer defining the surface of projection. 

The value of the surface specifier S may be from 1 

to 9 representing the surfaces shown in Table 6. In 
this paper the first two surface specifiers will be 

discussed [5]. The description of a surface requires 

a number of coefficients that should follow the 

surface specifier. These, for different surfaces, are 

also given in Table 6. 

 

4.3. Selector 

The projection of a point of a surface 

usually involves a quadratic equation [11]. The 

value of the parameter t specifies the course of 

action to be taken when the projection of a point 

cannot be determined uniquely and is referred to as 
“selector”. To elaborate, in obtaining the projection 

P of a point T on a surface S, the following 

situations may arise: 

 

i. P is determinable uniquely,  

ii. P is nonexistent,  

iii. There is more than one solution for P 

 

Various possible courses of action in the case of 

nonexistent or multiple solutions for P, together 

with the corresponding section codes are listed in 
Table 7. 

 

V. PROJECTION ON AN ELLIPSOID 
The configurations generated in this 

section are the results of projecting a grid on an 

ellipsoid. To begin with, consider the grid shown in 

Fig. 10. The interconnection pattern of the 

configuration is given by 

 
GRID = PEX | RINID(10,10,2,2) | ROSAD(1,1) | 

{[0,0; 2,0],  [0,0; 0,1]} 

 

where GRID is a formex that represents the grid 

pattern of Fig. 10.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 10 The grid configuration 
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Suppose that, this grid is to be projected on an 

ellipsoid using the tractation retronorm and the 

descriptor 

for tractation may be defined as 

 

[P,xa,ya,za,S,xc,yc,zc,a,b,c,t] 

 
where P is the projection specifier, xa, ya, 

and za are the coordinates of the centre of 

projection with respect to the global coordinate 

system. S is the surface specifier, where S=2 

implies an ellipsoid, with its centre given by the 

coordinates xc, yc and zc with respect to the global 

coordinate system and a, b and c are the semiaxes of 

the ellipsoid. Suppose that, the descriptor is 

specified as 

 

[1,10,10,-10,2,10,10,-5,30,13,15,13] 

 
where the first parameter P=1 implies central 

projection. A graphical representation of formex 

GRID projected on the ellipsoid is as shown in Fig. 

11.  

 
Fig. 11.  A graphical representation of formex 

GRID projected on an ellipsoid using central 

projection  

 

As, a further example of central projection consider 

the grid represented by the formex GRID and let 

this be projected onto an ellipsoid using a different 

radius and centre of projection. The other 

parameters in the descriptor remain as before. The 
descriptor in this case may be given by 

 

[1,10,10,20,2,10,10,-5,9,13,10,13] 

 

A graphical representation of formex GRID 

projected on the ellipsoid is shown in Fig. 12. In the 

descriptor the semi-axes of the ellipsoid has been 

chosen as a=9, b=13, c=10.  

Fig. 12.  A graphical representation of formex 

variable D, projected on an ellipsoid using central 

projection. Since the axis of the ellipsoid is smaller 

compared to the grid, only a part of the grid 

projected onto the ellipsoid.  

The length of the grid is equal to 20, since 
the ellipsoid is smaller as compared to the grid, only 

a part of the grid is projected onto the ellipsoid. The 

rest of the grid is not projected and remains as 

before. As mentioned before in the tractation 

retronorm the user is able to choose between 

different types of projection, such as axial, parallel 

or radial. The radial projection is a special case of 

central projection. Radial projection may be used 

only for surfaces such as spheres, ellipsoids. The 

descriptor in this case may take the form 

 
[P,S,xc,yc,zc,a,b,c,t] 

 

where the value of the projection specifier P for 

radial projection is equal 4. Also, xc, yc, zc are the 

coordinates of the centre of ellipsoid which coincide 

with the centre of projection, relative to the global 

coordinate system. If the descriptor is specified as 

 

[4,2,10,10,-5,30,13,15,13] 

 

then a graphical representation of formex GRID 

projected on the ellipsoid using radial projection is 
as shown in Fig. 13.  
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Fig 13.  A graphical representation of formex GRID 

projected on the ellipsoid using radial projection. 

 

As a projection of the grid on the ellipsoid 

involves a quadratic equation, there may be two 

solutions. So far, in the examples given above the 

value of the selector has been specified as t=13, 

which stands for the solution with the larger z. 

Now, suppose that the grid is projected on the 

ellipsoid using central projection and the descriptor 
is given as  

 

[1,10,10,-10,2,10,10,-5,30,13,15,-13] 

 

where t=-13 stands for the solution with 

the smaller z, a graphical representation is as shown 

in Fig. 14. It can be seen that each one of the values 

of the parameter t gives rise to a different 

configuration. The choice of the configuration is 

entirely dependent on the application and the 

requirement of the user. 

 

VI. FURTHER INTERCONNECTION 

PATTERNS 
The polyhedric configuration shown in 

Fig 15 is obtained by mapping the configurations 

of Figs 16 (a) and (b) on different parts of a snub 

cube. In order to obtain the geodesic forms of Figs 
17 and 18 the polyhedric configuration of Fig 15 is 

projecting on an ellipsoid and a sphere, 

respectively, using central projection. The geodesic 

form of Fig 19 is obtained by first mapping the 

patterns of Figs 20 (a) and (b) on the top part of a 

truncated  

 
Fig. 14.  A graphical representation of the formex GRID 

projected on an ellipsoid using as selector the values of 

t=13 and t=-13. 

 

dodecahedron and then projecting this on 

an ellipsoid. In the case of the polyhedric form of 

Fig 21 the patterns of Figs 22(a), 22(b), 22(c) and 
22(d) are mapped onto the square, hexagonal and 

decagonal faces, respectively. The geodesic form 

of Fig 23 is obtained by projecting the polyhedric 

form of Fig 21 on a sphere using central projection. 

 

VII. CONCLUSION 
For large and complex structural forms, the 

shear volume of information to be handled can 
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make data generation a time consuming and error 

prone task. To overcome this problem, suitable 

systems have been developed by which computer 

graphics and data generation for any type of 

structure can be done conveniently.  

        

 
Fig. 15. A graphical representation of a snub cube 

 

 

 

 

 

 

 

 

 

 

Fig. 16. The configurations of the triangular and 

square faces 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 17. A snub cube projected on an ellipsoid 

Formex algebra is one such mathematical system. 

The ideas of formex algebra can be applied to many 

branches of science and technology. In this paper 

the concepts of formex algebra and its programming 

language Formian have been described in relation to 

a variety of polyhedric and geodesic configurations. 

An important aspect of this paper is the 

establishment of the concepts and constructs 

through which polyhedric and geodesic 

configurations may be created with the polyhedron 

function. The polyhedron function provides a basis 

for the configuration processing of structural 
configurations in a compact and readily understood 

manner and it allows one to work with the same set 

of tools in all data generation problems eliminating 

the need for the employment of an assortment of 

programs which are dealing with specific problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. A snub cube projected on a sphere 

        
Fig. 19. A graphical representation of a truncated 

dodecahedron projected on an ellipsoid. 

                        
 

Fig. 20. The configurations that is to be mapped 

onto the faces of the truncated dodecahedron 

 

 

a) b) 
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Fig. 21. A graphical representation of a great 

rhombicosidodecahedron 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22. The configurations that is to be mapped 

onto the faces of  the great 

rhombicosidodecahedron 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23. A great rhombicosidodecahedron projected 

on a sphere 

a) 

b) 

d) 
c) 


