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ABSTRACT 

Flash memory is the most popular solid-

state memory used today. Flash is a type of 

EEPROM (Electrically Erasable Programmable 

Read-Only Memory) that supports read, program 

and erase as the basic operations. Although 

initially used only in consumer electronics, such as 

PDA, cellphones and portable music players, the 

drop in the price of NAND flash memory has 

paved the way for its use in mass storage devices as 

well, in the form of Solid State Disks (SSDs). SSDs 

are replacing HDDs as the storage of choice in 

laptops, desktops and even servers. There has been 

growing interest in the computer architecture 

community on flash memory. Computer architects 

have begun exploring a variety of topics related to 

flash, including the design of SSDs , disk-caches , 

new flash-based server architectures and even 

hybrid memories. Power is an important 

characteristic of NAND because the design of a 

NAND flash based memory array is closely related 

to the power consumption budget within which it is 

allowed to operate. 
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I. INTRODUCTION 
Power is an important consideration because 

the design of a NAND flash based memory array is 

closely related to the power budget within which it is 

allowed to operate. For example, NAND flash used in 

consumer electronic devices has a significantly lower 

power budget compared to that of a SSD used in data 

centers, while the power budget for NAND flash 

based disk caches is between the two. Therefore, we 

require tools that can accurately estimate the power 

consumption of various memory organizations and 
tailor the design of NAND flash to the power. We 

analyze FlashPower models the energy dissipated 

during the basic flash operations and when the chip is 

idle.  

 

II. NAND Flash Memory  
Depending on the type of operation to be 

performed, the control unit within the chip enables the 

decoders which use the address bits to select the 
appropriate physical block. The control unit is also 

responsible for activating the correct analog circuitry 

to generate high voltages needed for program and 

erase operations. The Flash Memory array is a two- 

dimensional array of semiconductor memory similar 

in structure to those used in other types of memories 

such as SRAMs and DRAMs. The array is a matrix 

like structure composed of rows (connected to word-

lines) and columns (connected to bit-lines). At the 

intersection of a row and a column is a Floating Gate 

Transistor (FGT) which stores logical data. In this 

thesis, the term memory cell and the term FGT refer 
to the same physical entity and are used 

interchangeably. These memory cells that store one 

bit of data per cell are referred to as Single-Level 

Cells (SLCs), while memory cells that store multiple 

bits of data per cell are referred to as Multi-Level 

Cells (MLCs). The organization of FGTs inside the 

array determine whether the Flash Memory is a 

NAND or NOR memory. 

 

For NOR flash, FGTs are connected in 

parallel to a bit-line with the control gates connected 

to a word-line while for NAND flash, the FGTs are 
connected in series. The two ends of this serial 

connection are connected to access transistors which 

in turn are connected to the bit-line. So NAND flash 

has fewer contacts than NOR flash and resulting in 

higher cell densities. 

 

The NAND cells can be programmed faster 

than NOR but their read latency is higher compared to 

NOR. Another difference between them is that the 

NAND memory is not bit-programmable while the 

NOR memory is bit programmable. 
 

Usually for NAND flash, read,program and 

erase operate at different bias conditions and the 

granularity of an erase differs from read/write 

program. Since the circuitry behaves differently for 

these different operations, we believe that it is more 

appropriate to model energy for the basic operations 

on the flash memory. 

 

Finally,flash memory chip comprises of 

latches and sense amplifiers, which constitute the 
buffers. The latches store the data that is transferred 

to/from the memory array while the sense amplifiers 

sense the bit-lines during a read operation. The status 

register is used by the controller to monitor the status 
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of the command that was sent to the NAND Flash. 

Flash memory structure:  

 

 
Figure 2.1 NAND flash memory Chip 

 

Figure 2.2 shows the block diagram for the NAND 

memory array. The NAND flash memory array is 

partitioned into blocks that are, in turn sub-divided 

into pages. A page is the smallest granularity of data 

that can be addressed by the external controller. Some 

devices like [39] allowsub-page accesses by the 

controller. A set of FGTs connected in series is 

referred to as a string. The number of FGTs in a string 
is equal to the number of pages in a block. In figure 

2.2, each column corresponds to a string while each 

row corresponds to a page. Word-lines select a page 

of memory to perform  

 
 
            Figure 2.2 A NAND Flash Memory Array.  

Adapted from [7] 

 

read or program operation. These operations first 

involve selecting a block using a block decoder 
following which one of the rows in a block is selected 

using a page decoder. Since NAND memory does not 

support in-place updates, a page needs to be erased 

before its contents can be programmed; but unlike a 

program or a read operation which work at a page 

granularity, the erase operation is performed at a 

block ranularity. The reason for this is explained in 

the next subsection. The drain of the String Select 

Transistor (SST) connected to each bit-line controls 
the bit-line biasing to each string while its gate is 

connected to the String Select Line (SSL) that 

switches the SST on and off. A pass transistor 

connected to each word-line controls the word-line 

biasing for each row in the array. A Ground Select 

Transistor (GST) connects the other end of the string 

to the Source Line (SL) which connects the source of 

one-end of the FGT to the power supply based on the 

type of operation to be performed. 

 

During a page program operation, the 
controller transmits both the actual data and the ECC 

bits to the Flash memory. Upon system boot, the 

controller also scans the spare area of each page in the 

entire memory array to load the logical to physical 

address mapping into its own memory. 

 

The controller uses a Flash Translation Layer 

(FTL) to determine the logical-to-physical address 

mapping. In addition to mapping, the FTL also 

performs garbage collection to erase stale copiesof 

pages that are left behind on flash due to the non in-

place writes and performs wear-leveling operations to 
ensure that all the flash blocks wear evenly. More 

information about FTLs can be found in [12, 5, 15]. 

 

Single-Level Cells (SLCs) vs Multi-Level Cells 

(MLCs) 
The operations that are explained above 

correspond to Single-Level Cells (SLCs) where the 

presence/absence of charge in the floating gate is used 

to represent a single bit. Since a logical bit 

corresponds to an analog voltage, multiple bits can be 

stored in a single cell by having multiple levels of 

voltage inside a floating gate. These are referred to as 

Multi-level cells (MLCs) which behave like the same 

way as Single-level Cells (SLCs) but require complex 

sense amplifiers to differentiate multiple voltage 

levels in the floating gate. Because varying voltage 

levels correspond to different logical bits, the program 

operation should be performed slowly to make sure 
that no excess or less charge is tunneled into the 

floating gate.  

Both these factors result in the read and 

program time to be slower for MLCs compared to 

SLCs. Lifetime of MLCs is also considerably lesser 

than SLCs because MLCs quickly lose their ability to 

store varying levels of voltage. 

III. POWER STATE MACHINE  

With respect to Figure 2.2, the components 

that dissipate energy are, 

 The bit-line (BL) and word-line (WL) wires. 

 The SSL, GSL and SL. 
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 The drain, source and the gate of the SST, 

GST and PTs. 

 The drain, source and control gate of the 
FGTs. 

 The floating gate of the FGTs - Energy 

dissipated during program and erase 

operation. 

In addition to the above components, the energy 

dissipated by the block and page decoders, the 

sense amplifiers present in the page buffer (for the 

read operation), the charge pumps (that provide high 

voltages for program and erase operation) and the I/O 

pins are modeled. The energy perread, program and 

erase operation is determined by aggregating the 

energy dissipated by all the aforementioned 
components. 

 
Figure 3.1 Power State Machine for a SLC NAND 

Chip 

 

Before delving into the details of the model, 

we list the components that are modeled and the 

power state machine. 

 

Figure 3.1 describes the power state machine 

for a SLC NAND flash chip. The circles represent the 

individual states, while the solid lines denote state 

transitions. Upon completion of the command, the 

Power state machine switches back to the precharge 

state, dissipating energy in the process.The array is 
isolated by the select lines but is ready to respond to 

commands from the controller. Upon receiving a read, 

program, or erase command from the controller, the 

state machine switches to the corresponding state. 

IV. POWER MODELING METHODOLOGY 

Power has been extensively studied by 

computer architects. [8] provides a framework for 

analyzing and optimizing the power consumption of 

microprocessors. [40] provides a detailed modeling of 

the power consumption of hard disk drives, while has 

been used to study the power consumption of the 

memory system. [16] analyzes power from a full 

system perspective and quantifies the impact of 

application and operating system on the power 

behavior of the microprocessor, memory hierarchy 

and hard disks. Due to lack of a detailed power model 

for NAND flash memory, existing studies use data 
sheets like [39] to determine the power consumption.  

 

However for NAND flash, read,program and 

erase operate at different bias conditions and the 

granularity of an erase differs from read/write 

program. Since the circuitry behaves differently for 

these different operations, we believe that it is more 

appropriate to model energy for the basic operations 

on the flash memory. 

V. NAND FLASH POWER AND ENDURANCE 

MEASUREMENT 
 

There have been recent efforts to understand 

the characteristics of flash memory by measuring and 

reverse engineering NAND flash chips [14, 6]. Grupp 

et al. [14] study the performance, power, reliability of 

several SLC and MLC NAND flash chips and show 

that the endurance of these chips tend to be much 
higher than their datasheet values.  

 

The power measurements estimated by 

FlashPower are validated against the chip level 

measurements studied by [14]. Desnoyers [6] 

conducted a similar study of the performance and 

endurance characteristics of several NAND flash 

memory chips and found the endurance trends to be 

similar to those reported in [14]. These papers show 

that the number of P/E cycles that the pages and 

blocks can sustain is much higher than those given in 
datasheets. However, these papers do not explain the 

underlying cause for this trend. 

VI. CONCLUSION 

Flash memory is used in a wide range of 

systems varying from consumer electronics to data 
centers.To support such a diverse range of systems, 

tools that provide detailed insights into the 

characteristics of NAND flash memory are required. 

This paper describes important characteristics of 

NAND flash, namely power consumption. Power 

consumption makes NAND more reliable. 

 

In the future, we plan to extend FlashPower 

to support MLC based NAND flash memory.Similar 

to such tool like FlashPower, we can validate the 

endurance model with real chip measurements and 

test board to perform the validation. We can also plan 
to model SILC to factor-in retention. 

 

 Overall, modeling all these phenomena can 

provide a comprehensive analysis framework for 

studying the power and reliability characteristics of 

NAND flash memory. 
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