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Abstract 
This paper describes a programmatic framework 

for representing, manipulating and reasoning with 

geographic semantics. The framework enables 

visualizing knowledge discovery, automating tool 

selection for user defined geographic problem 

solving, and evaluating semantic change in 

knowledge discovery environments. Methods, 

data, and human experts (our resources) are 

described using ontologies. An entity’s ontology 

describes, where applicable: uses, inputs, outputs, 

and semantic changes. These ontological 

descriptions are manipulated by an expert system 

to select methods, data and human experts to solve 

a specific user-defined problem; that is, a 

semantic description of the problem is compared 

to the services that each entity can provide to 

construct a graph of potential solutions.  A 

minimal spanning tree representing the optimal 

(least cost) solution is extracted from this graph, 

and displayed in real-time.  The semantic 

change(s) that result from the interaction of data, 

methods and people contained within the resulting 

tree are determined via expressions of 

transformation semantics represented within the 

JESS expert system shell.  The resulting 

description represents the formation history of 

each new information product (such as a map or 

overlay) and can be stored, indexed and searched 

as required.  Examples are presented to show (1) 

the construction and visualization of information 

products, (2) the reasoning capabilities of the 

system to find alternative ways to produce 

information products from a set of data methods 

and expertise, given certain constraints and (3) the 

representation of the ensuing semantic changes by 

which an information product is synthesized.  

 

I. Introduction 
The importance of semantics in geographic 

information is well documented [1-4]. Semantics are 

a key component of interoperability between GIS; 

there are now robust technical solutions to 

interoperate geographic information in a syntactic 

and schematic sense (e.g. OGC, NSDI) but these fail 

to take account of any sense of meaning associated 

with the information. describe how exchanging data 

between systems often fails due to confusion in the 

meaning of concepts. Such confusion, or semantic 

heterogeneity, significantly hinders collaboration if 

groups cannot agree on a common lexicon for core 

concepts. Semantic heterogeneity is also blamed for 
the inefficient exchange of geographic concepts and  

 
 

 

information between groups of people with differing 

ontologies [5-9].  

Semantic issues pervade the creation, use and re-

purposing of geographic information.  In an 

information economy we can identify the roles of 

information producer and information consumer, and 

in some cases, in national mapping agencies for 

example, datasets are often constructed incrementally 

by different groups of people with an implicit (but 

not necessarily recorded) goal.  The overall meaning 
of the resulting information products are not always 

obvious to those outside that group, existing for the 

most part in the creators‘ mental model.  When 

solving a problem, a user may gather geospatial 

information from a variety of sources without ever 

encountering an explicit statement about what the 

data mean, or what they are (and are not) useful for.  

Without capturing the semantics of the data 

throughout the process of creation, the data may be 

misunderstood, be used inappropriately, or not used 

at all when they could be.  The consideration of 
geospatial semantics needs to explicitly cater for the 

particular way in which geospatial tasks are 

undertaken [10].  As a result, the underlying 

assumptions about methods used with data, and the 

roles played by human expertise need to be 

represented in some fashion so that a meaningful 

association can be made between appropriate 

methods, people and data to solve a problem. It is not 

the role of this paper to present a definitive taxonomy 

of geographic operations or their semantics. To do so 

would trivialize the difficulties of defining 

geographic semantics 
 

II. Background and Aims 
This paper presents a programmatic 

framework for representing, manipulating and 

reasoning with geographic semantics.  In general 

semantics refers to the study of the relations between 

symbols and what they represent [11].  In the 

framework outlined in this paper, semantics have two 

valuable and specific roles. Firstly, to determine the 
most appropriate resources (method, data or human 

expert) to use in concert to solve a geographic 

problem, and secondly to act as a measure of change 

in meaning when data are operated on by methods 

and human experts. Both of these roles are discussed 

in detail in Section 3.  The framework draws on a 

number of different research fields, specifically: 

geographical semantics [11-13]ontologies 

computational semantics, constraint-based reasoning 

and expert systems and visualization to represent 
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aspects of these resources.  The framework sets out to 

solve a multi-layered problem of visualizing 

knowledge discovery, automating tool selection for 

user defined geographic problem solving and 

evaluating semantic change in knowledge discovery 

environments. The end goal of the framework is to 
associate with geospatial information products the 

details of their formation history and tools by which 

to browse, query and ultimately understand this 

formation history, thereby building a better 

understanding of meaning and appropriate use of the 

information. 

 

The problem of semantic heterogeneity arises due to 

the varying interpretations given to the terms used to 

describe facts and concepts. Semantic heterogeneity 

exists in two forms, cognitive and naming. Cognitive 

semantic heterogeneity results from no common base 
of definitions between two (or more) groups. As an 

example, think of these as groups of scientists 

attempting to collaborate. If the two groups cannot 

agree on definitions for their core concepts then 

collaboration between them will be problematic.  

Defining such points of agreement amounts to 

constructing a shared ontology, or at the very least, 

points of overlap [12-17]. 

 

Naming semantic heterogeneity occurs when the 

same name is used for different concepts or different 
names are used for the same concept. It is not 

possible to undertake any semantic analysis until 

problems of semantic heterogeneity are resolved. 

Ontologies, described below, are widely 

recommended as a means of rectifying semantic 

heterogeneity. The framework presented in this paper 

utilizes that work and other ontological research to 

solve the problem of semantic heterogeneity.  

 

The use of an expert system for automated reasoning 

fits well with the logical semantics utilized within the 

framework. The Java Expert System Shell (JESS) is 
used to express diverse semantic aspects about 

methods, data, and human experts. JESS performs 

string comparisons of resource attributes (parsed 

from ontologies) using backward chaining to 

determine interconnections between resources. 

Backward chaining is a goal driven problem solving 

methodology, starting from the set of possible 

solutions and attempting to derive the problem. If the 

conditions for a rule to be satisfied are not found 

within that rule, the engine searches for other rules 

that have the unsatisfied rule as their conclusion, 
establishing dependencies between rules. JESS 

functions as a mediator system, with a foundation 

layer where the methods, data, and human experts are 

described (the domain ontology), a mediation layer 

with a view of the system (the task ontology) and a 

user interface layer (for receiving queries and 

displaying results).  

1.1 Ontology 

In philosophy, Ontology is the ―study of the kinds of 

things that exist‖ In the artificial intelligence 

community, ontology has one of two meanings, as a 

representation vocabulary, typically specialized to 

some domain or subject matter and as a body of 
knowledge describing some domain using such a 

representation vocabulary [18]. The goal of sharing 

knowledge can be accomplished by encoding domain 

knowledge using a standard vocabulary based on an 

ontology. The framework described here utilizes both 

definitions of ontology.  

The representation vocabulary embodies the 

conceptualizations that the terms in the vocabulary 
are intended to capture. Relationships described 

between conceptual elements in this ontology allow 

Figure 1 – Interrelationships between different types of 

ontology. 

Figure 2 – Information products are 

derived from the interaction of entities. 
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for the production of rules governing how these 

elements can be ―connected‖ or ―wired together‖ to 

solve a geographic problem. In our case these 

elements are methods, data and human experts, each 

with their own ontology. In the case of datasets, a 

domain ontology describes salient properties such as 
location, scale, date, format, etc., as currently 

captured in meta-data descriptions (see Figure 1).  In 

the case of methods, a domain ontology describes the 

services a method provides in terms of a 

transformation from one semantic state to another.  In 

the case of human experts the simplest representation 

is again a domain ontology that shows the 

contribution that a human can provide in terms of 

steering or configuring methods and data.  However, 

it should also be possible to represent a two-way flow 

of knowledge as the human learns from situations 

and thereby expands the number of services they can 
provide (we leave this issue for future work).  The 

synthesis of a specific information product is 

specified via a task ontology that must fuse together 

elements of the domain and application ontologies to 

attain its goal. An innovation of this framework is the 

dynamic construction of the solution network, 

analogous to the application ontology. In order for 

resources to be useful in solving a problem, their 

ontologies must also overlap.  Ontology is a useful 

metaphor for describing the genesis of the 

information product.  A body of knowledge described 
using the domain ontology is utilized in the initial 

phase of setting up the expert system. A task 

ontology is created at the conclusion of the 

automated process specifically defining the concepts 

that are available. An information product is derived 

from the use of data extracted from databases and 

knowledge from human experts in methods, as shown 

in figure 2.  

 

By forming a higher level ontology which describes 

the relationships between each of these resources it is 

possible to describe appropriate interactions. As a 
simple example (figure 3), assume a user wishes to 

evaluate landuse/landcover change over a period of 

time. Classifying two LandsatTM images from 1990 

and 2000 using reference data and expert knowledge, 

the user can compare the two resulting images to 

produce a map of the area(s) which have changed 

during that time. One interesting feature 

demonstrated in this example is the ability of human 

experts to gain experience through repeated exposure 

to similar situations. Even in this simple example a 

basic semantic structure is being constructed and a 
lineage of the data can be determined.  Arguably an 

additional intermediate data product exists between 

the classifiers and the comparison; it has been 

removed for clarity.  

1.2 Semantics  

While the construction of the information product is 

important, a semantic layer sits above the operations 

and information (figure 4). The geospatial knowledge  

obtained during the creation of the product is 

captured within this layer. The capture of this 

semantic information describes the transformations 

that the geospatial information undergoes, facilitating 
better understanding and providing a measure of 

repeatability of analysis, and improving 

communication in the hope of promoting best 

practice in bringing geospatial information to bear. 

 

Egenhofer (2002) notes that the challenge remains of 

how best to make these semantics available to the 

user via a search interface. Pundt and Bishr, (2002) 

outline a process in which a user searches for data to 

solve a problem. This search methodology is also 

applicable for the methods and human experts to be 

used with the data. This solution fails when multiple 
sources are available and nothing is known of their 

content, structure and semantics. The use of pre-

defined ontologies aids users by reducing the 

available search space. Ontological concepts relevant 

to a problem domain are supplied to the user allowing 

them to focus their query. A more advanced interface 

would take the user‘s query in their own terms and 

map that to an underlying domain ontology (Bishr, 

1998). 

 

As previously noted, the meaning of geospatial 
information is constructed, shaped and changed by 

the interaction of people and systems. Subsequently 

the interaction of human experts, methods and data 

needs to be carefully planned. A product created as a 

result of these interactions is dependent on the 

ontology of the data and methods and the 

Figure 3 – A concrete example of the interaction of 

methods, data and human experts to produce an 

information product. 
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epistemologies and ontologies of the human experts.  

In light of this, the knowledge framework outlined 

below focuses on each of the resources involved 

(data, methods and human experts) and the roles they 

play in the evolution of a new information product.  

In addition, the user‘s goal that produced the product, 
and any constraints placed on the process are 

recorded to capture aspects of intention and situation 

that also have an impact on meaning. This process 

and the impact of constraint based searches are 

discussed in more detail in the following section. 

 

III. Knowledge framework 
The problem described in the introduction has 

been implemented as three components. The first, 

and the simplest, is the task of visualizing the 

network of interactions by which new information 

products are synthesized.  The second, automating 

the construction of such a network for a user-defined 

task, is interdependent with the third, evaluating 

semantic change in a knowledge discovery 

environment, and both utilize functionality of the 
first.  An examination of the abstract properties of 

data, methods and experts is followed by an 

explanation of these components and their inter-

relationships.  

 

1.3 Formal representation of components and 

changes 

This section explains how the abstract 

properties of data, methods and experts are 

represented, and then employed to track semantic 

changes as information products are produced 
utilizing tools described above.  From the description 

in Section 2 it should be evident that such changes 

are a consequence of the arrangement of data, 

computational methods and expert interaction applied 

to data.  At an abstract level above that of the data 

and methods used, we wish to represent some 

characteristics of these three sets of components in a 

formal sense, so that we can describe the effects 

deriving from their interaction.  One strong caveat 

here is that our semantic description (described 

below) does not claim to capture all senses of 

meaning attached to data, methods or people, and in 

fact as a community of researchers we are still 
learning about which facets of semantics are 

important and how they might be described.  It is not 

currently possible to represent all aspects of meaning 

and knowledge within a computer, so we aim instead 

to provide descriptions that are rich enough to allow 

users to infer aspects of meaning that are important 

for specific tasks from the visualizations or reports 

that we can synthesize.  In this sense our own 

descriptions of semantics play the role of a 

signifier—the focus is on conveying meaning to the 

reader rather than explicitly carrying intrinsic 

meaning per-se.  
 

The formalization of semantics based on ontologies 

and operated on using a language capable of 

representing relations provides for powerful 

semantic modelling (Kuhn, 2002). The framework, 

rules, and facts used in the Solution Synthesis 

Engine (see below) function in this way. 

Relationships are established between each of the 

entities, by calculating their membership within a set 

of objects capable of synthesizing a solution.  We 

extend the approach of Kuhn by allowing the user to 
narrow a search for a solution based on the specific 

semantic attributes of entities.  Using the minimal 

spanning tree produced from the solution synthesis it 

is possible to retrace the steps of the process to 

calculate semantic change. As each fact is asserted it 

contains information about the rule that created it (the 

method) and the data and human experts that were 

identified as resources required.  If we are able to 

describe the change to the data (in terms of abstract 

semantic properties) imbued by each of the processes 

through which it passes, then it is possible to 

represent the change between the start state and the 
finish state by differencing the two. 

 

Although the focus of our description is on 

semantics, there are good reasons for including 

syntactic and schematic information about data and 

methods also, since methods generally are designed 

to work in limited circumstances, using and 

producing very specific data types (pre-conditions 

and post-conditions).  Hence from a practical 

perspective it makes sense to represent and reason 

with these aspects in addition to semantics, since they 
will limit which methods can be connected together 

and dictate where additional conversion methods are 

required.   Additional potentially useful properties 

arise when the computational and human 

infrastructure is distributed e.g. around a network.  

By encoding such properties we can extend our 

reasoning capabilities to address problems that arise 

Figure 4 – Interaction of the semantic layer and 

operational layer. 
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when resources must be moved from one node to 

another to solve a problem. 

 

IV. Description of data 
As mentioned in Section 2, datasets are 

described in general terms using a domain ontology 

drawn from generic metadata descriptions.  Existing 

metadata descriptions hold a wealth of such practical 

information that can be readily associated with 

datasets; for example the FGDC (1998) defines a mix 

of semantic, syntactic and schematic metadata 

properties. These include basic semantics (abstract 

and purpose), syntactic (data model information, and 

projection), and schematic (creator, theme, temporal 

and spatial extents, uncertainty, quality and lineage).  
We explicitly represent and reason with a subset of 

these properties in the work described here and could 

easily expand to represent them all, or any other 

given metadata description that can be expressed 

symbolically.   Formally, we represent the set of n 

properties of a dataset D as:  npppD ,,, 21   

(Gahegan, 1996). 

 

V. Describing Methods 
While standards for metadata descriptions 

are already mature and suit our purposes, 

complementary mark-up languages for methods are 

still in their infancy.  It is straightforward to represent 

the signature of a method in terms of the format of 

data entering and leaving the method, and knowing 

that a method requires data to be in a certain format 

will cause the system to search for and insert 

conversion methods automatically where they are 

required.  So, for example, if a coverage must be 

converted from raster format to vector format before 

it can be used as input to a surface flow accumulation 

method, then the system can insert appropriate data 
conversion methods into the evolving query tree to 

connect to appropriate data resources that would 

otherwise not be compatible.  Similarly, if an image 

classification method requires data at a nominal scale 

of 1:100,000 or a pixel size of 30m, any data at finer 

scales might be generalized to meet this requirement 

prior to use.  Although such descriptions have great 

practical benefit, they say nothing about the role the 

method plays or the transformation it imparts to the 

data; in short they do not enable any kind of semantic 

assessment to be made.   
A useful approach to representing what GIS 

methods do, in a conceptual sense, centers on a 

typology (e.g. Albrecht‘s 20 universal GIS operators, 

1994).  Here, we extend this idea to address a number 

of different abstract properties of a dataset, in terms 

of how the method invoked changes these properties 

(Pascoe & Penny, 1995; Gahegan, 1996).  In a 

general sense, the transformation performed by a 

method (M) can be represented by pre-conditions and 

post-conditions, as is common practice with interface 

specification and design in software engineering.  

Using the notation above, our semantic description 

takes the 

form:

   ',,','',,,: 2121 n

Operation

n pppDpppDM   

, where Operation is a generic description of the role 

or function the method provides, drawn from a 

typology.   

 

For example, a cartographic generalization method 
changes the scale at which a dataset is most 

applicable, a supervised classifier transforms an array 

of numbers into a set of categorical labels, an 

extrapolation method might produce a map for next 

year, based on maps of the past.  Clearly, there are 

any number of key dimensions over which such 

changes might be represented; the above examples 

highlight spatial scale, conceptual ‘level’ (which at a 

basic syntactic level could be viewed simply as 

statistical scale) and temporal applicability, or simply 

time.  Others come to light following just a cursory 

exploration of GIS functionality: change in spatial 
extents, e.g. windowing and buffering, change in 

uncertainty (very difficult in practice to quantify but 

easy to show in an abstract sense that there has been a 

change). 

 

Again, we have chosen not to restrict ourselves to a 

specific set of properties, but rather to remain flexible 

in representing those that are important to specific 

application areas or communities.  We note that as 

Web Services become more established in the GIS 

arena, such an enhanced description of methods will 
be a vital component in identifying potentially useful 

functionality. 

 

VI. Describing People 
Operations may require additional 

configuration or expertise in order to carry out their 

task.  People use their expertise to interact with data 

and methods in many ways, such as gathering, 

creating and interpreting data, configuring methods 
and interpreting results.  These activities are typically 

structured around well-defined tasks where the 

desired outcome is known, although as in the case of 

knowledge discovery, they may sometimes be more 

speculative in nature.  In our work we have cast the 

various skills that experts possess in terms of their 

ability to help achieve some desired goal.  This, in 

turn, can be re-expressed as their suitability to 

oversee the processing of some dataset by some 

method, either by configuring parameters, supplying 

judgment or even performing the task explicitly.  For 

example, an image interpretation method may require 
identification of training examples that in turn 

necessitate local field knowledge; such knowledge 

can also be specified as a context of applicability 

using the time, space, scale and theme parameters 

that are also used to describe datasets.  As such, a 

given expert may be able to play a number of roles 



Taghi Karimi / International Journal of Engineering Research and Applications (IJERA) 

ISSN: 2248-9622   www.ijera.com    Vol. 3, Issue 2, March -April 2013, pp.644-652 

649 | P a g e  

that are required by the operations described above, 

with each role described as:  

 n

Operation pppE ,,,: 21   , meaning that 

expert E can provide the necessary knowledge to 

perform Operation within the context of p1…, pn.  So 

to continue the example of image interpretation, p1…, 

pn might represent (say) floristic mapping of Western 

Australia, at a scale of 1:100,000 in the present day. 

 
At the less abstract schematic level, location 

parameters can also be used to express the need to 

move people to different locations in order to conduct 

an analysis, or to bring data and methods distributed 

throughout cyberspace to the physical location of a 

person.   

 

Another possibility here, that we have not yet 

implemented, is to acknowledge that a person‘s 

ability to perform a task can increase as a result of 

experience.  So it should be possible for a system to 

keep track of how much experience an expert has 
accrued by working in a specific context (described 

as p1…, pn).  (In this case the expert expression 

would also require an experience or suitability score 

as described for constraint management described 

below in section 3.3).  We could then represent a 

feedback from the analysis exercise to the user, 

modifying their experience score.  

 

1.4 Visualization of knowledge discovery 

The visualization of the knowledge discovery 

process utilizes a self organising graph package 
(TouchGraph) written in Java. TouchGraph enables 

users to interactively construct an ontology utilizing 

concepts (visually represented as shapes) and 

relationships (represented as links between shapes). 

Each of the concepts and relationships can have 

associated descriptions that give more details for each 

of the entity types (data, methods, and people). A 

sample of the visualization environment is shown 

below in figure 5. 

 

Touchgraph supports serialization allowing the 
development of the information product to be 

recorded and shared among collaborators. 

Serialization is the process of storing and converting 

an object into a form that can be readily reused or 

transported. For example, an ontology can be 

serialized and transported over the Internet. At the 

other end, deserialization reconstructs the object from 

the input stream. Information products described 

using this tool are stored as DAML+OIL objects so 

that the interrelationships between concepts can be 

described semantically. The DAML+OIL architecture 

was chosen as the goal of the DARPA Agent Markup 
Language component (DAML) is to capture term 

meanings, and thereby providing a Web ontology 

language. The Ontology Interchange Language (OIL) 

contains formal semantics and efficient reasoning 

support, epistemological rich modeling primitives, 

and a standard proposal for syntactical exchange 

notations (http://www.ontoknowledge.org/oil/). 

 

1.5 Solution Synthesis Engine 

The automated tool selection process or 

solution synthesis is more complex relying on domain 
ontologies of the methods, data and human experts 

(resources) that are usable to solve a problem. The 

task of automated tool selection can be divided into a 

number of phases. First is the user‘s specification of 

the problem, either using a list of ontological 

keywords or in their own terms which are mapped to 

an underlying ontology. Second ontologies of 

methods, data and human experts need to be 

processed to determine which resources overlap with 

the problem ontology. Third, a description of the 

user‘s problem and any associated constraints is 

parsed into an expert system to define rules that 
describe the problem. Finally networks of resources 

that satisfy the rules need to be selected and 

displayed.  

 

Defining a complete set of characteristic attributes for 

real world entities (such as data, methods and human 

experts) is difficult due to problems selecting 

attributes that accurately describe the entity. Bishr‘s 

solution of using cognitive semantics to solve this 

problem, by referring to entities based on their 

function, is implemented in this framework.  Methods 
utilize data or are utilized by human experts and are 

subject to conditions regarding their use such as data 

format, scale or a level of human knowledge. The 

rules describe the requirements of the methods (‗if‘) 

and the output(s) of the methods (‗then‘). Data and 

human experts, specified by facts, are arguably more 

passive and the rules of methods are applied to or by 

them respectively.  A set of properties governing how 

rules may use them are defined for data, (e.g. format, 

spatial, and temporal extents) and human experts 

(e.g. roles and abilities) using an XML schema and 

parsed into facts.  
 

Figure 5 – A sample of the visualization environment. 

http://www.ontoknowledge.org/oil/
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The first stage of the solution synthesis is the user 

specification of the problem using concepts and 

keywords derived from a problem ontology. The 

problem ontology, derived from the methods, data 

and human expert ontologies, consist of concepts 

describing the intended uses of each of the resources. 
This limitation was introduced to ensure the 

framework had access to the necessary entities to 

solve a user‘s problem. A more advanced version of 

the problem specification is proposed which uses 

natural language parsing to allow the user to specify a 

problem. This query would then be mapped to the 

problem ontology allowing the user to use their own 

semantics instead of being governed by those of the 

system.  

 

The second stage of the solution synthesis process 

parses the rules and facts describing relationships 
between data, methods, and human experts. The 

JESS rule, compare (Table 1), illustrates the 

interaction between the rule (or method) 

requirements and the facts (data and human experts). 

Sections of the rule not essential for illustrating its 

function have been removed. It is important to note 

that these rules do not perform the operations 

described rather they mimic the semantic change that 

would accompany such an operation. The future 

work section outlines the goal of running this system 

in tandem with a codeless programming environment 
to run the selected toolset automatically. 

Table 1 - JESS Sample code 

(1) defrule compare   ;; compare two data sets  
(2)    (need-comparison_result $?) 

(3)     (datasource_a ?srcA)   

(4)     (datasource_b ?srcB)  

(5)     intersection_result <- (intersect ?srcA ?srcB) 

(6)     union_result <- (union ?srcA ?srcB) 

(7)    =>   ;; THEN 

(8)    (assert (comparison_result (inputA ?srcA) 

(inputB ?srcB) (intersect ?intersection_result) (union 

?union_result) ;; ―perform‖ the operation 

 

With all of the resource rules defined, the missing 

link is the problem to be solved using these rules. The 

problem ontology is parsed into JESS to create a set 

of facts. These facts form the ―goal‖ rule which 
mirrors the user‘s problem specification. Each of the 

facts in the ‗if‘ component of the goal rule are in the 

form ‗need-method_x‘. The JESS engine now has the 

requisite components for tool selection. 

 

Utilizing backward-chaining JESS searches for rules 

which satisfy the left hand side (LHS) of the rule. In 

the case of dependencies (rules preceded by ―need-‖) 

JESS searches for rules that satisfy the ―need-‖ 

request and runs them prior to running the rule 

generating the request. The compare rule (above) 

runs only when a previous rule requires a 
comparison_result fact to be asserted in order for that 

rule to be completed. 

The compare rule (Table 1) has dependencies on 

rules that collect data sources (used for comparisons) 

and the rules that accomplish those comparisons 

(intersection and union). If each of these rules can be 

satisfied on the ―if‖ side of the clause, then the results 

of the comparison rules are stored, together with the 
data sources that were used in the comparison and the 

products of the comparison. The results of the rule 

―firing‖ are stored in a list that will be used to form a 

minimal spanning tree for graphing [10-30]. 

 

As the engine runs, each of the rules ―needed‖ are 

satisfied using backward chaining, the goal is 

fulfilled, and a network of resources is constructed. 

As each rule fires and populates the network a set of 

criteria is added to a JESS fact describing each of the 

user criteria that limits the network. Each of these 

criteria is used to create a minimal spanning tree of 
operations. User criteria are initially based upon the 

key spatial concepts of identity, location, direction, 

distance, magnitude, scale, time availability, 

operation time, and semantic change.  

 

Users specify the initial constraints, via the user 

interface (figure 6) prior to the automated selection of 

tools. As an example, a satellite image is required for 

an interpretation task, but the only available data is 

30 days old and data from the next orbit over the 

region will not be available for another 8 hours. Is it 
―better‖ to wait for that data to become available or is 

it more crucial to achieve a solution in a shorter time 

using potentially out of date data? It is possible that 

the user will request a set of limiting conditions that 

are too strict to permit a solution. In these cases all 

possible solutions will be displayed allowing the user 

to modify their constraints. The user specified 

constraints are used to prune the network of resources 

constructed (i.e. all possible solutions to the problem) 

to a minimal spanning tree which is the solution that 

satisfies all of the user‘s constraints.  

 

VII. Results 
This section presents the results of the framework‘s 

Figure 6 – Interface showing constraint selection. 
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solution synthesis and representation of semantic 

change. The results of the knowledge discovery 

visualization are implicit in this discussion as that 

component is used for the display of the minimal 

spanning tree.  

 
A sample problem, finding a home location with a 

sunset view is used to demonstrate the solution 

synthesis. In order to solve this problem, raster 

(DEM) and vector (road network) data needs to be 

integrated. A raster overlay, using map algebra, 

followed by buffer operations is required to find 

suitable locations, from height, slope and aspect data. 

The raster data of potential sites needs to be 

converted to a vector layer to enable a buffering 

operation with vector road data. Finally a viewshed 

analysis is performed to determine how much of the 

landscape is visible from candidate sites.  
 

The problem specification was simplified by hard-

coding the user requirements into a set of facts loaded 

from an XML file. The user‘s problem specification 

was reduced to selecting pre-defined problems from a 

menu.  

 

A user constraint of scale was set to ensure that data 

used by the methods in the framework was at a 

consistent scale and appropriate data layers were 

selected based on their metadata and format. With the 
user requirements parsed into JESS and a problem 

selected, the solution engine selected the methods, 

data and human experts required to solve the 

problem. The solution engine constructed a set of all 

possible combinations and then determined the 

shortest path by summing the weighted constraints 

specified by the user. Utilizing the abstract notation 

from above, with methods specifying change thus: 

   ',,','',,,: 21211 n

Operation

n pppDpppDM   

, the user weights were included and summed for all 

modified data sets: 

   ',,','',...',,','' 221122111 nnnnn pupupuDpupupuD 

. As a result of this process the solution set is pruned 

until only the optimal solution remains (based on user 

constraints).  
 

VIII. Future Work 
The ultimate goal of this project is to 

integrate the problem solving environment with the 

codeless programming environment GEOVISTA 

Studio currently under development at Pennsylvania 

State University. The possibility of supplying data to 

the framework and determining the types of questions 

which could be answered with it is also an interesting 

problem.  
A final goal is the use of natural language parsing of 

the user‘s problem specification. 

 

IX. Conclusions 
This paper outlined a framework for 

representing, manipulating and reasoning with 

geographic semantics. The framework enables 
visualizing knowledge discovery, automating tool 

selection for user defined geographic problem 

solving, and evaluating semantic change in 

knowledge discovery environments. A minimal 
spanning tree representing the optimal (least cost) 

solution was extracted from this graph, and can be 

displayed in real-time.  The semantic change(s) that 

result from the interaction of data, methods and 

people contained within the resulting tree represents 

the formation history of each new information 

product (such as a map or overlay) and can be stored, 

indexed and searched as required. 
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