
Mr.C.C.Kavar, Mr. S.S.Parmar

/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2070-2076

2070 | P a g e

Performance Analysis of LRU Page Replacement Algorithm with

Reference to different Data Structure

Mr.C.C.Kavar
1
, Mr. S.S.Parmar

2

1PG Student, 2Asst. Professor
1,2C.U.Shah College Of Engg.& Technology, Wadhwan,Gujarat,India.

Abstract—
The process takes less time for handling

instructions then would be speedy and efficient.

The speed of the process is not only depends on

architectural features and operational frequency,

but also depends on the algorithm and data

structure, which is used for that process. There

are many page replacement algorithms such as

Least Recently Used ((LRU), First-In-First-Out

(FIFO), etc. are available in memory

management. Performance of any page

replacement algorithm depends on data structure

which is used to implement a page table. Now a

day, hash table is widely used to implement a

page table because of its efficiency in dictionary

operations. In this paper we use self-adjustable

doubly circular link list, skip list and splay tree as

a data structure to implement page table for LRU

algorithm. This paper shows that how the

combination of LRU with self-adjustable doubly

circular link list, skip list and splay tree towards

improvement of hit ratio.

Keywords— Memory Management, Cache

Performance, Replacement Policy, Data

structure.

I. INTRODUCTION

Page replacement is an important concept in

memory management system. When new process is

created, require pages for this process must reside in

main memory. Process search require pages from

main memory. If pages are not available, then page

fault will occur [1,2,4]. After that process pass

through the following steps [3]:

Step 1: Find the faulted page from the Disk.

Step 2: Find a free space for faulted page in main

memory:
(a) If space is available, use it.

(b) If there is no free space, use a page

replacement algorithm to evict a

page.

(c) Write the evict page to the disk.

Step 3: Read the required page into the newly

created free space

Step 4: Restart the process

There are many page replacement algorithms such as

Optimal, Least Recently Used ((LRU), Not Recently

Used (NRU), First-In-First-Out (FIFO), Not

Frequently Used (NFU), Second Chance, Clock,

Aging, Working Set, WSClock, etc. are available in

memory management [3,4]. Scheme of every page

replacement algorithm is operated by the following

three operations:

1) Search: To search required pages from main

memory.
2) Delete: To delete the evict page from main

memory.

3) Insert: To insert the page into main memory.

Therefore hit ratio and time complexity of any of the

page replacement algorithm is depends on the data

structure such as Queue, Link List, Hash Table, Skip

List, Splay Tree etc. A linked list is a data

structure consisting of a group of nodes which

together represent a sequence. Complexity of Link

List is depends on which type of Link List we are

using. In hash table, search and delete complexity is
O(1+ N/k) and insertion complexity is O(1) [14]. A

hash table is widely used to implement a page table

because of its efficiency in dictionary operations. In

Splay Tree and Skip List, search, delete and

insertion complexity is O(log N) [3,4,6,13,14].

The remainder of this paper is organized as

follow: In the next section, we review some of the

previous LRU policy with data structure used for

that. In section III, we describe the LRU with Self

Adjustable Link List, Skip List and Splay Tree.

Proposed algorithms are discussed in section IV. In

section V, the simulation and its result analysis are
discussed. In section VI we discussed the

comparison and conclusion of our algorithms.

II. BACKGROUND

LRU page replacement algorithm is based on the

observation that most heavily used pages in last few

instruction will probably used in the next few

instruction. When a page fault occurs in the LRU,

throw out the page that has been not used for longest

time. Implementation of LRU is done either in
software or in hardware [1,2,3,4]. In software

implementation of LRU, it is necessary to maintain a

linked list of all pages in main memory, with most

recently used page at the front end and least recently

used page at the rear end. In hardware

implementation of LRU, require equipping the

hardware with a64-bit counter that is automatically

incremented after each instruction. When a page

fault occurs, operating system examines all the

http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Node_(computer_science)

Mr.C.C.Kavar, Mr. S.S.Parmar

/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2070-2076

2071 | P a g e

counters in the page table to find the lowest counter.

Another hardware implementation, n frames, LRU

hardware can maintain n x n bits, initially all set to

zero. When page k is referenced, hardware first sets

all the bits of row k to 1, and then sets all the bits of

column k to 0. Now when page fault occur, the row

whose binary value is lowest is the least recently
used [3,4,7,8].

Instead of hardware, one possible solution is NFU

algorithm. It requires a software counter associated

with each page, initially zero. When a page fault

occurs, the page with the lowest counter is chosen

for replacement. But the main problem with NFU is

never forgets anything [3,8,9]. A simple

modification in NFU algorithm helps to simulate

LRU quite well. The modification consists of two

parts. First, counters are each shifted right 1 bit

before the R bit is added. Second, the R bit is added

to the leftmost. This modified algorithm is known as
a Aging algorithm. When a page fault occurs, lowest

counter page is removed [3,5].

LRU-k algorithm is to record of the times of the

last K references. LRU-k algorithm gives the

benefits about page access frequency; LRU-k is

different from LFU. The difference is that LRU-K

has a predefined concept of "aging", considering

only last K references to a page [9,10]. Whereas the

LFU has no means to recent or past recent. 2Q

provide little bit significant than LRU without

increasing the overhead [11,12].

III. LRU WITH VARIOUS DATA

STRUCTURE

A. LRU with Self Adjustable Doubly Circular Link

List

A self adjustable doubly circular link list is a link

list that arranges its elements based on some

heuristic to improve average access time. The goal
of a self adjustable doubly circular link list is to

improve efficiency of linear search. There are many

techniques available for rearranging the nodes such

as Move to Front Method (MTF), count method,

transposes method etc. Here we are used MTF

method for rearrange the nodes [14]. In MTF

method, moves the element which is accessed to the

head of the link list shown in Fig. 1.

 Fig. 1. MTF method

How LRU implemented using self adjustable

circular link list shown in Fig. 2.

 Fig. 2. Self adjustable doubly circular link list

When any page is accessed, it directly

moves to head of the link list. Therefore least

recently pages moves at head or near about it.
And we insert the element at the head position

and delete the element at the tail position of the

self adjustable doubly circular link list [15].

B. LRU with Skip List

We propose a data structure for efficiently

manage pages based on Skip List. A Skip List is

a probabilistic data structure in which nodes are

arranged in parallel link list. In the Skip List,

search, insertion and deletion complexity is O

(log N) [6,13]. William Pugh compared the

performance of implementation of Skip List and
other data structure Table I shows the

comparison of the implementation of the Skip

List, AVL Trees and 2-3 Trees.

 Table I

TIMINGS OF IMPLEMENTATION OF

DIFFERENT ALGORITHM [6]

A node in the Skip List consist of a page

address, page frequency and two pointers,

pointing to previous and next page or node. In

our method, we store page address shown in Fig.

3. And the node for level in the Skip List consist

of a predefine frequency and three pointers,

pointing to its upper layer, lower level and first

node of their layer shown in Fig.4.

 Fig. 3. The node structure for skip list node

 Fig. 4.The node structure of skip list level

In our modified skip list we insert the page

at the head position in the bottom layer. Every time

when page is accessed, its page frequency is increase

Mr.C.C.Kavar, Mr. S.S.Parmar

/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2070-2076

2072 | P a g e

by one and it moves to head position of their layer.

And if page frequency is exceeding than layer's

predefined frequency, page is moves to the head

position of the upper layer.

And delete operation is done at the tail position of

bottom layer and Search operation starts from upper

layer to bottom layer. In order to explain our method,

suppose we insert 12 and search 32 and 45 from the

given Skip List shown in Fig. 5.

Fig 5. (a) The skip list representation (b) Insert 12 in the link list (c) Search 32 and 45 in the link list (d) After searching 32 and 45

Mr.C.C.Kavar, Mr. S.S.Parmar

/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2070-2076

2073 | P a g e

C. LRU with Splay Tree

A splay tree is a self adjustable binary search tree

and it required O(log N) amortized time per

operation. Here “amortized time” means the time per

operation averaged over a worst case sequence of

operations. For sufficiency long access sequence,
splay trees are efficient. The efficiency of splay tree

comes from applying a restructuring heuristic called

splaying, whenever tree is accessed. Allen and

Munro[16] and Bitner [17] proposed two

restructuring heuristics shown in Fig. 9 and Fig. 10.

Single rotation. After accessing an element i in node

x, rotate the edge joining x to its parent.

Fig. 6. Rotation of the edge joining nodes x and y

(single rotation) [18]

Move to root. After accessing an element i in node x,

rotate the edge joining x to its parent, and repeat this

step until x is the root.

Fig. 7. The node accessed is a (move to root) [18]

 Neither of this method heuristics is efficient.

Therefore Daniel Dominic Sleator and Robert endre

tarjan [18] apply following heuristic based on the

structure of access path. To splay a tree at a node x,

we repeat the following splaying step until x is the

root of the tree shown in Fig. 11 [16,17,18].

Case 1 (zig). If p(x), the parent of x, is the tree root,
rotate the edge joining x with p(x).

Case 2 (zig-zig). If p(x) is not the root and x and p(x)

are both left or both right children, rotate the edge

joining p(x) with its grandparent g(x) and then rotate

the edge joining x with p(x).

Case 3 (zig-zag). If p(x) is not the root and x is a left

child and p(x) a right child, or vice versa, rotate the

edge joining x with p(x) and then rotate the edge

joining x with new p(x).

Fig. 8(a) Zig: terminating single rotation. (b) Zig-

zig: two single rotation (c) Zig-zag: double

rotation [18]

In splay trees, all the least recently pages are

moved the root and near about root. Therefore we

evict the page from the leaf the leaf nodes.

IV. PROPOSED ALGORITHM

A. LRU using Self Adjustable doubly Circular

Link List

PROCEDURE LRU_LinkList(page p)

IF p available THEN

 CALL moveToFront(p)
ELSE

 IF freeFrame THEN

 CALL insertToFront(p)

 ELSE

 CALL deleteAtLast()

 CALL insertToFront(p)

 END IF

 END IF

END PROCEDURE

B. LRU using Skip List

PROCEDURE LRU_SkipList(page p)

Mr.C.C.Kavar, Mr. S.S.Parmar

/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2070-2076

2074 | P a g e

IF p available THEN

 INCREMENT p_frequency

 IF p_frequency > skipLevel_frequency

THEN

 CALL moveUpperLayer(p)

 ELSE

 CALL moveToFront(p)
 END IF

ELSE

 IF freeFrame THEN

 CALL insertToFrontOfBottomLayer(p)

 ELSE

 CALL deleteAtLastOfBottomLayer()

 CALL insertToFrontOfBottomLayer(p)

 END IF

END IF

END PROCEDURE

C. LRU using Splay Tree

PROCEDURE LRU_SplayTree(page p)

IF p available THEN

 WHILE !(p is root) DO

 CALL splay(p)

 ENDWHILE

ELSE

 IF freeFrame THEN

 CALL insertPage(p)

 WHILE !(p is root) DO

 CALL splay(p)
 ENDWHILE

 ELSE

CALL deleteAnyLeaf()

 CALL insertPage(p)

 WHILE !(p is root) DO

 CALL splay(p)

 ENDWHILE

 END IF

END IF

END PROCEDURE

V. SIMULATIONS AND RESULTS

To evaluate our page replacement algorithm

experimentally, we simulated our policy and

compared it with each other. The simulator program

was design to run some trace file implement self

adjustable circular link list, skip list and splay tree

with different cache size. The obtained hit ratio

depends on the data structure, cache size and the

locality of reference for cache request.

A. Input traces

We used two traces to simulate our algorithm.
Each trace is a hexadecimal address of a running

program, taken from the SPEC benchmarks.

According to traces that have been used, we

considered 3 cache sizes and ran the simulator

program to test the performance of our proposed

algorithm.

B. Simulation Result

We executed out simulation program for

case gcc trace, with all 3 different cache sizes

and compared with each other. When cache size

is 128 then skip list perform 1% and 2% better

than self adjustable doubly circular link list and

splay tree respectively shown in fig. 9. In case of

256 cache sizes skip list 2% better than self
adjustable link list and 3.5% better than splay

tree shown in fig. 10. And if cache size is 512

then skip list is 4% better than self adjustable

link list and 4% better than splay tree. In some

cases skip list perform 10% better than splay tree

shown in fig. 11.

Fig. 9. Performance of LRU using self adjustable

link list, skip list and splay tree with cache

size=128 for gcc trace.

Fig. 10. Performance of LRU using self

adjustable link list, skip list and splay tree with

cache size=256 for gcc trace.

Fig. 11. Performance of LRU using self

adjustable link list, skip list and splay tree with

cache size=512 for gcc trace.

Mr.C.C.Kavar, Mr. S.S.Parmar

/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2070-2076

2075 | P a g e

Also we executed out simulation program for case

swim trace, with all 3 different cache sizes and

compared with each other. When cache size is 128

then skip list perform 3% and 4% better than self

adjustable doubly circular link list and splay tree

respectively shown in fig. 12. Some cases hit ratio is

same for three different cache sizes. In case of 256
cache sizes skip list 2% better than self adjustable

link list and 5% better than splay tree shown in fig.

13. And if cache size is 512 then skip list is 2.5%

better than self adjustable link list and 5% better

than splay tree. In some cases skip list perform 10%

better than splay tree shown in fig. 14.

Fig. 12. Performance of LRU using self

adjustable link list, skip list and splay tree with

cache size=128 for swim trace

Fig. 13. Performance of LRU using self

adjustable link list, skip list and splay tree with

cache size=256 for swim trace.

Fig. 14. Performance of LRU using self

adjustable link list, skip list and splay tree with

cache size=512 for swim trace.

VI. CONCLUSION
In this paper we have introduce a LRU page

replacement algorithm with different data structures.

We simulated LRU page replacement algorithm with

self adjustable doubly circular link list, skip list and
splay tree using two famous trace file gcc and swim.

Also in this paper we compare the result of these

three data structure with LRU and we show that skip

list is a best suitable data structure for LRU page

replacement algorithm compare to self adjustable

doubly circular link list and splay tree.

REFERENCES

[1] Debabrata Swain, Bancha Nidhi Dash,

Debendra O Shamkuwar, Debabala Swain,”
Analysis and Predictability of Page

Replacement Techniques towards Optimized

Performance”, IRCTITCS,2011, pp. 12-16.

[2] S.M.Shamsheer Daula, Dr. K.E. Sreenivasa

Murthy and G amjad Khan, “A Throughput

Analysis on Page Replacement Algorithms in

Cache Memory Management,” IJERA, vol. 2,

March-April 2012, pp. 126-130.

[3] Abraham Silberschatz, Peter B Galvin and

Greg Gagne, “Virtual Memory,” Operating

System Concept, 8th ed., Wiley Student Edition,

ch. 9, pp. 315-370.
[4] Andrew S. Tanenbaum, “Memory

Management,” Modern Operating System,

edition, year, Pearson Prentice Hall, 2008, ch. 3,

pp. 175-248.

[5] Kaveh Samiee and GholamAli Rezai Rad,

“WRP: Weighting Replacement Policy to

Improve Cache Performance,” International

Symposium on Computer Science and its

Application, IEEE, 2008.

[6] W. Pugh, “Skip lists: a probabilistic alternative

to balanced trees,” Communications of the
ACM, Vol. 33, 1990.

[7] Jaafar Alghazo, Adil Akkaboune and Nazeih

Botros, “SF-LRU Cache Replacement

Algorithm,” MTDT, IEEE, 2004.

[8] Debabala Swain, Bijay Paikaray and Debabrata

Swain, “AWRP: Adaptive Weighting

Replacement Policy to Improve Cache

Performance,” IJournal of Computing, volume

3, Issue 2, February 2011.

[9] Elizabeth J. O’Neil, Patrick E. O’Neil and

Gerhard Weikum, “An Optimally Proof of the
LRU-K Page Replacement Algorithm,”

Journal of the ACM, vol. 46, No. 1, January

1999, pp. 92-112.

[10] Donghee Lee, Jongmoo choi, Jong-Hun Kim,

Sem H. Noh, Sang Lyul Min, Yookun Cho,

Chong Sang Kim, “LRFU: A Spectrum of

Policies that Subsumes the Least Recently

Used and Least Frequently Used Policies,”

IEEE Transaction on computer, vol. 50, no. 12,

December 2001.

http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Andrew+S.+Tanenbaum%22

Mr.C.C.Kavar, Mr. S.S.Parmar

/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2070-2076

2076 | P a g e

[11] Sorav Bansal and Dharmendra S. Modha,

“CAR: Clock with Adaptive Replacement,”

USENIX File and Storage Technologies

(FAST), March 31, San Francisco, CA.

[12] Theodore Johnson and Dennis Shasha, “2Q: A

Low Overhead High Performance Buffer

Management Replacement Algorithm,”
Proceeding of the 20th VLDB Conference

Santiago, Chile, 1994

[13] Dan Wang and Jiangchuan Liu, “A Dynamic

Skip List-Based Overlay for On-Demand

Media Streaming with VCR Interactions,”

IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, VOL. 19, NO. 4,

APRIL 2008, pp. 503-514.

[14] Wikipedia. (2011, Jan 24). [Online]. Available:

http://en.wikipedia.org/wiki/List_of_data_struc

tures

[15] J.H. Hester and D.S. Hirschberg, Self-

Organizing Linear Search, University of

California, Irvine.

[16] Allen, B., and Munro, “Self-organizing search
trees,” J. ACM 25, Oct. 1978, pp. 526-535.

[17] BITNER, J.R., “Heuristics that dynamically

organize data structures,” SIAM J. Comput. 8,

1979, pp. 82-1 10.

[18] Daniel dominic sleator and Robert endre tarjan,

“Self-Adjusting Binary Search Trees,” Journal

of the Association for Computing Machinery,

Vol. 32, No. 3, July 1985, pp. 652-686.

http://en.wikipedia.org/wiki/List_of_data_structures
http://en.wikipedia.org/wiki/List_of_data_structures

