
Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani

Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2052-2064

2052 | P a g e

Multifunctional Confidence Reliability Algorithm(MCRA) For

Knowledge Discovery using Evaluation Of Learning Algorithms

in Data Mining

Dr.N.Chandra Sekhar Reddy
1

Dr.P.C.Rao.Vemuri
2

Ms.M.SaradaVaralakshmi
3

Mr B. Aswani Kumar
1Professor and Head of the Department, Department of Computer Science and Engineering, St.Peter’s

Engineering College, Hyderabad, A.P, India

2 Professor and Principal, Department of Computer Science and Engineering, St. Peter’s Engineering College,

Hyderabad, A.P, India

3 Professor and Head of the Department, Department of Information Technology, St. Peter’s Engineering

College, Hyderabad, A.P, India
4 Associate Professor, Department of Computer Science and Engineering, St. Peter’s Engineering College,

Hyderabad, A.P, India

Abstract-
Association rule mining is the most

popular technique in data mining. Mining

association rules is a prototypical problem as the

data are being generated and stored every day in

corporate computer database systems. To

manage this knowledge, rules have to be pruned

and grouped, so that only reasonable numbers of

rules have to be inspected and analyzed. In this

paper, we present a detailed multifunctional

itemset mining algorithm called MCRA. MCRA

shows a number of additional features and

performs the following, usually independent,

tasks: identify frequent closed itemsets and

associate generators to their closures. This makes

MCRA a complete algorithm for computing

classes of itemsets including generators and

closed itemsets. These characteristics allow one to

extract minimal non-redundant association rules,

a useful and lossless representation of association

rules. In addition, being based on the Pascal

algorithm, MCRA has a rather efficient behavior

on weakly and strongly correlated data. In

particular, MCRA is able to perform the

following, usually independent, tasks: identify

frequent closed itemsets and associate generators

to their closures. This allows one to find minimal

non-redundant association rules.

Keywords -Confidence, Balanced tree, Association

Rules, Data Mining, Multidimensional dataset,

Pruning, Frequent itemset, Minimal Non-Redundant

Association Rules.

I. IINTRODUCTION
Mining association rules is particularly

useful for discovering relationships among items

from large databases. A standard association rule is

a rule of the form X→ Y which says that if X is true

of an instance in a database, so is Y true of the same

instance, with a certain level of significance as

measured by two indicators, support and confidence.

The goal of standard association rule mining is to

output all rules whose support and confidence are

respectively above some given support and coverage
thresholds. These rules encapsulate the relational

associations between selected attributes in the

database, for instance, coke → potato chips: 0.02

support; 0.70 coverage denotes that in the database,

70% of the people who buy coke also buy potato

chips, and these buyers constitute 2% of the

database. This rule signifies a positive (directional)

relationship between buyers of coke and

potatochips. The mining process of association rules

can be divided into two steps.1. Frequent Itemset

Generation: generate all sets of items that have

support greater than a certain threshold, called
minsupport.2. Association Rule Generation: from

the frequent itemsets, generate all association rules

that have confidence greater than a certain threshold

called minconfidence. Generating strong association

rules from frequent itemsets often resultsin a huge

number of rules, which limits their usefulness in real

life applications.To solve this problem, different

concise representations of association rules

havebeen proposed, e.g. generic basis (GB),

informative basis (IB), representativerules (RR),

Duquennes-Guigues basis (DG), Luxenburger basis
(LB),proper basis (PB), structural basis (SB), etc.

Kryszkiewicz showed that minimal non-redundant

rules3 (MNR) with the cover operator, and the

transitive reduction of minimal non-redundant

rules3 (RMNR) with the cover operator and the

confidence transitivity property are lossless, sound,

and informative representations of all valid

association rules. From the definitions of MNR and

Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani

Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2052-2064

2053 | P a g e

RMNR it can be seen that we only need frequent

closed itemsets and their generators to produce these

rules. Frequent itemsets have several condensed

representations, e.g. closed itemsets, generator
representation, approximate free-sets, disjunction-

free sets, disjunction-free generators, generalized

disjunction-free generators, nonderivable itemsets,

etc. From these representations, the one which

consists of frequent closed itemsets and frequent

generators gives rise to a concise set of association

rules, which is lossless, sound, and informative. This

set of rules, called the set of minimal non-redundant

association rules (MNR), is not minimal in general

case, but presents a good compromise between its

size and time needed to generate it.Bastide et al.

presented the Pascal algorithm and claimed
thatMNR can be extracted with this algorithm.

However, to obtainMNR from the output of Pascal,

one has to do a lot of computing. First, frequent

closed itemsets must also be known. Second,

frequent generators must be associated to their

closures. Here we propose an algorithm called

MCRA, an extension of Pascal, which does this

computing. Thus, MCRA allows one to easily

construct MNR. Instead of Pascal, we might have

selected another algorithm. The reason for choosing

Pascal was as follows: among levelwise frequent
itemset mining algorithms; it may be the most

efficient. This is due to its pattern counting

inference mechanism that can significantly reduce

the number of expensive database passes.

Furthermore, MCRA can be generalized, and thus it

can be applied to any frequent itemset mining

algorithm. The paper is organized as follows. In the

next section, we overview the basic concepts and

essential definitions. This is followed by the

description of the three main features of the MCRA

algorithm. We then present MCRA and give a
running example. Then, the generation of minimal

nonredundant association rules is presented. Next,

we provide experimental results for comparing the

efficiency of MCRA to Pascal and Apriori. Finally,

we draw conclusions in the last section.

II.PROPOSED ALGORITHM
A.Derived algorithm (MCRA) -

MCRA has three main features, namely (1)
pattern counting inference, (2) identifying frequent

closed itemsets, and (3) identifying generators of

frequent closed itemsets.

A.1 Pattern Counting Inference in Pascal and

MCRA

The first part of MCRA is based on Pascal, which

employs properties of the counting inference. In

levelwise traversal of frequent itemsets, first the

smallest elements of an equivalence class are

discovered, and these itemsets are exactly the

generators. Later, when finding a larger itemset, it is

tested if it belongs to an already discovered

equivalence class. If it does, the database does not

have to be accessed to determine the support of the

itemset. This way the expensive database passes and
support counts can be constrained to the case of

generators only. From some level on, all generators

can be found, thus all remaining frequent itemsets

and their supports can be inferred without any

further databasepass.In Figure 1 (left) we show the

output of Pascal when executed on dataset D (Fig

2): it finds frequent itemsets and marks frequent

generators. Recalling the definitions ofMNR and

RMNR, we see that this output is not enough. From

our running example, the output of MCRA is shown

in Figure 1 (right). Here one can see the equivalence

classes of database D. Only the maximal (frequent
closed itemset) and minimal elements (frequent

generators) of each equivalence class are indicated.

Support values are shown in the top right-hand

corner of classes. As can be seen, the output of

MCRA is necessary and sufficient for generating

GB,IB, RIB, MNR, and RMNR.

A.2 Identifying Closed Itemsets among Frequent

Itemsets in MCRA

The second part of MCRA consists in the

identification of FCIs among FIs, adapting this idea
from Apriori-Close [5]. By definition, a closed

itemset has no proper superset with the same

support. At the ith step all i-itemsets are marked as

“closed”. At the (i + 1)th iteration for each (i + 1)-

itemset we test if it contains an i-itemset with the

same support. If so, then the i-itemset is not a closed

itemset since it has a proper superset with the same

support, thus it is marked as “not closed”. When the

algorithm terminates with the enumeration of all

FIs, itemsets still marked “closed” are the FCIs of

the dataset.

Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani

Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2052-2064

2054 | P a g e

 Fig.1 . Result of MCRA with min_supp = 0.2

(40%)

A.3 Associating the Generators to their Closures in

MCRA

Because of the levelwise itemset search, when an

FCI is found, all its frequent subsets are already

known. This means that its generators are already

computed,they only have to be identified. We show

that the search space for generatorscan be narrowed

to not closed ones. This is justified by the following

properties:Property 4. A closed itemset cannot be a

generator of a larger itemset.Property 5. The closure

of a frequent not closed generator g is the smallest
proper superset of g in the set of frequent closed

itemsets.By using these two properties, the

algorithm for efficiently finding generatorsis the

following: generators are stored in a list l. At the ith

iteration, frequent closed i-itemsets are filtered. For

each frequent closed i-itemset z, the following steps

are executed: find the subsets of z in list l, register

them as generators of z, and delete them from l.

Before passing to the (i+1)th iteration, add the i-

itemsets that are not closed generators to list l.

Properties 4 and 5 guarantee that whenever the

subsets of a frequent closed itemset are looked for in
list l,only its generators are returned. The returned

subsets have the same support as the frequent closed

itemset; it does not even have to be tested. Since

only the generators are stored in the list, it means

that we need to test far fewer elements than the

whole set of FIs. Since at step i the size of the

largest itemset in list l can be maximum (i − 1), we

do not find the generators that are identical to their

closures. If an FCI has no generator registered, it

simply means that its generator is itself. As for the

implementation, instead of using a “normal” list for
storing generators, the trie data structure is

suggested, since it allows a very quick lookup of

subsets.

Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani

Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2052-2064

2055 | P a g e

Fig.2 .Execution of MCRA on Dataset D with min_supp = 0.2 (40%)

BThe MCRA Algorithm

B.1 Pseudo Code

The main block of the algorithm is given in

Algorithm 1. MCRA uses three differentkinds of

tables, their description is provided in Tab(s). 1 and
2. We assume thatan itemset is an ordered list of

attributes, since we will rely on this in the

MCRAGen function (Algorithm 2).SupportCount

Procedure: this method gets a Ci table with

potentially frequent candidate itemsets, and it fills

the support field of the table. This steprequires one

database pass. For a detailed description consult

[22].

Subsets function: this method gets a set of itemsets

S, and an arbitraryitemset l. The function returns

such elements of S that are subsets of l.
Thisfunction can be implemented very efficiently

with the trie data structure.Note that the empty set

is only interesting, from the point of view of

rulegeneration, if its closure is not itself. By

definition, the empty set is always agenerator and

its support is 100%, i.e. it is present in each object

of a dataset(sup(∅) = |O|). As a consequence, it is

the generator of an itemset whosesupport is 100%,

i.e. of an itemset that is present in each object. In a

booleantable it means a rectangle that fills one or

more columns completely. In this case,the empty

set is registered as a frequent generator (line 15 of

Algorithm 1), andattributes that fill full columns

are marked as “not keys” (line 10 of Algorithm
1).Since in our database D there is no full column,

the empty set is not registeredas a frequent

generator and not shown in Fig. 1 either.

B.2 Optimizing the Support Count of 2-itemsets

It is well known that many itemsets of length 2 turn

out to be infrequent.Counting the support of 2-

itemsets can be done more efficiently the

followingway. Through a database pass, an upper-

triangular 2D matrix can be built containing the

support values of 2-itemsets. This technique is
especially useful forvertical algorithms, e.g. Eclat

[23] or Charm [10], where the number of

intersection operations can thus be significantly

reduced, but this optimization can alsobe applied to

levelwise algorithms. Note that for a fair

comparaison with otheralgorithms, we disabled this

option in the experiments

.

Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani

Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2052-2064

2056 | P a g e

Table 1. Tables used in MCRA.

Table 2.Fields of the tables of MCRA.

Algorithm 1 (MCRA):

1) fullColumn false;
2) FG {}; // global list of frequent generators

3) filling C1 with 1-itemsets; // copy attributes to C1

4) SupportCount(C1);

5) F1 {c 2 C1 | c.support _ min supp};

6) loop over the rows of F1 (l)

7) {

8) l.closed true;

9) if (l.supp = |O|) {

10) l.key false; // the empty set is its generator

11) fullColumn true;

12) }
13) else l.key true;

14) }

15) if (fullColumn = true) FG {;};

16) for (i 1; true; ++i)

17) {

18) Ci+1 MCRA-Gen(Fi);

19) if (Ci+1 = ;) break; // exit from loop

20) if Ci+1 has a row whose “key” value is true, then

21) {

22) loop over the elements of the database (o) {

23) S Subsets(Ci+1, o);

24) loop over the elements of S (s):
25) if (s.key = true) ++s.support;

26) }

27) }

28) loop over the rows of Ci+1 (c)

29) {

30) if (c.support _ min supp) {

31) if ((c.key = true) and (c.support = c.pred supp)):

32) c.key false;

33) Fi+1 Fi+1 [{c};

34) }

Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani

Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2052-2064

2057 | P a g e

35) }

36) loop over the rows of Fi+1 (l) {

37) l.closed true;

38) S Subsets(Fi, l);
39) loop over the elements of S (s):

40) if (s.support = l.support) s.closed false;

41) }

42) Zi {l 2 Fi | l.closed = true};

43) Find-Generators(Zi);

44) }

45) Zi Fi;

46) Find-Generators(Zi);

47)

48) Result:

49) FIs: Si Fi

50) FCIs + their generators: Si Zi
Algorithm 2 (MCRA-Gen function):

Input: Fi – set of frequent itemsets

Output: table Ci+1 with potentially frequent candidate itemsets.

Plus: key and pred supp fields will be filled in Ci+1.

1) insert into Ci+1

select p[1], p[2], . . . , p[i], q[i]

from Fi p, Fi q

where p[1] = q[1], . . . , p[i − 1] = q[i − 1], p[i] < q[i]; // like in Apriori

2) loop over the rows of Ci+1 (c)

3) {
4) c.key true;

5) c.pred supp = |O| + 1; // number of objects in the database + 1 (imitating +1)

6) S (i − 1)-long subsets of c;

7) loop over the elements of S (s)

8) {

9) if (s /2 Fi) then Ci+1 Ci+1 \ {c}; // remove it if it is rare

10) else {

11) c.pred supp min(c.pred supp, s.support);

12) if (s.key = false) then c.key false; // by Prop. 2

13) }

14) }
15) if (c.key = false) then c.support c.pred supp; // by Th. 2

16) }

17) return Ci+1;

Algorithm 3 (Find-Generators procedure):

Method: fills the gen field of the table Zi with generators

Input: Zi – set of frequent closed itemsets

1) loop over the rows of Zi (z)

2) {

3) S Subsets(FG, z);

4) z.gen S;

5) FG FG \ S;

6) }
7) FG FG [{l 2 Fi | l.key = true ^ l.closed = false};

B.3 Running Example

Consider the following dataset D (Tab. 3) that we use for our examples throughout the paper.

Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani

Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2052-2064

2058 | P a g e

Table 3. A toy dataset (D) for the examples

The execution of MCRA on dataset D with min

supp = 2 (40%) is illustratedin Tab. 4. The

algorithm first performs one database scan to count

the supportsof 1-itemsets. The candidate itemset

{D} is pruned because it is infrequent. Atthe next

iteration, all candidate 2-itemsets are created and

stored in C2. Thena database scan is performed to

determine the supports of the six potentially

frequent candidate itemsets. In C2 there is one

itemset that has the same supportas one of its

subsets, thus {BE} is not a key generator (see
Th(s). 1 and 2). UsingF2 the itemsets {B} and {E}

in F1 are not closed because they have a

propersuperset in F2 with the same support. The

remaining closed itemsets {A} and{C} are copied

to Z1 and their generators are determined. In the

global listof frequent generators (FG), which is still

empty, they have no subsets, whichmeans that both

{A} and {C} are generators themselves. The not

closed keyitemsets of F1 ({B} and {E}) are added

to FG.In C3 there are two itemsets, {ABE} and

{BCE}, that have a non-key subset({BE}), thus by
Prop. 2 they are not key generators either. Their

support valuesare equal to the support of {BE} (Th.

2), i.e. their supports can be determinedwithout any

database access. By F3 the itemsets {AB}, {AE},

{BC} and {CE}turn out to be “not closed”. The

remaining closed itemsets {AC} and {BE}

arecopied to Z2. The generator of {AC} is itself,

and the generators of {BE} are{B} and {E}. These

two generators are deleted from FG and {AB},

{AE}, {BC}and {CE} are added to FG.At the

fourth iteration, it turns out in MCRA-Gen that the

newly generatedcandidate itemset contains at least

one non-key subset. By Prop. 2 the newcandidate
itemset is not a candidate key generator, and its

support is determineddirectly in MCRA-Gen by

Th. 2. As there are no more candidate generators in

C4,from this step on no more database scan is

needed.In the fifth iteration no new candidate

itemset is found and the algorithmbreaks out from

the main loop. The largest frequent closed itemset

is {ABCE},its generators are read from FG. When

the algorithm stops, all frequent andall frequent

closed itemsets with their generators are

determined, as shown inTab. 5. In the table the “+”
sign means that the frequent itemset is closed.

Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani

Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2052-2064

2059 | P a g e

Table 4. Execution of MCRA on dataset D with min supp = 2 (40%)

The support values are indicated in parentheses. If MCRA leaves the generatorsof a closed itemset empty, it

means that the generator is identical to the closeditemset (as this is the case for {A}, {C} and {AC} in the

example). Due tothe property of equivalence classes, the support of a generator is equal to thesupport of its

closure.

B.4 The Pascal+ Algorithm

Actually, MCRA can be specified to another algorithm that we call Pascal+. Previously we have seen that
MCRA has three main features. Removing the thirdpart of MCRA (associating generators to their closures), we

get Pascal+ thatcan filter FCIs among FIs, just like Apriori-Close. To obtain Pascal+ the FindGenerators()

procedure calls must be deleted from Algorithm 1 in lines 43 and46.

Table 5. Output of MCRA

Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani

Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2052-2064

2060 | P a g e

Table 6. Comparing sizes of different sets of association rules generated with MCRA

C. Finding Minimal Non-Redundant Association

Ruleswith MCRA

Generating all strong association rules
from frequent itemsets produces too manyrules,

many of which are redundant. For instance in

dataset D with min supp =2 (40%) and min conf =

50% no less than 50 rules can be extracted.

Consideringthe small size of the dataset, 5×5, this

quantity is huge. How could we find themost

interesting rules? How could we avoid redundancy

and reduce the number of rules? Minimal non-

redundant association rules (MNR) can help us.By

Definitions 1 – 5, an MNR has the following form:

the antecedent isa frequent generator, the union of

the antecedent and consequent is a frequentclosed
itemset, and the antecedent is a proper subset of

this frequent closeditemset. MNR also has a

reduced subset called RMNR. Since a generator is

aminimal subset of its closure with the same

support, non-redundant associationrules allow to

deduce maximum information with a minimal

hypothesis. Theserules form a set of minimal non-

redundant association rules, where

“minimal”means “minimal antecedents and

maximal consequents”. Among rules with thesame

support and same confidence, these rules contain
the most information andthese rules can be the

most useful in practice [19]. For the generation of

suchrules the frequent closed itemsets and their

associated generators are needed.Since MCRA can

find both, the output of MCRA can be used directly

to generatethese rules.

The algorithm for finding MNR is the following:

for each frequent generator P1 find its proper

supersets P2 in the set of FCIs. Then add the ruler :
P1 → P2 \ P1 to the set of MNR. For instance,

using the generator {E}in Fig. 1, three rules can be

determined. Rules within an equivalence class

formthe generic basis (GB), which are exact

association rules (E ⇒B), while rulesbetween

equivalence classes are approximate association

rules (E → BC andE → ABC). For extracting

RMNR the search space for finding frequent

closedproper supersets of generators is reduced to

equivalence classes that are directneighbors (see

Def. 10), i.e. transitive relations are eliminated.
Thus, for instance, in the previous example only

the first two rules are generated: E ⇒Band E →

BC. A comparative table of the different sets of

association rules extracted with MCRA are shown

in Tab. 6.11 In sparse datasets, like

T20I6D100K,the number ofMNR is not much less

than the number of AR, however in dense,highly

correlated datasets the difference is significant.

RMNR always representmuch less rules than AR,

in sparse and dense datasets too.As shown in Tab.

5, MCRA finds everything needed for the
extraction of minimal nonredundant association

rules. For a very quick lookup of frequent

closedproper supersets of frequent generators we

suggest storing the frequent closeditemsets in the

trie data structure.

Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani

Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2052-2064

2061 | P a g e

III. EXPERIMENT AND RESULT
We evaluated MCRA against Apriori and

Pascal. We have implemented thesealgorithms in

Java using the same data structures, and they are all

part of theplatform Coron [24]. The experiments

were carried out on an Intel Pentium IV2.4 GHz

machine running GNU/Linux operating system,

with 512 MB of RAM.All times reported are real,

wall clock times as obtained from the Unix

timecommand between input and output. Table 7

shows the characteristics of thedatabases used in

our evaluation. It shows the number of objects, the
numberof different attributes, the average

transaction length, and the largest attributein each

database.

Table 7. Characteristics of databases

The T20I6D100K12 is a sparse dataset, constructed

according to the properties of market basket data

that are typical weakly correlated data. The

numberof frequent itemsets is small, and nearly all

FIs are closed. The C20D10K is acensus dataset

from the PUMS sample file, while the Mushrooms
describemushrooms characteristics. The last two

are highly correlated datasets. It hasbeen shown

that weakly correlated data, such as synthetic data,

constitute easycases for the algorithms that extract

frequent itemsets, since few itemsets arefrequent.

For such data, all algorithms give similar response

times. On the contrary, dense and highly-correlated

data constitute far more difficult cases for

theextraction due to large differences between the

number of frequent and frequentclosed itemsets.

Such data represent a huge part of real-life datasets.

3.1 Weakly Correlated Data

The T20I6D100K synthetic dataset mimics market

basket data that are typicalsparse, weakly

correlated data. In this dataset, the number of

frequent itemsets issmall and nearly all frequent

itemsets are generators. Apriori, Pascal and

MCRAbehave identically. Response times for the

T20I6D100K dataset are presentednumerically in

Tab. 8.Table 8 also contains some statistics

provided by MCRA about the datasets. Itshows the
number of FIs, the number of FCIs, the number of

frequent generators,the proportion of the number of

FCIs to the number of FIs, and the proportionof the

number of frequent generators to the number of

FIs, respectively. As wecan see in T20I6D100K,

above 0.75% minimum support all frequent

itemsets areclosed and generators at the same time.
It means that each equivalence class hasonly one

element. Because of this, MCRA and Pascal cannot

use the advantage ofpattern counting inference and

they work exactly like Apriori.

3.2 Strongly Correlated Data

Response times obtained for the C20D10K and

Mushrooms datasets are givennumerically in Tab.

8, and graphically in Fig. 2, respectively. In these

twodatasets, the number of frequent generators is
much less than the total number of frequent

itemsets. Hence, using pattern counting inference,

MCRA has toperform much fewer support counts

than Apriori. We can observe that in allcases the

execution times of MCRA and Pascal are almost

identical: adding thefrequent closed itemset

derivation and the identification of their generators

tothe frequent itemset discovery does not induce

serious additional computationtime. Apriori is very

efficient on sparse datasets, but on strongly

correlated datathe other two algorithms perform

much better.

Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani

Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2052-2064

2062 | P a g e

Table 8. Response times of MCRA and other statistics

3.3 Comparing Pascal+ and Pascal

We also compared the efficiency of Pascal+ with Pascal. Pascal+ gives almostequivalent response times to
Pascal on both weakly and strongly correlated data,i.e. the filtering of closed itemsets among frequent itemsets

is not an expensivestep. As Pascal is more efficient than Apriori on strongly correlated data (seeTab. 8), Pascal+

is necessarily more efficient than Apriori-Close. If we need bothfrequent and frequent closed itemsets then

Pascal+ is recommended instead ofApriori-Close.

Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani

Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2052-2064

2063 | P a g e

IV.CONCLUSION
In this paper we presented a

multifunctional itemset miner algorithm called

MCRA,which is a refinement of Pascal. With

pattern counting inference, using the generators of

equivalence classes, it can reduce the number of

itemsets counted andthe number of database passes.

In addition, it can identify frequent closed itemsets

among frequent itemsets, and it can associate

generators to their closure.Weshowed that these

extra features are required for the generation of

minimal nonredundant association rules. MCRA

can also be specified to another algorithm thatwe
call Pascal+. Pascal+ finds both frequent and

frequent closed itemsets, likeApriori-Close. We

compared the performance of MCRA with Apriori

and Pascal.The results showed that MCRA gives

almost equivalent response times to Pascalon both

weakly and strongly correlated data, though MCRA

also identifies closeditemsets and their

generators.An interesting question is the following:

can the idea of MCRA be generalizedand used for

any arbitrary frequent itemset miner algorithm, be

it either breadthfirst or depth-first? Could we

somehow extend these algorithms in a
universalway to produce such results that can be

used directly to generate not only allstrong

association rules, but minimal non-redundant

association rules too? Wethink that the answer is

positive, but detailed study of this will be subject

offurther research.

V. REFERENCE

1. Bastide, Y., Taouil, R., Pasquier, N.,

Stumme, G., Lakhal, L.: Mining

minimalnon-redundant association rules

using frequent closed itemsets. In Lloyd,
J.et al..,ed.: Proc. of the Computational

Logic (CL’00). Volume 1861 of Lecture

Notes inArtificial Intelligence – LNAI.,

Springer (2000) 972–986.

2. Kryszkiewicz, M.: Representative

association rules. In: PAKDD ’98:

Proceedings of the Second Pacific-Asia

Conference on Research and Development

in KnowledgeDiscovery and Data Mining,

London, UK, Springer-Verlag (1998)

198–209.

3. Guigues, J.L., Duquenne, V.: Familles
minimales d’implications

informativesr´esultant d’un tableau de

donn´ees binaires. Math´ematiqueset

Sciences Humaines95 (1986) 5–18.

4. Luxenburger, M.: Implications partielles

dans un contexte. Math´ematiques,

Informatiqueet Sciences Humaines 113

(1991) 35–55.

5. Pasquier, N., Bastide, Y., Taouil, R.,

Lakhal, L.: Closed set based discovery

ofsmall covers for association rules. In:

Proc. 15emes Journees Bases de
DonneesAvancees, BDA. (1999) 361–381.

6. Kryszkiewicz, M.: Concise

representations of association rules. In:

Pattern Detection and Discovery. (2002)

92–109.

7. Pasquier, N., Bastide, Y., Taouil, R.,

Lakhal, L.: Efficient mining of

associationrules using closed itemset

lattices. Inf. Syst. 24(1) (1999) 25–46.

8. Pasquier, N., Bastide, Y., Taouil, R.,

Lakhal, L.: Discovering frequent closed

itemsets for association rules. Lecture
Notes in Computer Science 1540 (1999)

398–416.

9. Stumme, G., Taouil, R., Bastide, Y.,

Pasquier, N., Lakhal, L.: Computing

IcebergConcept Lattices with TITANIC.

Data and Knowledge Engineering 42(2)

(2002)189–222.

10. Zaki, M.J., Hsiao, C.J.: CHARM: An

Efficient Algorithm for Closed Itemset

Mining. In: SIAM International

Conference on Data Mining SDM’02.
(2002) 33–43.

11. Kryszkiewicz, M.: Concise representation

of frequent patterns based on

disjunctionfree generators. In: ICDM ’01:

Proceedings of the 2001 IEEE

International Conference on Data Mining,

Washington, DC, USA, IEEE Computer

Society (2001)305–312.

12. Bastide, Y., Taouil, R., Pasquier, N.,

Stumme, G., Lakhal, L.: Mining

frequentpatterns with counting inference.
SIGKDD Explor. Newsl. 2(2) (2000) 66–

75.

13. Boulicaut, J.F., Bykowski, A., Rigotti, C.:

Approximation of frequency queries

bymeans of free-sets. In: Proceedings of

PKDD 2000, Lyon, France, Springer

Berlin/ Heidelberg (2000) 75–85.

14. Bykowski, A., Rigotti, C.: A condensed

representation to find frequent patterns.In:

PODS ’01: Proceedings of the twentieth

ACM SIGMOD-SIGACT-

SIGARTsymposium on Principles of
database systems, ACM Press (2001) 267–

273.

15. Kryszkiewicz, M., Gajek, M.: Why to

apply generalized disjunction-free

generatorsrepresentation of frequent

patterns? In Hacid, M.S., Ra, Z., Zighed,

D., Kodratoff,Y., eds.: Proceedings of

Foundations of Intelligent Systems: 13th

Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani

Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.2052-2064

2064 | P a g e

InternationalSymposium, ISMIS 2002,

Lyon, France, Springer-Verlag Berlin /

Heidelberg (2002)383–392.

16. Calders, T., Goethals, B.: Mining all non-

derivable frequent itemsets. In: PKDD’02:

Proceedings of the 6thEuropean

Conference on Principles of Data Mining

andKnowledge Discovery, London, UK,

Springer-Verlag (2002) 74–85.

17. Calders, T., Goethals, B.: Depth-first non-

derivable itemset mining. In: Proc.SIAM

Int. Conf. on Data Mining SDM ’05,

Newport Beach (USA). (2005).

18. Harms, S., Deogun, J., Saquer, J., Tadesse,

T.: Discovering representative
episodalassociation rules from event

sequences using frequent closed episode

sets and eventconstraints. In: ICDM ’01:

Proceedings of the 2001 IEEE

International Conferenceon Data Mining,

Washington, DC, USA, IEEE Computer

Society (2001) 603–606.

19. Pasquier, N.: Mining association rules

using formal concept analysis. In: Proc.

Ofthe 8th International Conf. on

Conceptual Structures (ICCS ’00),
Shaker-Verlag(2000) 259–264.

20. Bastide, Y., Taouil, R., Pasquier, N.,

Stumme, G., Lakhal, L.: Pascal : un

algorithme d’extraction des motifs

frquents. Technique et science

informatiques 21(1)(2002) 65–95.

21. Ganter, B., Wille, R.: Formal concept

analysis: mathematical

foundations.Springer, Berlin/Heidelberg

(1999).

22. Agrawal, R., Mannila, H., Srikant, R.,
Toivonen, H., Verkamo, A.I.: Fast

discovery of association rules. In:

Advances in knowledge discovery and

data mining.American Association for

Artificial Intelligence (1996) 307–328.

23. Zaki, M.J.: Scalable Algorithms for

Association Mining. IEEE Transactions

onKnowledge and Data Engineering 12(3)

(2000) 372–390.

24. Szathmary, L., Napoli, A.: Coron : A

framework for levelwise itemset mining

algorithms. In Ganter, B., Godin, R.,
Mephu Nguifo, E., eds.: Suppl. Proc. of

ICFCA’05, Lens, France. (2005) 110–113.

