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Abstract –  
S-systems identify the direct interaction 

of genes and proteins in biological systems. 

Therefore, mathematical and computational 

analysis of the S-type models is important to 

achieve a true understanding of biological 

systems. However, theoretical approaches for S-

systems are limited, and computational 

identification of S-systems’ parameters is 

challenging. How to make a trade-off between 

accuracy and computational cost is in 

development. In this study, we first propose a 

memetic differential evolution scheme to identify 

the parameters of S-systems. The proposed 

scheme ameliorates the disadvantages in 

traditional gradient-based optimization methods, 

and solves the slow-convergence problem of 

stochastic algorithms. This scheme not only 

improves the global-search power of differential 

evolution (DE) but also largely increases the 

convergence speed. We then discuss and analyze 

the dynamic behavior of S-type biological 

systems. Four biological systems are used to 

demonstrate our approaches. 

Index terms: Inverse problem, parameter 

estimation, memetic computation, evolution 

algorithm. 

I. INTRODUCTION 
The inverse problem of nonlinear dynamic 

pathways of a biological network from their time-

course response is a cornerstone challenge in 

systems biology [1]. S-system structure [2-3] is one 

of the popular nonlinear dynamic models. This 

model uniquely maps dynamic interaction onto its 

parameters, and possesses good generalization 

characteristics. However, theoretical analysis to S-

systems is rare due to its nonlinearity and high 

dimension.  

 Parameter estimation is the limiting step for 

biological modeling. Some researchers used 

gradient-based computation technologies. Marino 

and Voit [4] wrote an algorithm to gradually 

increase model complexity. Chou et al. [5] adopted 

an alternating regression (AR) method. Vilela et al. 

[1] proposed an eigenvector optimization method to 

solve convergence issues in AR approach. Kutalik et 

al. [6] adopted Newton-flow analysis. Many 

researchers have recently inferred gene-regulatory  

 

networks through stochastic-search intelligent 

technologies such as genetic programming [7-9], 

evolutionary algorithms [10], evolution strategies 

[11], differential evolution [12-15], genetic 

algorithms [16-18], simulated annealing [19], radial 

basis function networks [20], a neural network with 

particle-swarm-optimization learning [21-22], 

memetic algorithms [23-24].   

S-systems are composed of highly nonlinear 

differential equations, which are usually ill-

conditioned and multimodal distribution. Traditional 

gradient-based approaches have the possibility to get 

trapped at local optima [11]. These kinds of methods 

depend too much on the degree of system 

nonlinearity and initial values for learning. [25-26]. 

Stochastic approaches have the potential to find the 

global solution. However, they still face some 

problems. To let the search approaches to the global 

optimum, various strategies were used to avoid 

premature convergence. Those largely increased 

computation cost.  How to make a trade off between 

accuracy and computation time is increasing 

important. 

In this paper, we propose a memetic 

differential optimization to increase the population 

diversity and to enhance the searching such that 

both explorative and exploitative abilities of DE are 

largely increased. This technology has the 

advantages in gradient-based methods and solves 

the problems in evolution algorithms. The proposed 

technology is tested with a twenty-dimensional 

biological system. To show the performance of the 

proposed method, a bad initial start (80 for all 

parameters) in a wide search apace is used (the 

range of rate constants is between 0 and 100, and 

that of kinetic orders is between 100 and 100). 

Further, we discuss and theoretically analyze the 

steady-state behavior and systems‟ response to 

parameters and environmental changes (sensitivity). 

II. PARAMETER IDENTIFICATION 
S-system is a well-known canonical 

nonlinear model for metabolic reaction. Base on 

biochemical system theory, the net influx ( 
iV ) and 

efflux ( 
iV ) of a system is approximated as two 
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power-law functions. Each individual metabolite, 

protein or gene is described as 
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for i = 1, 2,…, n,     (1) 

where n and m are the numbers of dependent and 

independent variables, respectively; αi  and βj  are 

rate constants, gij and hij are kinetic orders to denote 

the interaction from Xj  to Xi  where a positive value 

denotes excitatory effect and negative for inhibitory 

effect.  

In order to identify parameters of this highly 

dimensional nonlinear system, we propose a 

memetic differential optimization (MDO) to achieve 

global and fast search. The optimization method 

introduces a migration operation and a dynamic-

population strategy to improve the global-search 

power. 

2.1. Memetic Differential Optimization(MDO) 

Traditional gradient-based approaches are 

difficult to get a reliable and accurate global-

optimum solution. Stochastic approaches take too 

much computational cost. Therefore, we propose a 

memetic approach to improve the accuracy and 

reliability, and to reduce the computation time at the 

same time. Different from the most hybrid 

approaches (using the stochastic approaches to get a 

good initial start for local search), we use local-

search methods as the principle learning and 

stochastic search just for avoiding premature 

convergence.  

To solve the problem that gradient-based 

methods depend too much on initial guesses, Kutalik 

et al. proposed a multi-start method [6]. In this study, 

we use migrated differential evolution for wider 

searching and gradient-based methods for fast 

convergence. MDO introduce a migrated operation 

to compensate the population diversity of differential 

evolution (DE). The degree of the population 

diversity η is defined as 
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where ε2∈ [0,1] is the tolerance of real-valued gene 

diversity, ijx and bjx  are, respectively, the jth 

chromosomes in the ith individual and the best 

individual, NP is the number of individuals, Dim_I 

is the dimension of individuals, and ε1∈  [0,1] is the 

tolerance threshold of population diversity for 

migration. If the degree η is small than ε1, migration 

starts and a new chromosome is generated as 

follows. 
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(3)  

where xj,max and xj,min are, respectively, the upper and 

lower bound of the jth chromosome, r1, r2∈ [0, 1] are 

two random numbers. The proposed MDO is 

described as follow. 

Initialize: Randomly generate initial population. Set 

the objective function and generation 

threshold. 

while the termination condition is not satisfied 

Calculate the fitness value and update the best 

by local search. 

for i < size of population  

     population[i]  based on local search 

end for 

for i < max_iter  

      DE operation (mutation, crossover, selection) 

      Migrate over a wide search space  if 

necessary 

end for 

if the best fitness is not improved  

      Increase population number  

      Increase max_iter  if necessary 

end if 

end while 

I. Simulation 

In order to examine the effectiveness of the 

proposed technology we consider a twenty-gene 

biological system. All computations were performed 

on an Intel core duo 3.16GHz computer using 

Microsoft Windows XP. The search range is [0, 100] 

for the rate constants and [-100, 100] for the kinetic 

orders, respectively. The proposed optimization 

technology is to minimize the weighted 

concentration error,  
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where  ,ix i= 1,…, n is the ith estimated 

concentration, ix
exp

 is the ith measured 

concentration, )max(
exp

ix  is the maximum of the 

measured concentrations, at  is the time-weighting 

factor, and N is the number of the sampled data. 

We consider a medium-scale genetic network 

with twenty dependent constituents. The artificial 

network, as shown in Fig. 1, is used by Noman and 
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Iba [27]. The respective S-system is described in Eq. 

(5). 

 

Fig. 1. the medium-scale artificial genetic network 

[27] 
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(5)                                               

where ix , i=1,...,20 are the twenty dependent 

constitutes. The rate constants and kinetic orders are 

shown in Row “True” of Table 1, cited from the 

paper of Noman and Iba [27]. Eight sets of 

experimental data n,...,1,exp ixi are generated 

through solving the S-system. The cubic spline 

technology is used to smooth the eight-set sampled 

datasets. Each experiment operates during the time 

period from t=0 to t=1.8 with a sample time 0.01. 

The estimated values are shown in Column 

“Simulation” of Table 1. We observe that the 

estimated values are all close to the true values. 

 

Variable 
αi βj gij hij 

True Simulation True Simulation  True Simulation  True Simulation  True Simulation  True Simulation 

x1 10 9.9998302E+00 10 9.9998319E+00          h1,1 1 1.0000186E+00 

x2 10 9.9998495E+00 10 9.9998128E+00          h2,2 1 1.0000260E+00 

x4 10 9.9933121E+00 10 9.9933614E+00 g3,15 -0.7 -7.0035337E-01       h3,3 1 1.0005253E+00 

x5 10 9.9998294E+00 10 9.9998241E+00          h4,4 1 1.0000170E+00 

x5 10 9.9997346E+00 10 9.9997305E+00 g5,1 1 1.0000293E+00       h5,5 1 1.0000254E+00 

x6 10 1.0000081E+01 10 1.0000072E+01 g6,1 2 2.0000110E+00       h6,6 1 1.0000065E+00 

x7 10 9.9964411E+00 10 9.9964794E+00 g7,2 1.2 1.2002013E+00 g7,3 -0.8 -8.0022296E-01 g7,10 1.6 1.6005491E+00 h7,7 1 1.0005570E+00 

x8 10 1.0010207E+01 10 1.0010224E+01 g8,3 -0.6 -5.9947067E-01       h8,8 1 9.9903390E-01 

x9 10 9.9996121E+00 10 9.9996129E+00 g9,4 0.5 5.0001654E-01 g9,5 0.7 7.0002399E-01    h9,9 1 1.0000323E+00 

x10 10 1.0001176E+01 10 1.0001138E+01 g10,6 -0.3 -2.9996611E-01 g10,14 0.9 8.9987462E-01    h10,10 1 9.9979221E-01 

x11 10 9.9165818E+00 10 9.9167229E+00 g11,7 0.5 5.0352692E-01       h11,11 1 1.0069385E+00 

x12 10 9.9997554E+00 10 9.9997573E+00 g12,1 1 1.0000342E+00       h12,12 1 1.0000236E+00 

x13 10 1.0002236E+01 10 1.0002243E+01 g13,10 -0.4 -3.9992872E-01 g13,17 1.3 1.2997268E+00    h13,13 1 9.9977941E-01 

x14 10 9.9995521E+00 10 9.9995126E+00 g14,11 -0.4 -4.0008090E-01       h14,14 1 1.0001604E+00 

x15 10 1.0019084E+01 10 1.0018921E+01 g15,8 0.5 4.9940498E-01 g15,11 -1 -9.9817948E-01 g15,18 -0.9 -8.9854012E-01 h15,15 1 9.9838021E-01 

x16 10 9.9983811E+00 10 9.9983796E+00 g16,12 2 2.0001743E+00       h16,16 1 1.0000957E+00 

x17 10 1.0005988E+01 10 1.0005954E+01 g17,13 -0.5 -4.9974225E-01       h17,17 1 9.9946542E-01 

x18 10 9.9997202E+00 10 9.9996825E+00 g18,14 1.2 1.2000731E+00       h18,18 1 1.0000349E+00 

x19 10 9.9970474E+00 10 9.9970553E+00 g19,12 1.4 1.4002516E+00 g19,17 0.6 6.0005824E-01    h19,19 1 1.0001912E+00 

x20 10 1.0002968E+01 10 1.0003010E+01 g20,14 1 9.9989850E-01 g20,17 1.5 1.4997167E+00    h20,20 1 9.9977872E-01 

Table 1.  Column “True” lists the true parameters in the S-system of the medium-scale genetic network. 

Column “Simulation” shows the estimated values. 
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II. DYNAMIC-BEHAVIOR 

ANALYSIS 
To identify the structure and parameters of a 

dynamic model, the most important and essential 

job is to find the solution of nonlinear ordinary 

differential equations efficiently and accurately [28]. 

In this section, we shall analyze its steady-state 

behavior and sensitivity phenomenon. Four 

biological systems shown in Figs. 1 and 2 are used 

to demonstrate the analysis. 

3.1.  Steady-State Analysis 

Most biochemical and metabolic systems operate at 

or close to the steady state, even in disease 

conditions. Therefore, the analysis of the steady-

state behavior will reveal many important aspects of 

the system. The steady-state situation occurs 

at 0


iX , i = 1, 2,…, n: 
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By using logarithmic transformation, Eq. (6) is 

transformed into 
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Let yj=lnXj. we have 
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Then, 
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, i = 1, 2,…, n. (9) 

        

By defining aij=gij-hij and bi=ln(βi/αi), Eq. (9) is 

rewritten as 

          i
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1

, i = 1, 2,…, n.                    (10) 

Expand Eq. (10) into a set of linear equations: 
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where n and m are the number of dependent and 

independent variables, respectively. We further 

rewrite Eq. (11) into a matrix form: 

.                     

11

 1 

 11 11

1

111





























































































nmn

n

mnnnn

mnn

nnnn

n

b

b

y

y

aa

aa

y

y

aa

aa
















(12)    

In other words, we have 
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. Therefore, 

the steady states of the dependent variables are 

estimated from 

,-
**

IIDDD YAAbAY


                (14) 

where 
*

DA  is the pseudo inverse of DA ; 
*

DA  

equals to the inverse matrix
-1

DA for nonsingular 

DA . Eq. (14) indicates that steady states of an S-

system are closely related to the rate constants (αi, 

βi), the kinetic orders (gij, hij) and the independent 

variables. There is no relationship between steady-

state values and initial values of the dependent 

variables.  

Tables 2, 3 and 4 show the steady-state values 

for the branch, the cascade and the small-scale 

genetic network, respectively. Cases 1, 5 and 8 in 

Table 2 have the same steady-state values since the 

same independent variable is used; even the initial 

values of the dependent variables are different. 

Cases 2, 3 and Cases 4, 6, 7 in Table 2 show the 

same results. Cases 1, 3 and 4 in Table 2 use the 

same initial values for the dependent variables but 

deferent values for the independent variable. 

Therefore, those cases achieve different steady states. 

Cases 3, 4, 5 and 8 in Table 3 achieve the same 

steady states due to the same value for the 

independent variable is used even those cases start 

from different initial conditions. Cases 1, 7 and 

Cases 2, 6 in Table 3 also show the same 

phenomena. Cases 1, 4 and Cases 2, 3 in Table 3 

use the same initial values for the dependent 

variables but the independent variables are different. 

Therefore, they approach to different steady states. 

The steady-state values in Table 4 for a small-scale 

genetic network are totally different since their 

independent variables are all different.  

For the case with no independent variable (the 

medium-scale genetic network), the steady-state 

behavior is  

                   


 bAY DD
1-

;                             (15) 

i.e., the steady-state values only relate to αi, βi, gij, 

hij.  
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(a) a branch pathway (4 genes) [17] 
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(b) a cascade pathway (3 genes) [13] 
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(c) a small-scale genetic network (5 genes) [16, 29] 
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Fig. 2. Three biological systems [13, 16, 17, 29]. 

 

 

                  case (input) 

                                                         
1 2 3 4 5 6 7 8 

initial value 

x1 (0) 0.5 1.5 0.5 0.5 1.5 0.5 0.4 1.2 

x2 (0) 0.5 1.5 0.5 0.5 2.5 1.5 2 2.2 

x3 (0) 0.5 1.5 0.5 0.5 1.5 1.5 1.6 1.8 

x4 (0) 1.5 0.5 1.5 1.5 0.5 0.5 0.7 0.4 

Independent 

variable 
x5 0.2 0.4 0.4 0.8 0.2 0.8 0.8 0.2 

Steady-state value 

x1  0.1471756 0.2763755 0.2763755 0.518995 0.1471756 0.518995 0.518995 0.147176 

x2  1.030819 1.569006 1.569006 2.38818 1.030819 2.38818 2.38818 1.030819 

x3  1.053604 1.69015 1.69015 2.711271 1.053604 2.711271 2.711271 1.053604 

x4  0.0764708 0.1133798 0.1133798 0.168103 0.07647084 0.168103 0.168103 0.076471 

Table 2. Steady states of the branch pathway in Fig. 2(a). 

 

                    case (input)   

                                                       1 2 3 4 5 6 7 8 

initial value 

x1 (0) 0.1 1 1 0.1 0.8 0.1 0.6 0.6 

x2 (0) 0.1 1 1 0.1 0.1 0.6 0.1 0.6 

x3 (0) 1 0.6 0.6 1 0.8 0.6 1 1 

Independent 

variable 
x4 0.7 0.9 0.5 0.5 0.5 0.9 0.7 0.5 

Steady-state value 
x1  1.649908 2.428703 0.9832127 

0.983212

7 0.9832127 2.428703 1.649908 

0.983212

7 

x2  3.182694 4.684998 1.89663 1.89663 1.89663 4.684998 3.182694 1.89663 

x3  0.552551 0.8133678 0.329276 0.329276 0.329276 0.8133678 0.552551 0.329276 

Table 3. Steady states of the cascade pathway in Fig. 2(b). 
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3.2. Sensitivity analysis 

We now discuss the response of the S-

system to the permanent influence from environment 

and structure changes inside the organism. 

Sensitivity analysis plays an important role in the 

study of dynamic system behavior. Savageau [30, 31] 

and Voit [3] defined different types of gains and 

dynamic sensitivities for sensitivity analysis. 

Logarithmic gain (Logarithmic amplification, or 

log-gain) describes the change of the system to the 

independent variables (environment). The log-gain 

indicates the robustness the system.  

The relative change of the dependent variable 

XD (D=1, 2,…, n) to the independent variable XI 

(I=n+1, n+2,…, n+m) is defined as 
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    (16)    

By using Eq. (14), we obtain the log-gain, 

         IDID AAXXL
*

-),(  .                            (17) 

Eq. (17) implies that the log-gain is the function of 

the kinetic orders gij and hij, but is nothing to do 

with the rate constants αi and βi. Figures 3, 4 and 5 

show the log-gains for the branch pathway, the 

cascade pathway and the small-scale genetic 

network, respectively. There exists no such a log 

gain in the medium-scale genetic network, the S-

system of which has no independent variable. 

 

 

                        case (input)   

                                                  
1 2 3 4 5 6 7 8 

initial dependent value 

x1 (0) 0.1 0.9 0.9 0.5 0.9 0.9 0.1 0.1 

x2 (0) 0.9 0.9 0.9 0.5 0.1 0.1 0.5 0.9 

x3 (0) 0.9 0.9 0.5 0.9 0.1 0.9 0.5 0.9 

x4 (0) 0.1 0.1 0.1 0.9 0.1 0.9 0.9 0.5 

x5 (0) 0.5 0.5 0.5 0.1 0.9 0.5 0.1 0.1 

Independent value 
x6 1.3 0.7 1.3 1.3 1 1 0.7 0.7 

x7 1.3 0.7 1.3 0.7 1.3 0.7 1.3 1 

x8 0.7 1 1 1 1 0.7 1.3 1.3 

steady state value 

x1  0.7442498 0.6915438 0.7667031 0.850031 0.7024997 0.7560407 0.63754 0.666036 

x2  0.8485753 0.578587 0.8741761 0.711187 0.8009728 0.632549 0.7269074 0.666036 

x3  0.83666 1 1 1 1 0.83666 1.140175 1.140175 

x4  0.8610993 0.8747414 0.9698113 1.075214 0.8885996 0.8747414 0.8610993 0.899588 

x5 0.9818043 0.7318611 1.105755 0.8995883 1.013159 0.7318611 0.9818043 0.899588 

Table 4. Steady states of the small-scale genetic network in Fig. 2(c). 

 

 

X1

X2

X3
X4

X5

0

0.2

0.4

0.6

0.8

1

L
og

-g
ai

n

dependent variables

independent

variables

 
Fig. 3. Log-gains of the branch pathway. 
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Fig. 4. Log-gains of the cascade pathway. 
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Fig. 5. Log-gains of the small-scale genetic network. 

 

We further discuss system response to the 

perturbation from the systems‟ parameters 

(parameter sensitivity), which may induced through 

mutation or disease infection. Sensitivity with 

respect to the rate constants is defined as 
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Through Eq. (14) we know 

           
*

-),( DD AXS  ,                                 (19) 

           ,),(
*

DD AXS                                    (20) 

and ),(-),(  DD XSXS  . In other words, the 

sensitivity is only related to the kinetic orders gij and 

hij. The parameter sensitivity is shown in Figs. 6, 7, 

8 and 9. These figures indicate that ),( DXS is the 

inverse matrix of ),( DXS . We further rewrite the 

steady states of the S-system in Eq. (14) to Eqs. (21) 

and (22): 
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Similarly, the sensitivity with respect to the kinetic 

orders is defined as 
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for i, j = 1,2,…,n. Figures 10, 11 and 12 show the 

results of the kinetic-order sensitivity for the branch 

pathway, the cascade branch pathway and the small 

genetic network, respectively.  

III. CONCLUSION 
The analysis of complex biological systems with 

system approach facilitates the research in medicine 

and molecular biology. S-system model is 

demonstrated to be a good approximation to 

continuous biological systems. In this study, we 

begin with computational approach to identify the S-

type biological systems. Simulation results of the 

twenty-gene system indicate that the proposed 

memetic DE has reliable performance. This method 

is different from the traditional memetic DE. Local 

search is the main search method and migrated DE 

is to avoid premature convergence. Then, we further 

analyze the steady-state behavior and various 

sensitivities of biological systems. Four biological 

systems are used to discuss the steady-state behavior 

and to analyze log-gain, rate-constant sensitivity and 

kinetic-order sensitivity. 
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Fig. 6. Rate-constant sensitivity of the branch pathway. 
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Fig.7. Rate-constant sensitivity of the cascade pathway. 

 



Cheng-Tao Wu, Shinq-Jen Wu, Jyh-Yeong Chang / International Journal of Engineering 

Research and Applications        (IJERA)      ISSN: 2248-9622         www.ijera.com 

Vol. 3, Issue 1, January -February 2013, pp.1976-1987 

1984 | P a g e  

α1 β1 α2 β2 α3 β3 α4 β4 α5 β5

x1
x2

x3
x4
x5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

S
en

si
tiv

ity
 (

ra
te

 c
on

st
an

ts
)

 
Fig 8. Rate-constant sensitivity of the small-scale genetic network. 

 

 

 

 

 

α
1

β
1

α
2

β
2

α
3

β
3

α
4

β
4

α
5

β
5

α
6

β
6

α
7

β
7

α
8

β
8

α
9

β
9

α
10

β
10

α
11

β
11

α
12

β
12

α
13

β
13

α
14

β
14

α
15

β
15

α
16

β
16

α
17

β
17

α
18

β
18

α
19

β
19

α
20

β
20

x1
x3

x5
x7
x9
x11
x13
x15
x17
x19

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

S
en

si
tiv

ity
 (

ra
te

 c
on

st
an

ts
)

 
Fig. 9. Rate-constant sensitivity of the medium-scale genetic network. 
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Fig. 10. Kinetic-order sensitivity of the branch pathway. The used independent variable x5 is 0.2, 0.4 and 0.8, 

as shown in Table 7. 
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Fig. 11. Kinetic-order sensitivity of the cascade branch pathway. The used independent variable x4 is 0.5, 0.7 

and 0.9, as shown in Table 8. 
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Fig 12. Kinetic-order sensitivity of the small-genetic network. The used independent variables (x6, x7, x8) are 

(1.3, 1.3, 0.7) and (0.7, 0.7, 1.0), as shown in Table 9. 

ACKNOWLEDGMENTS 

The authors would like to thank Prof. F. S.Wang of 

the Chemical Engineering Department, National 

Chung-Chen University, for his help with reverse 

engineering technologies. This research was 

supported by grant number NSC-101-2221-E-212-

011 from the National Science Council of Taiwan, 

R.O.C.  

REFERENCES  
1.         M. Vilela, I. C. Chou, S. Vinga, A. T. R. 

Vasconcelos, E. O. Voit, and J. S. Almeida, 

“Parameter optimization in S-system 

models,” BMC Syst. Biol., vol. 2, no. 35, 

2008.  

2.        M. A. Savageau, Biochemical Systems 

Analysis: A Study of Function and Design 

in Molecular Biology. Addison-Wesley, 

Reading, Massachusetts, 1976.  

3.        E. O. Voit, Computational Analysis of 

Biochemical Systems: A Practical Guide 

for Biochemists and Molecular Biologists. 

Cambridge University Press, Cambridge, 

U.K., 2000.  

4.        S. Marino and E. O. Voit, “An automated 

procedure for the extraction of metabolic 

network information from time series 

data,” Bioinform. Comput. Biol., vol. 4, no. 

665, 2006.  

5.        I. C. Chou, H. Martens, and E. O. Voit, 

“Parameter estimation in biochemical 

systems models with alternating 

regression,” Theor. Biol. Med. Model, vol. 

3, no. 25, 2006.  

6.        Z. Kutalik, W. Tucker, and V. Moulton, 

“S-system parameter estimation for noisy 

metabolic profiles using Newton-flow 

analysis,” IET Syst. Biol., vol. 1, pp. 174-

180, 2007.  

7.        E. Sakamoto and H. Iba, “Inferring a 

system of differential equations for a gene 

regulatory network by using genetic 

programming,” in CEC: Proc. Congr. Evol. 

Comput., 2001, vol. 1, pp. 720-726.  

8.        S. Ando, E. Sakamoto, and H. Iba, 

„Evolutionary modeling inference of gene 

network,” Inf. Sci., vol. 145, pp. 237-259, 

2002.  

9.        D. Y. Cho, K. H. Cho, and B. T. Zhang, 

“Identification of biochemical networks by 

S-tree based genetic programming,” 

Bioinform., vol. 22, pp. 1631-1640, 2006.  

10. S. Kimura, K. Ide, A. Kashihara, M. Kano, 

H. Mariko, R. Masui, N. Nakagawa, S. 

Yokoyama, S. Kuramitsu, and A. Konagaya, 

“Inference of S-system models of genetic 

networks using a cooperative 



Cheng-Tao Wu, Shinq-Jen Wu, Jyh-Yeong Chang / International Journal of Engineering 

Research and Applications        (IJERA)      ISSN: 2248-9622         www.ijera.com 

Vol. 3, Issue 1, January -February 2013, pp.1976-1987 

1987 | P a g e  

coevolutionary algorithm,” Bioinform., vol. 

21, pp. 1154-1163, 2005.  

11.   C. G. Moles, P. Mendes, and J. R. Banga, 

“Parameter estimation in biochemical 

pathways: A comparison of global 

optimization methods,” Genome Res., vol. 

13, pp. 2467-2474, 2003.  

12.     N. Noman and H. Iba, “Inference of gene 

regulatory networks using S-system and 

differential evolution,” in GECCO: Proc. 

Conf. Genetic Evol. Comput., 2005, vol. 1, 

pp. 439-446.   

13.     K. Y. Tsai and F. S. Wang, “Evolutionary 

optimization with data collocation for 

reverse engineering of biological 

networks,” Bioinform., vol. 21, pp. 1180-

1188, 2005. 

14.     S. J. Wu, C. T. Wu, and T. T. Lee, 

“Computation intelligent for eukaryotic 

cell-cycle gene network,” in Conf. Proc. 

IEEE Eng. Med. Biol. Soc., 2006, vol. 1, pp. 

2017-2020.  

15.     F. S. Wang and P. K. Liu, “Inverse 

problems of biochemical systems using 

hybrid differential evolution and data 

collocation,” Int. J. Syst. Synthetic Biol., 

vol. 1, pp. 21-38, 2010.  

16. S. Kikuchi, D. Tominaga, M. Arita, K. 

Takahashi, and M. Tomita, “Dynamic 

modeling of genetic networks using genetic 

algorithm and S-system,” Bioinform., vol. 

19, pp. 643-650, 2003. 

17.     E. O. Voit and J. Almeida, “Decoupling 

dynamical systems for pathway 

identification from metabolic profiles,” 

Bioinform., vol. 20, pp. 1670-1681, 2004.  

18.    S. Y. Ho, C. H. Hsieh, F. C. Yu, and H. L.      

Huang, ”An intelligent two-stage   

evolutionary algorithm for dynamic 

pathway identification from gene 

expression profiles,” IEEE/ACM Trans. 

Comput. Biol. Bioinform, vol. 4, pp. 648-

660, 2007.  

19. O. R. Gonzalez, C. Küper, K. Jung, P. C. 

Naval, E. Mendoza, Jr, and E. Mendoza, 

“Parameter estimation using simulated 

annealing for S-system models of 

biochemical networks,” Bioinform., vol. 23, 

pp. 480-486, 2007.  

20.     Y. Matsubara, S. Kikuchi, M. Sugimoto, 

and M. Tomita, “Parameter estimation for 

stiff equations of biosystems using radial 

basis function networks,” BMC 

Bioinformatics, vol. 7, no. 230, 2006.  

21. H. Murata, M. Koshino, M. Mitamura, and 

H. Kimura, “Inference of S-system models 

of genetic networks using product unit 

neural networks,” in SMC: IEEE Conf. Syst. 

Man Cybern., 2008, pp. 1390-1395.  

22. R. Xu, D. C. Wunsch II, and R. L. Frank, 

“Inference of genetic regulatory networks 

with recurrent neural network models using 

particle swarm optimization,” IEEE Trans. 

Comput. Biol. Bioinform., vol. 4, pp. 681-

692, 2007.  

23. C. Spieth, F. Streichert, J.Supper, N. Speer, 

and A. Zell,  “Feedback memetic 

algorithms for modeling gene regulatory 

networks”, in 2005 CIBCB: Computational 

Intelligence in Bioinformatics and 

Computational Biology, Proceedings of the 

2005 IEEE Symposium on, pp. 1-7 

24. A. Zarnegar, P. Vamplew, and A. Stranieri, 

“Inference of gene expression networks 

using memetic gene expression 

programming”, in 2009 ACSC: 

Australasian Computer Science Conference, 

Wellington, New Zealand, Vol. 91, pp. 17-

23 

25.    P. Mendes, and D.B. Kell, “Non-linear 

optimization of biochemical pathways: 

applications to metabolic engineering and 

parameter estimation,” Bioinformatics, 14, 

869–883, 1998. 

26.     P. K. Liu and F. S. Wang, “Inference of 

biochemical network models in S-system 

using multiobjective optimization 

approach,” Bioinform., vol. 24, pp. 1085-

1092, 2008.  

27.     N. Noman and H. Iba, “Inference of genetic 

networks using S-system: Information 

criteria for model selection,” in GECCO: 

Proc. Conf. Genetic Evol. Comput., 2006, 

pp. 263-270.  

28.    W. H. Wu, F. S. Wang, and M. S. Chang, 

“Dynamic Sensitivity Analysis of Biological 

Systems,” BMC Bioinformatics, vol. 

9(Suppl 12): S17, 2008. 

29.     W. S. Hlavacek and M. A. Savageau, 

“Rules for coupled expression of regulator 

and effector genes in inducible circuits,” J. 

Mol. Biol., vol. 255, pp. 121-139, 1996. 

30.     M. A. Savageau, “Parameter sensitivity as 

a criterion for evaluating and comparing 

the performance of biochemical systems,” 

Nature, vol. 229, pp. 542-544, 1971. 

31.     M. A. Savageau, “The behavior of intact 

biochemical control systems,” Current 

Topics in Cellular Regulation, vol.6, pp. 

63-129, 1972. 

javascript:AL_get(this,%20'jour',%20'Conf%20Proc%20IEEE%20Eng%20Med%20Biol%20Soc.');
javascript:AL_get(this,%20'jour',%20'Conf%20Proc%20IEEE%20Eng%20Med%20Biol%20Soc.');

