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ABSTRACT: 
This paper presents some experimental results 

obtained on a parallel computer IBM Blue Gene 

/P that shows the average bandwidth reduction 

[11] relevance in the serial and parallel cases of 

gaussian elimination and conjugate gradient. New 

measures for the effectiveness of parallelization 

have been introduced in order to measure the 

effects of average bandwidth reduction. The main 

conclusion is that the average bandwidth 

reduction in sparse systems of linear equations 

improves the performance of these methods, a fact 

that recommend using this indicator in 

preconditioning processes, especially when the 

solving is done using a parallel computer. 
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1. THEORETICAL CONSIDERATIONS 
The systems of linear equations appear in almost 

every branch of science and engineering. The 

engineering areas in where sparse and large linear 

systems of equation arise frequently include the  

chemical engineering processes, design and computer 

analysis of circuits, power system networks and 

many others. The search for efficient solutions  is 

being driven by the need to solve huge systems -

millions  of unknowns- on parallel computers. The 

interest in parallel solving systems of equations, 

especially those very large and sparse, has been very 

high, there are hundreds of papers that deal with this 

subject. As solving methods there are direct methods 

and iterative methods. Gaussian elimination and 

conjugate gradient are two popular examples in this 

respect. In gaussian elimination the solution is exact 

and it is obtained in finitely many operations. The 

conjugate gradient method  generates sequences of 

approximations that converge in the limit to the 

solution. For each of them there are many variants 

developed and the literature is very rich in describing 

these methods, especially in the case of serial 

implementations. Below, are listed suscint, by some 

particularities of parallel implementations of these 

two methods, case where the matrix system is 

partitioned per rows. It is considered a nxn system, 

the case when the size of system n is divisible with 

number of partitions p and the partitions are equals in 

terms of number of rows, ie k=n/p rows in each 

partition, ie a partition pi of size k will include 

consecutive rows / equations between  

(
(   )  

 
  ) and  (

(   )  

 
    ). 

Parallel gaussian elimination (GE) 

The main operations performed there are: local pivot 

determination for each partition in part, global pivot 

detemination, pivot row exchange, pivot row 

distribution, computing the elimination factors, 

computing the matrix elements. Because the values 

of the unknowns depend on each other and are 

computes one after another, the computation of the 

solutions in the backward substitution is inherently 

serial. In gaussian elimination is an issue with load 

balancing because some processors are idle since all 

their work is done. 

Paralel conjugate gradient (CG) 

The CG method is very good for large and sparse 

linear systems because it has the property of uniform 

convergence, but only if the associated matrix is 

symmetric and positive definite. The parallelism in 

CG algorithm derives from parallel matrix-vector 

product. Other operations can be performed in 

parallel as long as there is no dependency between 

them, such as for example, updating the residual 

vector and the vector solution. But these latter 

operations can not be performed before performing 

the matrix-vector product and the matrix-vector 

product in a new iteration can not be performed until 

the residual vector is updated. So, there are two 

moments in which processors must synchronize 

before they can be continue the work. It is desirable 

that between these two points of synchronization, the 

processors do not have periods of inactivity, which is 

an ideal case. In practice, the efficiency of the 

computation follows a minimization of this 

waiting/idle time for synchronization.  

It has been observed that a particular preparation of 

system before application a numerical method for 

solving, leads to an improvement of the process and 

the solution.  This preparation was called 

preconditioning. In time, many preconditioning 

methods have been proposed, designed to improve 

the process of solving a system of equations. There 

are many studies on the influence of preconditioning 

to parallel solving the systems of linear equations [1, 

2, 3]. 

Reducing the bandwidth of associated matrix is one 

of these preconditioning methods and for this there 

are a lot of methods, the most popular being 

presented in works such as [4, 5, 6, 7 and 8]. In paper 
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[9] it is presented a study of parallel iterative methods 

Newton, conjugate gradient and Chebyshev, 

including the influence of bandwidth reduction in 

terms of convergence of these methods. 

In paper [10] it was proposed a new measure for 

sparse matrices called average bandwidth (mbw). In 

[11] algorithms and comparative studies related to 

this new indicator was made. Paper [12] proposes 

methods that allow for a pair of matrix lines/columns, 

without performing interchange, qualitative and 

quantitative measurement of opportunity for 

interchange in terms of bandwidth and average 

bandwidth reduction. 

According to [11], the average bandwidth is deffined 

by relation: 

    
 

 
∑ |   |     ̅̅̅̅      ̅̅̅̅      (1) 

where m is the number of non-zero elements  and n is 

the size of the matrix A. 

The reasons, specified in [11], for using average 

bandwidth (mbw) instead bandwidth (bw) in 

preconditioning before parallel solving system of 

equations are: 

- mbw reduction leading to a more uniform 

distribution of non-zero elements around the main 

diagonal and  along the main diagonal; 

- mbw is more sensitive than the bw to the 

presence around the main diagonal of the so-called 

"holes", that are compact regions of zero values; 

- mbw is less sensitive to the presence of some 

isolated non-zero elements far from the main 

diagonal. In case of a matrix which minimizes mbw 

will have most non-zero elements very close to the 

main diagonal and very few non-zero elements away 

from it. This is an advantage according to the paper 

[13], as to be seen in Figure 1 c). For the same matrix 

1a) two algorithms CutHill-McKee for 1b) were used 

and the one proposed in [10] for 1c), the first to 

reduce the bandwidth bw and the second to reduce 

the average bandwidth mbw.  

Paper [15] describes a set of indicators to measure the 

effectiveness of parallel processes. From that work, 

two simple but relevant indicators were chosen: 

RelativeSpeedup (Sp) and RelativeEfficiency (Ep) 

described by relations (2) and (3). 

   
  

  
   (2) 

   
  

 
 

  

    
    (3) 

where p is the number of processors, T1 is the 

execution time achieved by a sequential algorithm 

and Tp is the execution time obtained with a parallel 

algorithm with p processors. 

When Sp = p we have a linear speedup. Sometimes 

in practice, there is an interesting situation, known as 

super linear speedup when Sp > p. One possible 

cause is the cache effect, resulted from memories 

hierarchy of parallel computers [16]. In our 

experiments such situations have been encountered, 

some of which are contained in tables 1 and 3. 

Note: In our experiments, because we were especially 

interested in the effects of mbw reduction, in relations 

(2) and (3) we consider T1 as execution time before 

mbw reduction, serial case. 

 

 

 
Figure 1. A matrix after bwreduction and after mbw reduction 

 

Gain Time (GT) measure is introduced, which is, in 

percents, the difference between the execution time 

before mbw reducing (Tb) and the execution time 

after mbw reducing (Ta), related to the execution 

time before mbw reducing (Tb), for the same 

partitioning: 

   
(     )

  
      (4) 

positive values showing a more efficiency in terms 

of execution time after mbw reducing. 

It introduced the measure Increase of efficiency 

(IE), which is, in percent, difference between the 

relative efficiency after mbw reducing (Epa) and 

relative efficiency before mbw reducing (Epb) 

reported to the relative efficiency before mbw 

reduction (Epb), for the same partitioning: 

   
       

  
       (5) 

It was noted by A the average number of iterations 

required for convergence and with Ap the average 
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number of iterations required for convergence per 

processor. In the experiments performed, A was the 

average value obtained for 50 systems with same 

size but with different nonzero elements 

distribution and different sparsity. So, Ap = A/p 

where p is the number of processors/partitions. It 

will be seen from experiments that between Ap and 

execution time there is a directly proportional 

relation, so that Ap can be a measure of the 

parallelization efficiency. 

Using only the value of the average number of 

iterations per processor Ap, can allow an estimation 

of the efficiency by neglecting the hardware factor 

(communication time between processors, cache 

effect, etc.), whose influence is difficult to 

calculate. Based on these considerations, it is 

proposed a new measure of efficiency based on the 

average number of iterations per processor, called 

Efficiency in Convergence (EC). It shows for two 

situations Sa (after) and Sb (before), how it has 

decreased/increased, in percent, the average 

number of iterations per processor in situation Sb 

from the situation Sa. In this study (the relevance of 

average bandwidth reduction in parallel case) the 

situation Sa is represented by    
 and situation Sb 

by    
 where indices “a” and “b” refers to “after 

mbw reduction” and “before mbw reduction”. So, 

the computing relation is: 

   
       

   

       (6) 

The next section will show that mbw reducing leads 

to efficient parallel computing process. 

 

2. THE EXPERIMENTS 
The experiments were performed on IBM Blue 

Gene /P supercomputer. In experiments it has been 

implemented  the gaussian elimination without 

pivoting and the preconditioned conjugate gradient 

with block Jacobi preconditioning.  

To implement these serial and parallel numerical 

methods, it was used IBM XL C compiler version 

9.0 under Linux. For parallel implementation of the 

GE and CG methods it was used MPI (Message-

Passing Programming), a standard in parallel 

computing which enables overlapping 

communications and computations among 

processors and avoid unnecessary messages in 

point to point synchronization. 

For parallel partitioning, the system of equations 

was divided equally between processors using the 

divisors of the system size. 

Matrices/systems chosen for the experiments were 

generated randomly, positive definite, symmetric 

and sparse, with a sparsity degree between 5 and 

20%. The size of these matrices were between 10 

and 1000, the weight representing a size of 200. In 

the experiments there were generated and used 

matrices with uniform  and nonuniform distribution 

of nonzero elements. In terms of reducing the 

average bandwidth mbw,  values obtained were 

between 10 and 70%. For each 

instance/partitioning were used 50 systems with the 

same size but different as sparsity and distribution 

of nonzero elements. Sizes were varied with ratio 

10, from 10 to 1000. 

In case of CG, for arithmetic precision required by 

the convergence, epsilon values chosen were 10
-10

, 

10
-30

, 10
-100

 and 10
-200

 and the initial vector that was 

used X0={0, 0,…,0}.  

 

2.1 Serial case 

Gaussian elimination. It has been experimentally 

observed that in general, in GE, the average 

bandwidth reduction and/or bandwidth reduction 

did not significantly affect the computation in 

terms of its efficiency. Only in the cases where 

mbw << n or bw << n there was an increase in 

process efficiency because the complexity 

decreases from O(n
3
) to O(nb

2
), as is mentioned in 

[14] regarding bw. 

Conjugate gradient. Experiments represented in 

Figure 2 show a general sensitivity to the mbw 

value, especially at larger sizes than 100 and a 

greater accuracy computation. 

2.2 Parallel case 

2.2.1 Gaussian elimination. According to our 

experiments it resulted that in approximately 60% 

of cases, the mbw reduction , leads to an increase in 

efficiency, but without major differences in terms 

of execution time (order of magnitude). It was 

observed that increasing the number of processors 

involved in computation, first leading to a decrease 

in execution time, reaching a minimum value 

followed by an increase in execution time with 

increasing number of processor, as can be seen in 

Figure 3. An example is shown below. 

Example 1: size of system: 500x500, 1486 non-zero 

values, uniform distribution; before mbw reduction: 

mbw0=110.33 bw0=499; after mbw reduction: 

mbw=12.44 bw=245. 

In experiments there were encountered situations 

(some partitioning) when the gaussian elimination  

failed. Possible causes include: rounding errors, 

numerical instability or main diagonal of the 

associated matrix contains zeros or very small 

values 
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Figure 2 Conjugate gradient-serial case 

 

 
Figure 3 Gain Time: Example 1 

 

 
Figure 4 Relative speedup: Example 1 

 

 
Figure 5 Relative Efficiency: Example 1 

 

 
Figure 6 Increase of Efficiency:Example 1 

 

Proce-

ssors 

Runtime (s) GT (%) Sp Ep IE (%) 
beforembw after before After before after 

1 3,609060 3,609085 -0,000693 1,000000 0,999993 1,000000 0,999993 -0,000693 
2 3,547747 3,547770 -0,000648 1,017282 1,017276 0,508641 0,508638 -0,000648 

10 0,842680 0,842976 -0,035126 4,282836 4,281332 0,428284 0,428133 -0,035114 
20 0,453526 0,454285 -0,167355 7,957780 7,944484 0,397889 0,397224 -0,167076 

25 0,376788 0,376625 0,043260 9,578490 9,582635 0,383140 0,383305 0,043279 
50 0,264829 0,231279 12,668552 13,627888 15,604789 0,272558 0,312096 14,506289 

100 0,213262 0,179467 15,846705 16,923127 20,109881 0,169231 0,201099 18,830760 
125 0,273594 0,177232 35,220911 13,191276 20,363478 0,105530 0,162908 54,370803 

250 1,598770 0,873000 45,395523 2,257398 4,134089 0,009030 0,016536 83,135166 
500 6,175630 5,036316 18,448547 0,584404 0,716607 0,001169 0,001433 22,621972 

Average 1,735589 1,143524 12,741968 7,042048 8,475456 0,327547 0,341137 19,330474 
Table 1 Example 1: experimental results 

 

2.2.2 Conjugate gradient   
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Figure 7 shows the global effect of reducing mbw 

in the case of parallel conjugate gradient, especially 

with the increasing the size of systems and with 

increased computing accuracy. 

We mention that in Figure 7 are represented the 

average values obtained for the different systems of 

equations (sparsity, distribution, etc.) before and 

after mbw reduction 

Below are presented some examples (2, 3, 4, 5 and 

6) of different situations, which shows the effects 

of mbw reducing in parallel solving systems of 

linear equations using conjugate gradient method. 

Example 2: size of system: 1000x1000, 36846 non-

zero values, uniform distribution; before mbw 

reduction: mbw0=413 bw0=999; after mbw 

reduction: mbw=211 bw=911.  

In Table 2, Figure 8 and 9 it is shown the 

correlation between execution time and average 

number of iterations per processor Ap, which 

justifies the use of the last as an indicator of 

performance measurement. 

 

 
Figure 7 Conjugate gradient-parallel case 

 

 
Figure 8 The correlation between Ap and Runtime, from Example 2 (e-10) 

 

 
Figure 9 The correlation between Ap and Runtime, from Example 2 (e-200) 
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A
c
c
u

r

a
c
y 

e-10 e-200 

  Before mbw  

reduction 

After mbw  reduction 

GT 

(%) 

Before mbw  reduction After mbw  reduction 

GT 

(%) 

P
ro

ce
ss

o
rs

 

A Ap 
R

u
n

ti
m

e 
(s

) 
A Ap 

R
u
n

ti
m

e 
(s

) 

A Ap 

R
u
n

ti
m

e 
(s

) 

A Ap 

R
u
n

ti
m

e 
(s

) 

 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 8646 864

6 

482 11412 1141

2 

636 -32 162681 162681 9065 124993 12499

3 

6965 23 
2 1036

3 

518

2 

289 10646 5323 297 -3 215659 107830 6009 128283 64142 3575 41 
4 8236 205

9 

116 10300 2575 145 -25 123443 30861 1738 135138 33785 1903 -9 
5 8664 173

3 

98 12602 2520 142 -45 118771 23754 1333 146061 29212 1639 -23 
8 1463

9 

183

0 

103 8637 1080 61 41 189500 23688 1336 119041 14880 839 37 
10 8673 867 49 13761 1376 78 -59 137918 13792 776 127943 12794 720 7 
20 7859 393 23 13578 679 39 -73 112891 5645 324 166420 8321 477 -47 
25 8417 337 19 12548 502 29 -49 121422 4857 279 117369 4695 269 3 
40 1457

2 

364 22 15337 383 23 -4 121392 3035 178 177855 4446 261 -46 
50 8741 175 10 10427 209 12 -19 113060 2261 134 122097 2442 145 -8 

100 7945 79 5 13201 132 9 -64 152264 1523 96 142257 1423 90 7 
125 1190

5 

95 6 16159 129 8 -35 113625 909 59 170478 1364 88 -50 
200 1031

6 

52 4 9216 46 3 10 327724 1639 117 139755 699 50 57 
250 1273

3 

51 4 8773 35 3 30 119635 479 36 155445 622 46 -30 

Av. 1012

2 

156

2 

88 11900 1886 106 -21 152142 27354 1534 140938 21701 1219 21 

Table 2 Example 2: experimental results 

 

P
r
o
c
e
ss

o
r
s 

e-10 e-200 

Before mbw reduction After mbw reduction  

IE 

Before mbw reduction After mbw reduction  

IE 
Sp Ep Sp Ep Sp Ep Sp Ep 

1 1,00 1,00 0,76 0,76 -24,23 1,00 1,00 1,30 1,30 30,15 

2 1,66 0,83 1,62 0,81 -2,69 1,51 0,75 2,54 1,27 68,11 

4 4,15 1,04 3,32 0,83 -20,03 5,22 1,30 4,76 1,19 -8,65 

5 4,94 0,99 3,40 0,68 -31,26 6,80 1,36 5,53 1,11 -18,68 

8 4,66 0,58 7,89 0,99 69,46 6,78 0,85 10,80 1,35 59,19 

10 9,84 0,98 6,21 0,62 -36,95 11,68 1,17 12,59 1,26 7,80 

20 21,37 1,07 12,38 0,62 -42,04 28,00 1,40 19,00 0,95 -32,16 

25 24,79 0,99 16,65 0,67 -32,84 32,51 1,30 33,64 1,35 3,45 

40 22,15 0,55 21,31 0,53 -3,80 50,83 1,27 34,74 0,87 -31,66 

50 46,00 0,92 38,66 0,77 -15,95 67,50 1,35 62,53 1,25 -7,36 

100 93,24 0,93 56,68 0,57 -39,21 93,98 0,94 100,71 1,01 7,16 

125 76,82 0,61 56,91 0,46 -25,92 154,67 1,24 103,16 0,83 -33,30 

200 126,42 0,63 140,79 0,70 11,37 77,77 0,39 182,14 0,91 134,20 

250 121,96 0,49 173,85 0,70 42,55 253,83 1,02 195,61 0,78 -22,94 

Average  39,93 0,83 38,60 0,69 -10,82 56,58 1,10 54,93 1,10 11,09 

Table 3 Example 2: experimental results 

 

 
Figure 10: IE from Example 2-experimental results 

Example 3:size of system: 100x100, 1182 non-zero 

values, sparsity=11,82%, uniform distribution; 

before mbw reduction: mbw0=33.61 bw0=99; after 

mbw reduction: mbw=9.97 bw=60. 

 

 
Figure 11: Matrix form from Example 3 before and 

aftermbw reduction 
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In Figure 12, according to equation (6), we see that 

reducing the average bandwidth mbw has the best 

effect in the case of 10 partitions, in terms of 

number of iterations per processor necessary for 

convergence. 

 

 
Figure 12:Efficiency inconvergence-Example 3 

 

Example 4:size of system: 100x100, 924 non-zero 

values, sparsity=9.24%, nonuniform distribution; 

before mbw reduction: mbw0=38.73 bw0=99; after 

mbw reduction: mbw=20.05 bw=80. 

 

 
Figure 13: Matrix form from Example 4 before and 

aftermbw reduction (ɛ=10
-30

) 

 

This is an example in which all partitioning are 

favorable to average bandwidth reduction, as it can 

be seen in figure 14. 

 

 
Figure 14:Efficiency in convergence-Example 4 

 

Example 5:size of system: 100x100, 1898 non-zero 

values, sparsity=18.98%, nonuniform distribution; 

before mbw reduction: mbw0=36.38bw0=97; after 

mbw reduction: mbw=21.63bw=97. 

 

 
Figure 15 Matrix form from Example 5 before and 

aftermbw reduction (ɛ=10
-30

) 

 

In some cases, some partitioning leads to a drastic 

decrease inefficiency after mbw reducing, but in 

general, there are other favorable situations in 

terms of convergence, as can be seen in figures 16 

and 12. 

 

 
Figure 16 Efficiency inconvergence-Example 5 

 

Example 6:size of system: 200x200, 4814 non-zero 

values, sparsity=12.03%, uniform distribution; 

before mbw reduction: mbw0=66.96 bw0=196; after 

mbw reduction: mbw=28.34 bw=196. 

 

 
Figure 17 Matrix form from Example 6 before and 

aftermbw reduction 

 

 
Figure 18 Efficiency in convergence-Example 6 

 

2.3Comparing the mbw reducing effects at GE 

and CG 

In order to see which method is the most strongly 

influenced by the reduction of mbw there were 

performed a series of comparative experiments. In 
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examples 7, 8 and 9 are presented experimental 

results for the gaussian elimination and conjugate 

gradient in solving same linear systems of 

equations. Computation accuracy imposed for 

convergence in the case of conjugate gradient was 

10
-10

 and 10
-200

. The results presented in the tables 

are obtained after the mbw reduction. 

Example 7: size of system: 100x100, 2380 non-zero 

values, uniform distribution; before mbw reduction: 

mbw0=36.97 bw0=99; after mbw reduction: 

mbw=21.84 bw=91. 

 

Runtime 

(s) 

 

Processor

s 

Gaussianeliminat

ion 

Conjugate 

Gradient 

e-10 e-200 

1 0,055312 0,0856

90 

0,71408

6 2 0,055265 0,0483

05 

0,35996

4 4 0,042756 0,0280

96 

0,22991

0 5 0,040240 0,0217

16 

0,17075

9 10 0,034234 0,0129

24 

0,09611

0 20 0,032118 0,0091

32 

0,06396

9 25 0,032066 0,0084

67 

0,06069

0 50 0,035373 0,0074

84 

0,05209

3 100 0,051450 0,0073

41 

0,04848

7 
Average 0,042090 

0,0254

62 

0,19956

3 

Table 4 Comparative experimental results  

 

 
Figure 19  

 

Example 8:size of system: 100x100, 508 non-zero 

values, uniform distribution; before mbw reduction: 

mbw0=26.81 bw0=95; after mbw reduction: 

mbw=5.18 bw=55. 

 

 

 

 

 

 

 

 

Runtime 

(s) 

 

Processor

s 

Gaussianeliminat

ion 

Conjugate 

Gradient 

e-10 e-200 

1 0,053286 0,0689

99 

0,5235

18 2 0,053243 0,0394

34 

0,2876

19 4 0,040771 0,0230

55 

0,1668

83 5 0,038213 0,0171

65 

0,1254

66 10 0,032215 0,0108

45 

0,0802

19 20 0,030087 0,0076

84 

0,0564

98 25 0,030005 0,0070

16 

0,0456

46 50 0,061563 0,0063

70 

0,0397

96 100 0,111814 0,0062

97 

0,0400

89 
Average 0,050133 

0,0207

63 

0,1517

48 

Table 5 Comparative experimental results   

 

 
Figure 20 Experimental results: CG vs. GE 

 

Example 9 (same system as in Example 6) 

 Runtime(s) 

 

Processors 

Gaussia

nelimina

tion 

Conjugate gradient 

e-10 e-200 

1 3,60908

5 

2,6408

67 

19,46738

8 2 3,54777

0 

1,3360

89 

10,05824

6 10 0,84297

6 

0,2855

21 

2,115549 

20 0,45428

5 

0,1582

82 

1,132339 
25 0,37662

5 

0,1312

54 

0,885119 

50 0,23127

9 

0,0844

74 

0,51753 
100 0,17946

7 

0,0681

17 

0,299843 

125 0,17723

2 

0,0615

21 

0,256805 
250 0,87353

5 

0,0575

15 

0,187639 

500 5,03631

6 

0,0481

13 

0,139639 

Average 1,53285

7 

0,4871

75 
3,506010 

Table 6 Comparative experimental results: CG vs. 

GE 
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Figure 21 Experimental results: CG vs. GE 

 

The execution time is significantly lower in the 

case of conjugate gradient, especially if using more 

processors for processing. 

Increasing the number of processors in the case of 

conjugate gradient leads to the possibility of 

performing calculations with high accuracy (e-200) 

and low execution time, comparable to those 

obtained by the gaussian elimination method or that 

obtained with conjugate gradient using low 

accuracy calculations (e-10). 

 

3. FINAL CONCLUSIONS AND FUTURE 

WORK 
The proposed indicator in [11], average bandwidth 

mbw,  was validated by experimental results 

presented in this paper and recommended its use in 

the preconditioning of large systems of linear 

equations,  especially when the solving is done 

using a parallel computer. 

Using the proposed indicator average number of 

iterations per processor Ap, is a good choice 

because it allows an estimation of the efficiency by 

neglecting the hardware factor, in case of parallel 

iterative methods. Also, the proposed indicator 

Efficiency in Convergence (EC), based on Ap,  

shows in comparative studies for parallel iterative 

methods, in an intuitive way, the obtained 

progress/regression. 

The proposed indicators Gain Time (GT), and 

Increase of efficiency (IE), in comparative studies 

show clear by and intuitive by the obtained 

progress/regression. 

Extending the study to the case of nonlinear 

systems of equations are required to be made, 

encouraging results are also expected in conditions 

as shown in [9], under certain conditions nonlinear 

parallel case can be reduced to linear one. 

The influence of mbw reducing in the case of 

unequal and overlapping partitions (equal&overlap, 

unequal&non-overlapping, and 

unequal&overlapping) will be a future study. 
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