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ABSTRACT 
In this paper we propose a new method 

for the Fuzzy optimal solution to the 

transportation problem with Fuzzy parameters. 

We develop Fuzzy version of Vogels and MODI 

algorithms for finding Fuzzy basic feasible and 

fuzzy optimal solution of fuzzy transportation 

problems without converting them to classical 

transportation problems. The proposed method 

is easy to understand and to apply for finding 

Fuzzy optimal solution of Fuzzy transportation 

problem occurring in real world situation. To 

illustrate the proposed method, numerical 

examples are provided and the results obtained 

are discussed. 

 

Keywords - Fuzzy sets, Fuzzy numbers, Fuzzy 

transportation problem, Fuzzy ranking, Fuzzy 

arithmetic 

 

I. INTRODUCTION 
The transportation problem is a special 

type of linear programming problem which deals 

with the distribution of single product (raw or 

finished) from various sources of supply to various 

destination of demand in such a way that the total 

transportation cost is minimized. There are effective 

algorithms for solving the transportation problems 

when all the decision parameters, i. e the supply 

available at each source, the demand required at 

each destination as well as the unit transportation 

costs are given in a precise way. But in real life, 
there are many diverse situations due to uncertainty 

in one or more decision parameters and hence they 

may not be expressed in a precise way. This is due 

to measurement inaccuracy, lack of evidence, 

computational errors, high information cost, whether 

conditions etc. Hence we cannot apply the 

traditional classical methods to solve the 

transportation problems successfully. Therefore the 

use of Fuzzy transportation problems is more 

appropriate to model and solve the real world 

problems. A fuzzy transportation problem is a 

transportation problem in which the transportation 
costs, supply and demand are fuzzy quantities.  

 

 

 

 

 

Bellman and Zadeh [3] proposed the concept of 

decision making in Fuzzy environment. After this 

pioneering work, several authors such as  

Shiang-Tai Liu and Chiang Kao[23], Chanas et al 
[4], Pandian et.al [19], Liu and Kao [17] etc 

proposed different methods for the solution of Fuzzy 

transportation problems. Chanas and Kuchta [4] 

proposed the concept of the optimal solution for the 

Transportation with Fuzzy coefficient expressed as 

Fuzzy numbers. Chanas, Kolodziejckzy, Machaj[5] 

presented a Fuzzy linear programming model for 

solving Transportation problem. Liu and Kao [17] 

described a method to solve a Fuzzy Transportation 

problem based on extension principle. Lin 

introduced a genetic algorithm to solve 
Transportation with Fuzzy objective functions. 

Nagoor Gani and Abdul Razak [12]  obtained a 

fuzzy solution for a two stage cost minimizing fuzzy 

transportation problem in which supplies and 

demands are trapezoidal fuzzy numbers. A. Nagoor 

Gani, Edward Samuel and Anuradha [9] used 

Arshamkhan’s Algorithm to solve a Fuzzy 

Transportation problem. Pandian and Natarajan [19] 

proposed a Fuzzy zero point method for finding a 

Fuzzy optimal solution for Fuzzy transportation 

problem where all parameters are trapezoidal fuzzy 

numbers. 
In general, most of the existing techniques 

provide only crisp solutions for the fuzzy 

transportation problem. In this paper we propose a 

simple method, for the solution of fuzzy 

transportation problems without converting them in 

to classical transportation problems. The rest of this 

paper is organized as:  

In section II, we recall the basic concepts 

of Fuzzy numbers and related results. In section III, 

we define Fuzzy transportation problem and prove 

the related theorems. In section IV, we propose 
Fuzzy Version of Vogels Approximation Algorithm 

(FVAM) and fuzzy version of MODI method 

(FMODI). In section V, numerical examples are 

provided to illustrate the methods proposed in this 

paper for the fuzzy optimal solution of fuzzy 

transportation problems without converting them to 

classical transportation problems and the results 

obtained are discussed. 
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II. PRELIMINARIES   
The aim of this section is to present some 

notations, notions and results which are of useful in    

our further consideration.    

 

2.1 Fuzzy numbers 
A fuzzy set Ã defined on the set of real 

numbers R is said to be a fuzzy number if its 

membership function     A
: R 0,1   has the 

following characteristics  

(i)  Ã is normal. It means that there exists an xR 

such that  A
x 1   

1 2is convex. It means that for every x , x(ii) A R,

         1 2 1 2A A A
x 1 x min x , x , 0,1         

  (iii) 
A

    is upper semi-continuous. 

 (iv) supp ( A ) is bounded in R. 

 

2.2. Triangular fuzzy numbers 

A fuzzy number A  in R is said to be a 

triangular fuzzy number if its membership function 

 A
: R 0,1   has the following characteristics. 

       

 
 


 

  
  

 





1
1 2

2 1

2

A
3

2 3

3 2

x a
a x a

a a

1 x a
x

a x
a x a

a a

0 otherwise

 

 

We denote this triangular fuzzy number by 

 1 2 3A a ,a ,a .  We use F(R) to denote the set of all 

triangular fuzzy numbers. Also if 2m a  represents 

the modal value or midpoint, 2 1a a    represents 

the left spread and 3 2a a    represents the right 

spread of the triangular fuzzy number 

 1 2 3A a ,a ,a ,  then the triangular fuzzy number 

A  can be represented by the triplet  A m, , .    

That is  1 2 3A a ,a ,a   m, , .    

 

 
 

2.3. Ranking of triangular fuzzy numbers 
Several approaches for the ranking of fuzzy 

numbers have been proposed in the literature. An 

efficient approach for comparing the fuzzy numbers 

is by the use of a ranking function based on their 

graded means. That is, for every 

   1 2 3A a ,a ,a F R ,   the ranking function  

: F(R) R   by graded mean is defined as 

1 2 3a 4a a
(A)

6

  
   

 

  

For any two fuzzy triangular numbers 

 1 2 3A a ,a ,a  and  1 2 3B b ,b ,b in F(R),  we 

have the following comparison 

 

(i). A B (A) (B).

(ii). A B (A) (B).

(iii

 if  and only if

 if  and only if

 if  and o). A B (A) (B).

(iv). A B

nly if

 if  an0 (A) (Bd only i ) 0.f

  

  

   

     

  

  

  

   

  

A triangular fuzzy number  1 2 3A a ,a ,a in  F R   

is said to be positive if (A) 0  and denoted 

by A 0.   Also if (A) 0,  then A 0   and if 

(A) 0,  then A 0.   (A (f ) B ,I )     then 

the triangular numbers  A and B are said to be 

equivalent and is denoted by A B.   

 

2.4. Arithmetic operations on triangular fuzzy 

numbers 
Ming Ma et al. [9]   have proposed a new 

fuzzy arithmetic based upon both location index and 

fuzziness index functions. The location index  

number is taken in the ordinary arithmetic, whereas  

the fuzziness index functions are considered to 

follow the lattice rule which is least upper bound in 

the lattice L. That is for a, bL we define 

 a b max a,b    and a b min a,b .   

For arbitrary triangular fuzzy numbers 

    
1 2 3 1 1 1

A (a ,a ,a ) m , , , 
1 2 3

B (b ,b ,b )  

   
2 2 2

m , , and  , , , ,       the arithmetic 

operations on the triangular fuzzy numbers are 

defined by  

 

         

     

      

 
1 1 1 2 2 2

1 2 1 2 1 2

1 2 1 2 1 2

A B m , , m , ,

(m m , max{ , }, max{ , }

(m m , , )
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In particular for any two triangular fuzzy numbers  

    
1 2 3 1 1 1

A (a ,a ,a ) m , , , 
1 2 3

B (b ,b ,b )  

   
2 2 2

m , , ,  we define: 

(i). Addition 

   

   

    

  

     

     

 
1 2 3 1 2 3

1 1 1 2 2 2

1 2 1 2 1 2

A B a ,a ,a b ,b ,b

m , , m , ,

m m ,max , ,max ,

 

(ii).   Subtraction               

       

   

   

    

  

     

     

 
1 2 3 1 2 3

1 1 1 2 2 2

1 2 1 2 1 2

A B a ,a ,a b ,b ,b

m , , m , ,

m m ,max , ,max ,
 

(iii).Multiplication      

     

  

  

    



    

    

 
1 2 3 1 2 3

1 1 1 2 2 2

1 2 1 2 1 2

AB a ,a ,a b ,b ,b

m , , m , ,

m m ,max , ,max ,
 

(iv). Division  

    

 
 

1 2 3 1
2 1 1 2

21 2 3

a ,a ,a mA
,max( , ),max( , ) ,

mb ,b ,bB

 
      

 




 

        
1 2 3

if , B b ,b ,b  is non zero fuzzy number. 

 

III. MAIN RESULTS 
Consider a fuzzy transportation with m 

sources and n destinations with triangular fuzzy 

numbers. Let ia 0  be the fuzzy availability at 

source i and jb ,  j(b 0)  be the fuzzy requirement 

at destinations j.  Let ij ijc (c 0)    be the unit 

fuzzy transportation cost from source i to destination 

j. Let ijx  denote the number of fuzzy units to be 

transformed from source i to destination j. Now the 

problem is to find a feasible way of transporting the 

available amount at each source to satisfy the 
demand at each destination so that the total 

transportation cost is minimized. 

 

3.1. Mathematical formulation of fuzzy 

transportation problem 

The mathematical model of fuzzy 

transportation problem is as follows 
 

m n

ij ij
i 1 j 1

n

ij i
j 1

m

ij j
i 1

m n

i j
i 1 j 1

ij

Minimize Z c x

subject to x a , i 1,2,3,...,m

x b , j 1,2,3,..., n (3.1)

a b , i 1,2,3,...,m;

j 1,2,3,..., n and x 0 for all i and j.

 





 

  

 

 

  



  







 

 

 

where ijc is the fuzzy unit transportation cost from ith 

source to the jth destination.  The objective is to 

minimize the total fuzzy transportation cost, in this 

paper the fuzzy transportation problem is solved by 

fuzzy version of Vogel’s and MODI method. This 

fuzzy transportation problem is explicitly 

represented by the following fuzzy transportation 
table. 

Table 3.1  Fuzzy transportation table 

 

3.2. Basic Theorems 

Theorem 3.1. (Existence of a fuzzy feasible 

solution) 

The necessary and sufficient condition for the 

existence of a fuzzy feasible solution to the fuzzy 

transportation problem (3.1) is,  

   

m n

i j

i 1 j 1

a b (3.2)

 

  

 
(Total supply  Ttotal demand). . 

 

Proof: (Necessary condition)  
Let there exist a fuzzy feasible solution to the fuzzy 

transportation problem     
m n

ij ij
i 1 j 1

n

ij i
j 1

m

ij j
i 1

ij

Minimize Z c x

subject to x a ,i 1,2,3,...,m.

x b , j 1,2,3,..., n.

and x 0 for all i and j.

 





  

 

 

  





 

       (3.3) 

n

ij i
j 1

From x a ,(i 1,2,3,...,m), we have


  

 
m n m

ij i
i 1 j 1 i 1

x a
  

        3.4  

m

ij j
i 1

x b , ( j 1,2,3Also ,..., n), we ha erom vf


  

      
n m n

ij j
j 1 i 1 j 1

x b
  

                                 (3.5) 

From equations (3.4) and (3.5), we have   
m n

i j
i 1 j 1

a b
 

    

 

S
o
u
rc

es
 

Destination 

 1 2 … n Supply 

1 11c  12c  … 1nc  1a  

2 21c  22c  …. 2nc  2a  

…
 

…
 

…
 

…
 

…
 

…
 

m m1c  m2c  …. mnc  na  

Demand 
1b  2b   

mb   



 M. Shanmugasundari, K. Ganesan / International Journal of Engineering Research and 

Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 3, Issue 1, January -February 2013, pp.1416-1424 

1419 | P a g e  

(Sufficient condition)                                                                  

Since all a and b
i j

 are positive, ijx  must be all 

positive.   Therefore equation (3.2) yields a feasible 

solution.  

 

Theorem 3.2.                               

The dimension of the basis of a fuzzy 

transportation are (m+n-1)(m+n-1).That a fuzzy  

transportation problem has only (m+n-1) 

independent structural constraints and its basic 

feasible solution has only (m+n-1) positive 

components. 
 

Proof: Consider a fuzzy transportation problem 

with m sources and n destinations, 

     

m n

ij ij
i 1 j 1

n

ij i
j 1

m

ij j
i 1

ij

Minimize Z c x

subject to x a , i 1, 2,3,..., m.

x b , j 1, 2,3,..., n.

and x 0 for all i and j.

 





  

 

 

  





 

                                           

 Let us assume that a fuzzy transportation has m 

rows (supply constraint equations) and n columns 

(demand constraint equations). Therefore there are 
totally (m+n) constraint equations. 

This is due to the condition that 

m n

i j

i 1 j 1

a b

 

    

which is the last requirement constraint. Therefore 

one of (m+n) constraints can always be derived 

from the remaining (m+n-1). Thus there exists only 

(m+n-1) independent constraints and its basic 

feasible solution has only (m+n-1) positive 

components. 

 

Theorem 3.3 
The values of the fuzzy basic feasible solution are 

all differences between the partial sum of ia   and 

the partial jsum of b .   

That is 
m n

ij i i j j
i 1 j 1

x r a s b ,
 

        where i jr ,s  are either 

 11 1,1, or  0 = 0, .0,0   

 

Theorem 3.4 

The fuzzy transportation problem has a triangular 

basis. 
 

Proof: We note that every equation has a basic 

variable, otherwise, the equation cannot be satisfied 

for i ja 0, b 0   . Suppose every row and column 

equations has atleast two basic variables, since there 

are m rows and n columns, the total number of basic 

variables in row equations and column equations  

 

will be atleast 2m and 2n respectively. Suppose if 

the total number of basic variables is D, then 

obviously D ≥ 2m , D ≥ 2n. 

 

Case (i). If  m < n, then  m + n < n + n     m + n < 2n   

  m + n  < 2n <  D    m + n  <  D .



 

 

Case(ii). If   m  n, then   m n   m n 

 m m   m n  2m   m n 

m n   2m m n   2m D

m n   D.

   

      

      

  

 

 

   

Case(iii). If  m = n, then   m + n = m + n  

  m + m  = m + n  2m  = m + n 

m + n  = 2m m + n = 2m < D

m + n  < D.

 

 



 

 

  

Thus in all cases    D ≥ m + n. But the number of 

basic variables in fuzzy transportation problem is 

(m+n-1) which is a contradiction. 

 

Therefore there is atleast one equation, 

either row or column having only one basic variable. 

Let the rth equation have only one basic variable.                                       

Let rsx  be the only basic variable in the rth row and 

sth column ,then rs rx a  . Eliminate rth row from the 

system of equation and substitute rs rx a   in sth  

column  equation and replace  sb  by s s rb b a     . 

After eliminating the rth row , the system has (m+n-

2) linearly independent constraints. Hence the 
number of basic variables is (m+n-2). 

Repeat the process and conclude that in the 

reduced system of equations there is an equation 

which has only one basic variable. But if this is in sth 

column equation, then it will have two basic 

variables. 

This concludes that in our original system 

of equations, there is an equation which has atleast 

two basic variables. Continue the process to get the 

theorem.                                                                 

 

IV. PROPOSED ALGORITHMS 
 

4.1 Fuzzy Version of Vogels Approximation 

Algorithm (FVAM) 

 

Step 1: 

From the Fuzzy Transportation table, 

determine the penalty for each row or column. The 

penalties are calculated for each row column by 

substituting the lowest cost element in that row or 
column from the next cost element in the same row 

or column. Write down the penalties below and 

aside of the rows and columns respectively of the 

table.  
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Step 2: 

Identify the column or row with largest 

fuzzy penalty. In case of tie, break the tie arbitrarily. 

Select a cell with minimum fuzzy cost in the 

selected column (or row, as the case may be) and 

assign the maximum units possible by considering 

the demand and supply position corresponding to 
the selected cell.  

 

Step 3: 

Delete the column/row for which the supply and 

demand requirements are met. 

 

Step 4: 

  Continue steps 1 to 3 for the resulting fuzzy 

transportation table until the supply and demand of 

all sources and destinations have been met. 

 

4.2 Fuzzy Version of MODI Algorithm (FMODI) 

 

 Step 1: 

Given an initial fuzzy basic feasible solution of a 

fuzzy transportation problem in the form of 

allocated and unallocated cells of fuzzy 

transportation table. Assign the auxiliary variables 

iu ,  i=1,2,3,…,m and jv , j=1,2,3,…,n  for rows and 

columns respectively. Compute the values of iu  and 


jv  using the relationship    

ij i jc u v for all i, j for 

all occupied cells. Assume either iu or  jv  as zero 

arbitrarily for the allocations in row/column. 

 

Step 2: 

For each unoccupied cell (i, j), compute the fuzzy 

opportunity cost ij using  ( ).     
ij ij i jc u v                

 

Step 3: 

   (i)  If all 0, ij  then the current solution under 

the test is optimal  

 (ii) If at least one  0, ij  then the current 

solution under the test is not optimal and proceeds to 

the next step. 

 

Step 4: 

   Select an unoccupied cell (i, j) with most negative 

opportunity cost among all unoccupied cells. 

 

Step 5: 

Draw a closed path involving horizontal and vertical 

lines for the unoccupied cells starting and ending at 

the cell obtained in step 4 and having its other 

corners at some allocated cells.  Assign +θ and – θ 

alternately starting with +θ for the selected 

unoccupied cells. 

 

 

 

Step 6: 

On the closed path, identify the corners with – θ. 

Select the smallest allocation among the corners 

with – θ which indicate the number of units that can 

be shifted to some other unoccupied cells. Add this 

quantity to those corners marked with +θ and 

subtract this quantity to those corners marked with –
θ on the closed path and cheek whether the number 

of nonnegative allocations is (m+n-1) and repeat 

step 1 to step 7, till we reach 0 ij  for all i and j.  

 

4.3 Unbalanced Fuzzy Transportation Problem. 

   Suppose the fuzzy transportation problem is 

unbalanced one, i. e , if 

m n

i j

i 1 j 1

a b

 

 
 

 
 
   , then 

convert this into a balanced one by introducing a 

dummy source or dummy destination with zero  
fuzzy unit transportation costs. Solve the resulting 

balanced fuzzy transportation problem using above 

said algorithms. 

 

V. NUMERICAL EXAMPLES 
The following two numerical examples are 

taken from the paper “Simplex type algorithm for 

solving fuzzy transportation problem by Edward 

Samuel et.al [9].  

 

Example 5.1  

A company has two factories O1, O2 and 

two retail stores D1, D2. The production quantities 

per month at O1, O2 are (150, 201, 246) and (50, 99, 

154) tons respectively. The demands per month for 

D1 and D2 are (100,150,200) and (100,150,200) tons 

respectively. The transportation cost per ton 
ijc ,        

i =1, 2; j=1, 2 are 11
c =(15,19,29), 12

c =(22,31,34), 

21
c =(8,10,12) and 22

c =(30,39,54). 

 

Solution: Transportation table of the given fuzzy 

transportation problem is  

Table 5.1 Fuzzy Transportation Problem  

 

To apply the proposed algorithms and the fuzzy 

arithmetic, let us express all the triangular fuzzy 

numbers based upon both location index and 

fuzziness index functions. That is in the form of 

  m, , given in table 5.2. 

  

 D1 D2 Supply 

O1 (15,19,29) (22,31,34) (150,201,246) 

O2 (8,10,12) (30,39,54) (50,99,154) 

D
e
m

a
n

d
 

(1
0
0
,1

5
0
,2

0
0
) 

(1
0
0
,1

5
0
,2

0
0
) 

(2
0
0
,3

0
0
,4

0
0
) 
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Table 5.2 Balanced fuzzy transportation problem in 

which all the triangular numbers are of the form 

  m, ,  

 

By applying fuzzy version of Vogel’s 

Approximation method (FVAM)), the initial fuzzy 

basic feasible solution is given in table 5.3. 

 

Table 5.3 Initial fuzzy basic feasible solution  

 

The corresponding initial fuzzy transportation cost 

is given by 

  
  
  
 

19,  4 4r,  10 10r 51,  50 50r,  55 55r

31,  9 9r,  3 3r 150,  50 50r,  50 50r

10,  2 2r,  2 2r 99,  49 49r,  55 55r

  6609,50 50r,55 5

IFT

.5r

C    

   

   

  






 

By applying fuzzy version of MODI method 

(FMODI), it can be seen that the current initial 

fuzzy basic feasible solution is optimal. 

Hence the fuzzy optimal solution in terms of 
location index and fuzziness index is given by 

 

 

 

 

11

12

21

51,50 50r,55 55r ;

150,50 50r,50 50r ;

99, 49 49r,55 55

x

x

x ,r here 0  r  1w .

  

  

    







 

 

The corresponding fuzzy optimal transportation cost 

is given by  

   

m n

ij ij
i 1 j 1

Minimize       

       6609,50 50r,55 55r

where 0  r  1 can be suitably chosen by 

the decision m

Z c x

ak

,

er.

 

  

 







  

 

 

Case(i). When r=0, the fuzzy optimal transportation 

cost in terms of the form (m, α, β) is (6609, 50, 55). 

The corresponding fuzzy optimal transportation of 

the form  1 2 3a ,a ,a  is (6559, 6609, 6664) and its 

defuzzyfied transportation cost is 609.8. 
 

Case(ii). When r = 0.5, the fuzzy optimal 

transportation cost in terms of the form (m, α, β) is 

(6609, 25, 27.5). The corresponding fuzzy optimal 

transportation cost of the form  1 2 3a ,a ,a  is (6584, 

6609, 6636.5) and its defuzzyfied transportation cost 

is 6609.4 
 

Case(iii). When r=1, the fuzzy optimal 

transportation cost in terms of the form (m, α, β) is 

(6609,0,0). The corresponding fuzzy optimal 

transportation cost of the form  1 2 3a ,a ,a  is          

(0, 6609, 0) and its defuzzyfied transportation cost is 

4406. Optimum fuzzy transportation cost is      

(1150, 6609, 12882). Defuzzified fuzzy 

transportation cost is 6745. 

 

Example 5.2     

Find a fuzzy optimum solution for the unbalanced 

fuzzy transportation problem given below. 
 

Table 5.4. Unbalanced Fuzzy Transportation 

Problem  

 

Solution: Introduce a dummy destination B3 with 

(150,300,450) as its fuzzy demand and (0,0,0) as its 

fuzzy transportation costs per unit. Hence the 

balanced fuzzy transportation with a dummy 
destination becomes 

 

 

 D1 D2 Supply 

O1 

(1
9
, 
4

-4
r,

 1
0

-1
0
r)

 

(3
1
, 
9

-9
r,

 3
-3

r)
 

(201, 51-51r, 45-45r) 

O2 

(1
0
, 
2

-2
r,

 2
-2

r)
 

(3
9
, 
9

-9
r,

 1
5

-1
5
r)

 

(99, 49-49r, 55-55r) 

D
e
m

a
n

d
 

(1
5

0
, 
5

0
-5

0
r,

 5
0

-5
0
r)

 

(1
5

0
, 
5

0
-5

0
r,

 5
0

-5
0
r)

 

 

 D1 D2 

O1 

(19, 4-4r, 10-10r) 

(51, 50-50r, 55-55r) 

(31, 9-9r, 3-3r) 

(150, 50-50r, 50-50r) 

O2 

(10, 2-2r, 2-2r) 

(99, 49-49r, 55-55r) 
(39, 9-9r, 15-15r) 

 B1 B2 Supply 

A1 (1,3,5) (3,5,13) (300,399,504) 

A2 (2,3,10) (3,4,11) (250,301,346) 

A3 (5,6,13) (1,3,5) (300,399,504) 

D
e
m

a
n

d
 

(4
0
0
,4

4
8
,5

0
8
) 

(3
0
0
,3

5
1
,3

9
6
) 
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Table 5.5 Balanced Fuzzy Transportation Problem 

 

Now the balanced fuzzy transportation problem in 

which all the triangular numbers are of the form 

  m, ,  is given in table 5.6. 

Table 5.6 Balanced Fuzzy Transportation Problem 

in which all the triangular numbers are of the form 

  m, ,  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

By applying fuzzy version of Vogels Approximation 

method, the initial fuzzy basic feasible solution is 

given by  

Table 5.7 Initial fuzzy basic feasible solution 

 

By applying fuzzy version of MODI method, it can 

be seen that the current initial fuzzy basic feasible 

solution is optimal. The fuzzy optimal solution in 

terms of location index and fuzziness index is given 
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The corresponding fuzzy optimal transportation cost 

is given by 
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where 0 ≤ r ≤ 1 can be suitably chosen by the 

decision maker. 

 

 Case(i). When r = 0, the fuzzy optimal 
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transportation cost of the form 
1 2 3

A (a ,a ,a ) is 

(2217, 2397, 2547). Its defuzzyfied transportation 

cost is 2392. 
 

Case(ii). When r = 0.5, the fuzzy optimal 

transportation cost in terms of the form (m, α, β) is 

(2397, 75, 75). The corresponding fuzzy optimal 

transportation cost of the form 
1 2 3

A (a ,a ,a ) is 

(2322, 2397, 2472). Its defuzzyfied transportation 

cost is 2397.       
 

Case(iii). When r =1, the fuzzy optimal 

transportation cost in terms of the form (m, α, β) is 

(2397, 0, 0). The corresponding fuzzy optimal 

transportation cost of the form 
1 2 3

A (a ,a ,a )  is 

(0, 2397, 0). The optimum fuzzy transportation cost 

 = (-548, 2397, 7120). Defuzzied fuzzy 

transportation cost is 2693. 

 

VI. CONCLUSION 
 In this paper, the transportation costs are 

considered as imprecise numbers described by 

triangular fuzzy numbers which are more realistic 

and general in nature. We proposed a fuzzy version 

of VAM and MODI algorithms to solve fuzzy 

transportation problem without converting them to 

classical transportation problems. Two numerical 

examples are solved using the proposed algorithms 

and obtained results are better than the existing 

results. 
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