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Abstract 
We derive existence results for  the 

periodic  boundary value problem 

)()(,()()( tpxxtgxcxxfxax iv  

 x(0) = x(2π), x  (0) = x  (2 ), x 0) = x ( 2 ), 

x  (0) = x  (2 ) 

using degree theoretic methods. The uniqueness of 

periodic solutions is also examined. 
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1. Introduction 
In this paper we study the periodic boundary value 

problem  

x
iv)(

 + xa  f ( x ) x  + c x + g(t, x(t - )] = p(t)

             (1.1) 

x(0) = x(2π), x  (0) = x  (2 ), x 0) = x ( 2 ), 

x  (0) = x  (2 )  

with  fixed delay )2,0[    Where c ≠ 0 is  a  

constant, p: [0, 2 ]→R   and g: [0, 2 ]x → 

  are  2π periodic in t and g satisfies certain 

Caratheodory conditions.  

The  unknown  function x: [0, 2 ]→R  is  defined  

for  0 < t <   by  x(t -  ) = x( 2 -(t- ) 

The differential equation xax iv )(
.+ b x  + 

h(x) x  + g(t, x(t - )) = p(t)         

            (1.2) 

In which b < 0 is  a  constant was  the object of  a 

recent  study [6]. 

Results on the existence and uniqueness of  

2  periodic solutions were established  subject  to  

certain resonant conditions  on g. Fourth order 

differential equations with delay occur in a variety 

of physical problems in fields such as Biology, 

Physics, Engineering and Medicine.  In recent year, 

there have been many publications involving 

differential equation with delay; see  for example 

[1,2,4,5,6,8,9]. However, as  far as we know, there 
are few results on the existence and  uniqueness of 

periodic solution to [1.1]. 

In  what follows  we  shall  use  the spaces 

C([0, 2 ]), Ck([0, 2 ]) ‘ 

and Lk([0, 2 ]) of  continuous, k times 

continuously differentiable  or measurable real  

functions  whose  kth power of the absolute value  

is Labesgue integrable.  

 

We shall also  make use  of the  sobolev space    
defined by  

 
kH 2  = { ,]2,0[:{ xRx   x  are 

absolutely continuous on  [ ]2,0   and, 

x L2[ ]2,0   with norm 
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2. The Linear cases 
In this section  we shall first consider the 

equation: 

x(iv) (t) + a x (t) + b x  (t) + c x (t) + dx(t- ) = 0

     (2.1) 

x(0) = x(2 ), x (0) = x (2 ), x  (0) = x (2 ), 

x (0) = x  (2 ) 

 

Where a, b, c, d, are constants 

Lemma 2.1  Let c ≠ 0 and Let a/c < 0 

Suppose that: 

  0 < d/c < n, n ≥ 1   (2.2) 

Then (2.1) has no non-trivial 2  periodic solution 

for any fixed ).2,0[    

 

Proof 

By substituting x(t) =   e 
t
with  = in,  i

2 = -1.  

We can see that the conclusion of the Lemma is 

true if   Ф(n,  ) = an3 – cn + d Sin n  ≠ 0 for all n 

≥ 1 and     [0, 2 )  (2.3) 

By (2.2) we have 

c-1 ф(n,  ) = 
c

a
 n3-n + 

c

d
Sin n  ≤ 

033  n
c

a

c

d
nn

c

a
 

Therefore ),( n ≠0 and the result follows 
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If  x
1L  [0, 2 ] we shall  write 

xtxtxdttxx   )()(~,)(
2

1 2

0




 

So that  

 
2

0
0)(~ dttx  

We shall consider next the delay equation 

)()(
)(

 txtdxcxbxax
iv

 = 0 

      (2.4) 

 

x(0) = x( 2 ), x (0) =, x ( 2 ), x (0) = x ( 2 ), 

x (0) = x ( 2 ) 

Where a , b, c are constants and d L
1

2
   

Here the coefficient d in (2.4) is not necessarily 
constant. We  have  he  following results which 

apart from being  of  independent interest are also 

useful  in the  non-linear case involving  (1.1) 

Lemma  2.2   Let c ≠0 and let a/c < 0 Set Γ(t) = 

c-1d(t)  L
2

2
Suppose  that  

0 < Γ(t)<1    (2.5) 

Then for arbitrary constant b the equation (2.4) 

admits in 
1

2H   only the trivial solution for every 

  [0, 2 ). 

We note that a  and c are not arbitrary. 

 

Proof 

If x
1

2H is a possible solution of (2.4) then on 

multiplying (2.4) by x + x~ (t) and integrating over 

[0, 2 ] noting  that  
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We have that 
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Using the identity 
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Using  (2.5) we  get 
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From the periodicity of x~  we have that 

     

  




2

0

2

2

0

2 )(~)(~ dttxdttx   

Hence 

0 dttxttx )](~)()(~[ 2

2

0

2

2
1

2
1 




    + 

2
1

 






2

22

2
1 )](~)()(~([

o

dttxttx   

 (2.6) 

Using (2.5) we can see that the last expression is 
non-negative hence 
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By Lemma 1 of [8] where  > 0 is  a constant.  

This implies x~ =  0 a .e and  that x = x . 

But a constant map cannot be a solution of (2.4) 

since 0)(  t   

Thus x = 0 

 

Theorem 2.1 

Let all the conditions  of  Lemma 2.2 hold and let 

  be  related to    by Lemma 2.2.Suppose 

further that V  L
2

2
  satisfies 

0  )()( ttV   a.e t  2,0  where    > 

0 then 

 dttxtVxxxfxaxctxx iv )()(])([))(~(
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Proof 

 

We have from the proof of Lemma 2.2 that  
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From condition (2.5) , Lemman 2.2 and  
Wirtinger’s inequality we have   
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3. The Non Linear Case 
We shall  consider  the  non-linear delay 

equation 

)())(,()()( tptxtgxcxxfxax iv  
     (3.1) 

 

)2()0(),2()0(),2()0(),2()0(  xxxxxxxx  

 

where f :   is a continuous  function and 

xg ]2,0[:  is  such   

that g(. x) is a measurable on  2,0  for  each 

x  and   ,.)(tg   

is continuous  on   for  almost each t [0,2 ] 

We assume moreover that  for each  r > 0 

there exists Yr L
1

2
 such that  

 )(),( txtg r      (3.2) 

for a.e t  ]2,0[   and all x ],[ rr such a g  is  

said  to satisfy  the 

 Caratheodory’s condition. 

 

Theorem 3.1 

 Let   c ≠ 0  and  let a/c  <  0 

Suppose   that g  is  a caratheodory function 

satisfying  the  inequalities 

0),(1  xtxgc     )( rx                (3.3)

  

Lim     sup )(
),(

t
cx

xtg
   (3.4) 

                          

     

   

Uniformly a.e.  ]2,0[ t  where  r >  0  is  

constant and  
2

2L  is  such  that 

0 <   

Suppose   
2

2Lp is such that  






2

0
)(

2

1
dttpp = 0   then  for  arbitrary  

continuous  function f  the  boundary value 

problem (3.1)  has  at  least  one  solution for  every 

)2,0[    

 

Proof 

 Let  be  related  to  as  in Lemma 

2.2  so that  by (3.3)  and  (3.4)  there exists  a  

constant R1  such that  for 1  

0                       (3.5) 

Define  by 



 Samuel A. Iyase / International Journal of Engineering Research and Applications 

 (IJERA)               ISSN: 2248-9622               www.ijera.com 

Vol. 3, Issue 1, January -February 2013, pp. 

1353 | P a g e  

 
























)(

),()(

),()(

),()(

),(~

1

1

1

1

1

1

1

t

RtgcR

RtgcR

xtgcx

xty  

 

0

0

0

1

1

1









x

xR

Rx

Rx

         

         (3.6) 

Then 

 0 <  ),(~ xty ≤ Γ(t)  +   

     
        (3.7) 

for a .e t ]2,0[   and  all x    .  Moreover the 

function ),(~ xty satisfy Caratheodory’s conditions 

and   :  [0,2 π] x →  defined by  

))(,(~)())(,())(,(~   txtytcxtxtgtxtg

                                                (3.8) 

is such  that for a.e t  [0,2π]  and  all  x .  

)())-x(t(t,g~ t    for some t( )   

Let ]1,0[  be  such  that  

    c-1[
)(ivx  + xa  + λf( x ) x ] + x +(1 - λ)  Γ(t)x(t-τ) + λ y~  

(t, x(t-τ)) )( tx   

0)())(,(~)1( 111   tpctxtgcxbc      

       (3.9) 

For  = 0  we obtain (2.1) which by Lemma 2.2 

admits only the trivial solution  

For λ = 1   we get the original equation (1.1). To 

prove that equation (3.1) has at least one solution, 

we show according to the Leray-Shauder Method 

that the possible solution of  the  family of 

equations (3.9) are apriori bounded  in C3[0,2π] 

independently  of ].1,0[  

Notice that by (3.5)  one  has 

0 < (1- λ) Γ(t) + λ y~  (t,x(t-τ)) < Γ(t) +  (3.10) 

Then  using  Theorem 2.1  with  V(t) = (1- λ)Γ(t) + 

λ y~ (t, x(t-τ)) and  Cauchy Schwarz  inequality we 

get 

0 = 
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xxxfxaxctxx iv 

 (1-λ)Γ(t) x(t-τ) + ~
(t,x(t-τ)+ )(,(~  txtg  
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With  0  independent of x  and   

.Integrating (3.9) over [0,2π}We obtain 

))(,()()()1(

2

0

2

0

1

   

 

 txtgcdttxt

                   (3.12) 

Since Γ(t) > 0  we  derive  that 

0)(

2

0

2
1 




dtt    (3.13) 

Hence if x(t) > r for  all t [0,2π],  (3.3) and  (3.12) 

implies  that )1(  0  contradicting  0.  

Similarly if x(t)  <  -  r for all t   [0,2π] we  reach 
a contradiction. 

Thus there exists   a, t1,   [0,2π] such that 

.)( 1 rtx    Le t2 be  such that 

 x = .)()()(
2

1

12 

t

t

dssxtxtx     This 

implies that 1
2

~2



H

xrx   

Substituting this in (3.11) we  get 

1
2

1
2

~~
1

2

 HH
xcx     

 or  1
2

~
H

x 0, 11  cc                (3.14) 

Now  
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1
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     (3.15) 

Thus 

 0, 332
 ccx   (3.16) 

From (3.16)we have 

 0, 44 


ccx   (3.17) 

Multiplying (3.9) by  - )(tx  and  integrating  over 

[0,2π] we  have 

)1(
222222
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Hence 

0, 552
 ccx     (3.18) 

And thus 

 0, 66 


ccx   (3.19) 
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Multiplying (3.9) by  )(tx  and integrating over 

[0,2π] 

We get  

 

22222
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Thus 

 0, 772
 ccx   (3.20) 

And hence 

 0, 88 


ccx   (3.21) 

Also 

 0, 99

)( 


ccx iv
  (3.22) 

Since )2()0( xx    there exists to    [0,2π]  

Such that 0)( otx  Hence 

 
1010,ccx 


 > 0  (3.23) 

 

From (3.17), (3.19), (3.22) and  (3.23) our  result 
follows. 

 

4. Uniqueness Result 

If in (1.1),  bxf )(   a constant. The following 

uniqueness results holds. 

 

Theorem 4.1 
Let a, b, c, be constants with c ≠ 0  a/c < 0. 

Suppose g is  a caratheodony function satisfying 
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For a.e., t [0,2π]  and  all x1,  x2 R     x1 ≠  x2 

where  Γ 2

2L  

Then the boundary value problem 

 

)2()0(),2()0(),2()0(),2()0(

)())(,(
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                                        (4.1) 

has art most  one  solution. 

 

Proof 

Let u = x1 –x2 for any two solutions x1, x2 of (4.1). 

Then u satisfies the boundary value problem  

)2()0(),2()0(),2()0(),2()0(

0)()(][ )(1
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Where 
2

2)(  Lt  is defined by 

 )(t = 

)(

))(,())(,(

21

21

xxc

txtgtxtg



 
 

If u = x1 - x2  ≠ 0 and  since  0 < β(t)   Γ(t) for  

a.e t  [0,2π] then  using  the arguments  of  

theorem 2.1 we have  that  u =  0 and  thus  x1  

= x2  a. e. 
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