Samuel A. Iyase / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 1, January -February 2013, pp.1350-1354 On The Existence Of Periodic Solutions Of Certain Fourth Order Differential Equations With Dealy

Samuel A. Iyase

Department of Mathematics, Computer Science and Information Technology, Igbinedion University, Okada, P.M.B. 0006, Benin City, Edo State, Nigeria.

Abstract

We derive existence results for the periodic boundary value problem $x^{(iv)} + a\ddot{x} + f(\dot{x})\ddot{x} + c\dot{x} + g(t, x(x - \tau) = p(t))$ $x(0) = x(2\pi), \dot{x}(0) = \dot{x}(2\pi), \ddot{x}0) = \ddot{x}(2\pi),$ $\ddot{x}(0) = \ddot{x}(2\pi)$

using degree theoretic methods. The uniqueness of periodic solutions is also examined.

Keywords and Phrases: "Periodic Solutions, Caratheodony Conditions, Fourth Order Differential Equations with delay. 2000 Mathematics Subject Classification: 34B15; 34C15, 34C25.

1. Introduction

In this paper we study the periodic boundary value problem

 $\chi^{(i\nu)} + d\ddot{x} + f(\dot{x}) \ddot{x} + c\dot{x} + g(t, x(t - \tau)) = p(t)$ (1.1)

 $\begin{aligned} \mathbf{x}(0) &= \mathbf{x}(2\pi), \ \dot{\mathbf{x}} \ (0) &= \ \dot{\mathbf{x}} \ (2\pi), \ \ddot{\mathbf{x}} \ 0) &= \ \ddot{\mathbf{x}} \ (2\pi), \\ \ddot{\mathbf{x}} \ (0) &= \ \ddot{\mathbf{x}} \ (2\pi) \end{aligned}$

with fixed delay $\tau \in [0, 2\pi)$ Where $c \neq 0$ is a constant, p: $[0, 2\pi] \rightarrow \mathbb{R}$ and g: $[0, 2\pi] \times \Re \rightarrow \Re$ are 2π periodic in t and g satisfies certain Caratheodory conditions.

The unknown function x: $[0, 2\pi] \rightarrow \mathbb{R}$ is defined for $0 < t < \tau$ by $x(t - \tau) = x(2\pi - (t - \tau))$

The differential equation $x^{(i\nu)} + d\ddot{x} + b\ddot{x} + h(x)\dot{x} + g(t, x(t - \tau)) = p(t)$ (1.2)

In which b < 0 is a constant was the object of a recent study [6].

Results on the existence and uniqueness of 2π periodic solutions were established subject to certain resonant conditions on g. Fourth order differential equations with delay occur in a variety of physical problems in fields such as Biology, Physics, Engineering and Medicine. In recent year, there have been many publications involving differential equation with delay; see for example [1,2,4,5,6,8,9]. However, as far as we know, there are few results on the existence and uniqueness of periodic solution to [1.1].

In what follows we shall use the spaces C([0, 2π]), C^k([0, 2π]) '

and $L^{k}([0, 2\pi])$ of continuous, k times continuously differentiable or measurable real functions whose kth power of the absolute value is Labesgue integrable.

We shall also make use of the sobolev space defined by

 $H_{2\pi}^{k} = \{ \{x : [0, 2\pi] \rightarrow R | x, \dot{x} \text{ are} \\ \text{absolutely continuous on } [0, 2\pi] \text{ and,} \\ \vec{x} \in L^{2}[0, 2\pi] \text{ with norm } |x|_{H_{2\pi}^{2}}^{2} = \\ \left(\frac{1}{2\pi} \int_{0}^{2\pi} x^{2}(t) dt\right)^{2} + \frac{1}{2\pi} \sum_{i=1}^{2} \int_{0}^{2\pi} |x^{i}(t)|^{2} dt \text{ .} \\ x^{i} = \frac{d^{i}x}{dt^{i}}$

2. The Linear cases

In this section we shall first consider the equation:

 $\begin{aligned} x^{(iv)}(t) &+ a\ddot{x}(t) + b\ddot{x}(t) + c\dot{x}(t) + dx(t - \tau) = 0 \\ (2.1) \\ x(0) &= x(2\pi), \ \dot{x}(0) = \dot{x}(2\pi), \ \ddot{x}(0) = \ddot{x}(2\pi), \\ \ddot{x}(0) &= \ddot{x}(2\pi) \end{aligned}$

Where a, b, c, d, are constants **Lemma 2.1** Let $c \neq 0$ and Let a/c < 0Suppose that:

 $0 < d/c < n, n \ge 1$ (2.2)

Then (2.1) has no non-trivial 2π periodic solution for any fixed $\tau \in [0, 2\pi)$.

Proof

By substituting $x(t) = e^{\lambda t}$ with $\lambda = in$, $i^2 = -1$. We can see that the conclusion of the Lemma is true if $\Phi(n, \tau) = an^3 - cn + d \sin n \tau \neq 0$ for all $n \ge 1$ and $\tau \in [0, 2\pi)$ (2.3) By (2.2) we have

$$c^{-1} \quad \varphi(n, \quad \tau) = \frac{a}{c} \quad n^{3} - n + \frac{d}{c} \sin n \quad \tau \le \frac{a}{c} n^{3} - n + \frac{d}{c} \le \frac{a}{c} n^{3} < 0$$

Therefore $\Phi(n, \tau) \neq 0$ and the result follows

Samuel A. Iyase / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3 Issue 1 Jonuary Echnology 2013 pp

Vol. 3, Issue 1, January -February 2013, pp.

(2.4)

If
$$x \in L$$
 [0, 2π] we shall write
 $\overline{x} = \frac{1}{2\pi} \int_0^{2\pi} x(t) dt$, $\widetilde{x}(t) = x(t) - \overline{x}$

So that

 $\int_0^{2\pi} \widetilde{x}(t) dt = 0$

We shall consider next the delay equation

$$\chi^{(w)} + d\ddot{x} + b\ddot{x} + c\dot{x} + d(t)x(t-\tau) = 0$$

 $\begin{aligned} \mathbf{x}(0) &= \mathbf{x}(2\pi), \dot{x}(0) =, \ \dot{x}(2\pi), \ \ddot{x}(0) &= \ \ddot{x}(2\pi), \\ \ddot{x}(0) &= \ \ddot{x}(2\pi) \end{aligned}$

Where a, b, c are constants and $d \in L^1_{2\pi}$

Here the coefficient d in (2.4) is not necessarily constant. We have he following results which apart from being of independent interest are also useful in the non-linear case involving (1.1) **Lemma 2.2** Let $c \neq 0$ and let a/c < 0 Set $\Gamma(t) =$

 $c^{-1}d(t) \in L^2_{2\pi}$ Suppose that $0 < \Gamma(t) < 1$ (2.5) Then for arbitrary constant b the equation (2.4)

admits in $H_{2\pi}^1$ only the trivial solution for every $\tau \in [0, 2\pi)$.

We note that *a* and c are not arbitrary.

Proof

If $x \in H^1_{2\pi}$ is a possible solution of (2.4) then on

multiplying (2.4) by $\overline{x} + \hat{x}$ (t) and integrating over [0, 2π] noting that

$$\frac{1}{2\pi} \int_{0}^{2\pi} (\bar{\mathbf{x}} + \dot{\tilde{\mathbf{x}}}(t))$$
$$c^{-1} [x^{(iv)} + a\ddot{x} + b\ddot{x}] = -\frac{1}{2\pi} \frac{a}{c} \int_{0}^{2\pi} \ddot{x}^{2}(t) dt$$

We have that

0 =

$$\frac{1}{2\pi}\int_{0}^{2\pi} (\overline{\mathbf{x}} + \dot{\widetilde{\mathbf{x}}}(t) \left\{ c^{-1} [x^{(i\nu)} + a\overline{x} + b\overline{x}] + \dot{x} + \Gamma(t)x(t-\tau) \right\} dt$$

$$= \frac{1}{2\pi} \frac{a}{c} \int_{0}^{2\pi} \ddot{\tilde{x}}^{2}(t) dt + \frac{1}{2\pi} \int_{0}^{2\pi} (\bar{x} + \dot{\tilde{x}}(t)) [\dot{x} + \Gamma(t)x(t - \tau) dt]$$

$$\geq \frac{1}{2\pi} \int_{0}^{2\pi} (\bar{x} + \dot{\tilde{x}}(t)) \{ \dot{x}(t) + \Gamma(t)x(t-\tau) \} dt$$

$$\frac{1}{2\pi} \int_{o}^{2\pi} \dot{\bar{x}}^{2}(t)dt + \int_{0}^{2\pi} \Gamma(t)\dot{\bar{x}}x(t-\tau)dt + \frac{1}{2\pi} \int_{0}^{2\pi} \Gamma(t)\bar{x}^{2}dt + \frac{1}{2\pi} \int_{o}^{2\pi} \Gamma(t)\bar{x}\tilde{x}(t-\tau)dt$$

Using the identity

$$ab = \frac{(a+b)^2}{2} - \frac{a^2}{2} - \frac{b^2}{2}$$

We get

$$\frac{1}{2\pi} \int_{0}^{2\pi} \dot{\tilde{x}}^{2}(t) dt + \frac{1}{2\pi} \int_{0}^{2\pi} \Gamma(t) \bar{x}^{2} dt + \frac{1}{2\pi} \int_{0}^{2\pi} \Gamma(t) \bar{x} \tilde{x}(t-\tau) dt$$

$$+\frac{1}{2\pi}$$

$$\int_{0}^{2\pi} \Gamma(t) \left\{ \frac{[x(t-\tau)+\dot{\tilde{x}}(t)]^{2}}{2} - \frac{\dot{\tilde{x}}^{2}}{2} - \frac{\tilde{x}^{2}(t-\tau)}{2} - \bar{x}\tilde{x}(t-\tau) - \frac{\bar{x}^{2}}{2} \right\} dt$$

$$= \frac{1}{2\pi}$$

$$\int_{0}^{2\pi} \dot{\tilde{x}}^{2}(t) dt - \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\Gamma(t)}{2} [\dot{\tilde{x}}^{2} + \tilde{x}^{2}(t-\tau)] dt + \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\Gamma(t)}{2} \left\{ \left[x(t-\tau) + \dot{\tilde{x}}(t) \right]^{2} + \bar{x}^{2} \right\} dt$$
Using (2.5) we get

0

$$\geq \frac{1}{2\pi} \int_{0}^{2\pi} \dot{\tilde{x}}^{2}(t) dt - \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\Gamma(t)}{2} \left[\dot{\tilde{x}}^{2} + \tilde{x}^{2}(t-\tau) \right] dt$$

From the periodicity of $\dot{\tilde{x}}$ we have that

$$\int_{0}^{2\pi} \dot{\tilde{x}}^{2}(t) dt = \int_{0}^{2\pi} \dot{\tilde{x}}^{2}(t-\tau) dt$$

Hence

$$0 \geq \frac{1}{2} \left[\frac{1}{2\pi} \int_{0}^{2\pi} \dot{\tilde{x}}^{2}(t-\tau) - \Gamma(t) \tilde{x}^{2}(t-\tau) \right] dt + \frac{1}{2} \left[\frac{1}{2\pi} \int_{0}^{2\pi} (\dot{\tilde{x}}^{2}(t) - \Gamma(t) \dot{\tilde{x}}^{2}(t-\tau)) \right] dt$$
(2.6)

Using (2.5) we can see that the last expression is non-negative hence

Samuel A. Iyase / International Journal of Engineering Research and Applications **ISSN: 2248-9622** (IJERA) www.iiera.com Vol. 3, Issue 1, January -February 2013, pp.

$$0 \ge \frac{1}{2} \left[\frac{1}{2\pi} \int_{0}^{2\pi} (\dot{\widetilde{x}}^{2}(t-\tau) - \Gamma(t)\widetilde{x}^{2}(t-\tau)) dt \right]$$
$$\ge \delta \left| \widetilde{x} \right|_{H_{2\pi}^{1}}^{2}$$

By Lemma 1 of [8] where $\delta > 0$ is a constant. This implies $\tilde{x} = 0$ *a* .e and that $x = \bar{x}$. But a constant map cannot be a solution of (2.4)since $\Gamma(t) \neq 0$ Thus x = 0

Theorem 2.1

Let all the conditions of Lemma 2.2 hold and let δ be related to Γ by Lemma 2.2. Suppose that $V \in L^2_{2\pi}$ satisfies further $0 \le V(t) \le \Gamma(t) + \varepsilon$ a.e. $t \in [0, 2\pi]$ where $\varepsilon >$ 0 then $\frac{1}{2\pi} \int_{0}^{2\pi} (\bar{x} + \dot{\tilde{x}}(t)) \left\{ c^{-1} [x^{(iv)} + a\ddot{x} + f(\dot{x})\ddot{x}] + \dot{x} + V(t)x(t-\tau) \right\} dt$ Theorem 5. $\geq (\delta - \varepsilon) \Big| \widetilde{x} \Big|_{H^{1}_{2\pi}}^{2}$ (2.7)

We have from the proof of Lemma 2.2 that

$$x^{(iv)} + a\ddot{x} + f(\dot{x})\ddot{x} + c\dot{x} + g(t, x(t-\tau)) = p(t)$$
(3.1)

$$x(0) = x(2\pi), \dot{x}(0) = \dot{x}(2\pi), \ddot{x}(0) = \ddot{x}(2\pi), \ddot{x}(0) = \ddot{x}(2\pi)$$

where $f: \mathfrak{R} \to \mathfrak{R}$ is a continuous function and $g:[0,2\pi] x \mathfrak{R} \to \mathfrak{R}$ is such

that g(. x) is a measurable on $[0,2\pi]$ for each $\mathbf{x} \in \mathfrak{R}$ and g(t, .)

is continuous on \Re for almost each $t \in [0, 2\pi]$ We assume moreover that for each r > 0

here exists
$$Y_r \in L_{2\pi}^1$$
 such that

$$\left|g(t,x)\right| \le \mathbf{Y}_r(t) \tag{3.2}$$

for a.e t $\in [0,2\pi]$ and all $x \in [-r,r]$ such a g is said to satisfy the

Caratheodory's condition.

Theorem 3.1

Let $c \neq 0$ and let a/c < 0

continuous function f the

constant R_1 such that for $IxI \ge R_1$

 $\tau \in [0, 2\pi)$

Proof

problem (3.1) has at least one solution for every

2.2 so that by (3.3) and (3.4) there exists a

Let $\delta > 0$ be related to Γ as in Lemma

Suppose that g is a caratheodory function satisfying the inequalities

$$c^{-1}xg(t,x) \ge 0$$
 $(|x| \ge r)$ (3.3)

$$\frac{1}{2\pi} \int_{0}^{2\pi} (\bar{x} + \dot{\tilde{x}}(t)) \left\{ c^{-1} \left[x^{(iv)} + a\ddot{x} + f(\dot{x})\ddot{x} \right] + \dot{x} + V(t) x(t-\tau) \right\} dt \xrightarrow{2\pi} dt \xrightarrow{2\pi} \left\{ C(t, x) \right\} dt \xrightarrow{2\pi} dt$$

$$\geq \frac{1}{2} \left(\frac{1}{2\pi} \int_{0}^{2\pi} \left(\ddot{x}^{2}(t-\tau) - V(t)\tilde{x}^{2}(t-\tau)\right) dt + \frac{1}{2} \left(\frac{1}{2\pi} \int_{0}^{2\pi} \left(\ddot{x}^{2}(t) - \tau\right) dt + \frac{1}{2} \left(\frac{1}{2\pi} \int_{0}^{2\pi} \left(\ddot{x}^{2}(t-\tau) - V(t)\tilde{x}^{2}(t-\tau)\right) dt - \frac{\varepsilon}{2} \left(\frac{1}{2\pi} \int_{0}^{2\pi} \tilde{x}^{2}(t-\tau) dt + \frac{\varepsilon}{2} \left(\frac{1}{2\pi} \int_{0}^{2\pi$$

$$+\frac{1}{2}(\frac{1}{2\pi}\int_{0}^{2\pi}(\dot{\tilde{x}}^{2}(t)-\Gamma(t)\dot{\tilde{x}}^{2}(t))dt-\frac{\varepsilon}{2}(\frac{1}{2\pi})$$
$$\int_{0}^{2\pi}\dot{\tilde{x}}^{2}(t)dt$$

From condition (2.5), Lemman 2.2 and Wirtinger's inequality we have

$$\geq \delta |\widetilde{x}|_{H_{2\pi}^{1}} - \varepsilon |\widetilde{x}|_{L_{2\pi}^{2}} \geq \delta |\widetilde{x}|_{H_{2\pi}^{1}} - \varepsilon |\widetilde{x}|_{H_{2\pi}^{1}} = (\delta - \varepsilon) |\widetilde{x}|_{H_{2\pi}^{1}} \\ 0 \leq \frac{g(t,x)}{cx} \leq \Gamma(t) + \frac{\delta}{2}$$
(3.5)
Define $\widetilde{y}(t,x)$ by

3. The Non Linear Case

We shall consider the non-linear delay equation

boundary value

Samuel A. Iyase / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 1, January - February 2013, pp.

$$\widetilde{y}(t,x) = \begin{cases} (cx)^{-1} g(t,x) \\ (cR_1)^{-1} g(t,R_1) \\ -(cR_1)^{-1} g(t,-R_1) \\ \Gamma(t) \end{cases}$$
$$|x| \ge R_1$$
$$0 < x < R_1$$
$$-R_1 < x < 0$$
$$x = 0$$
(3.6)

8/2

Then

(t,

 $0 < \widetilde{y}(t,x) \leq \Gamma(t) +$

for a .et $\in [0,2\pi]$ and all $x \in \Re$. Moreover the function $\tilde{y}(t,x)$ satisfy Caratheodory's conditions and \tilde{g} : $[0,2\pi] \times \Re \to \Re$ defined by $\tilde{g}(t,x(t-\tau)) = g(t,x(t-\tau)) - cx(t-\tau) \tilde{y}(t,x(t-\tau))$ (3.8) is such that for a.e $t \in [0,2\pi]$ and all $x \in \Re$. $|\tilde{g}(t,x(t-\tau))| \leq \alpha(t)$ for some $\alpha(t) \in L^2_{2\pi}$. Let $\lambda \in [0,1]$ be such that $c^{-1}[x^{(i\nu)} + a\ddot{x} + \lambda f(\dot{x})\ddot{x}] + \dot{x} + (1-\lambda) \Gamma(t)x(t-\tau) + \lambda \tilde{y}$ $x(t-\tau))x(t-\tau)$

+
$$c^{-1}(1-\lambda)b\ddot{x} + \lambda c^{-1}\tilde{g}(t,x(t-\tau)) - c^{-1}\lambda p(t) = 0$$
(3.9)

For $\lambda = 0$ we obtain (2.1) which by Lemma 2.2 admits only the trivial solution

For $\lambda = 1$ we get the original equation (1.1). To prove that equation (3.1) has at least one solution, we show according to the Leray-Shauder Method that the possible solution of the family of equations (3.9) are apriori bounded in $C^3[0,2\pi]$ independently of $\lambda \in [0,1]$.

Notice that by (3.5) one has

$$0 \le (1 - \lambda) \Gamma(t) + \lambda \tilde{y} (t, x(t-\tau)) \le \Gamma(t) + \frac{1}{2} (3.10)$$

Then using Theorem 2.1 with $V(t) = (1 - \lambda)\Gamma(t) + \lambda \tilde{y} (t, x(t-\tau))$ and Cauchy Schwarz inequality we get

81

$$\frac{1}{2\pi} \int_{0}^{2\pi} (\bar{x} + \dot{\tilde{x}}(t)) \{ c^{-1} [x^{(i\nu)} + a\ddot{x} + \lambda f(\dot{x})\ddot{x}] + \dot{x} + (1-\lambda)\Gamma(t) x(t-\tau) + \lambda \tilde{\gamma} (t, x(t-\tau) + \lambda \tilde{g}(t, x(t-\tau) + (1-\lambda)b\ddot{x} - \lambda p(t)) \} dt.$$

$$\geq \frac{\delta}{2} |\widetilde{x}|^{2}_{H^{1}_{2\pi}} - (|\alpha|_{2} + |p|_{2})(|\overline{x}| + |\dot{\widetilde{x}}|_{2})$$

$$\geq \frac{\delta}{2} |\widetilde{x}|^{2}_{H^{1}_{2\pi}} - \beta(|\overline{x}| + |\widetilde{x}|_{H^{1}_{2\pi}})$$
Thus

$$\left| \tilde{x} \right|_{H_{2\pi}^{1}}^{2} \le \frac{2\beta}{\delta} \left(\left| \bar{x} \right| + \left| \tilde{x} \right|_{H_{2\pi}^{1}}^{2} \right)$$
(3.11)

With $\beta > 0$ independent of x and λ .Integrating (3.9) over $[0,2\pi]$ We obtain 2π

$$(1-\lambda)\int_{0}^{2\pi}\Gamma(t)x(t-\tau)dt = -c^{-1}\lambda\int_{0}^{2\pi}g(t,x(t-\tau))$$
(3.12)

Since $\Gamma(t) > 0$ we derive that

$$\frac{1}{2\pi} \int_{0}^{2\pi} \Gamma(t) dt = \overline{\Gamma} > 0$$
(3.13)

Hence if $\mathbf{x}(t) \ge \mathbf{r}$ for all $t \in [0,2\pi]$, (3.3) and (3.12) implies that $(1-\lambda) \overline{\Gamma} < 0$ contradicting $\overline{\Gamma} > 0$. Similarly if $\mathbf{x}(t) \le -\mathbf{r}$ for all $t \in [0,2\pi]$ we reach a contradiction.

Thus there exists a, $t_1, \in [0,2\pi]$ such that $|x(t_1)| < r$. Let t_2 be such that

$$\bar{x} = x(t_2) = x(t_1) + \int_{t_1}^{t_2} \dot{x}(s) ds.$$
 This

implies that $|\overline{x}| \le r + 2\pi |\widetilde{x}|_{H^{1}_{2\pi}}$ Substituting this in (3.11) we get $|\widetilde{x}|^{2}_{H^{1}_{2\pi}} \le c_{1} |\widetilde{x}|_{H^{1}_{2\pi}}$

or
$$\left| \tilde{x} \right|_{H^{1}_{2\pi}} \le c_{1}, c_{1} > 0$$
 (3.14)

Now

$$x\Big|_{H^{1}_{2\pi}} \leq \left|\overline{x}\right| + \left|\widetilde{x}\right|_{H^{1}_{2\pi}} \leq r + (2\pi + 1)c_{1} = c_{2}$$
(3.15)

Thus

$$\dot{x}_{2} \leq c_{3}, c_{3} > 0$$
 (3.16)

From (3.16)we have

$$x_{\infty} \leq c_4, c_4 > 0 \tag{3.17}$$

Multiplying (3.9) by $-\dot{x}(t)$ and integrating over $[0,2\pi]$ we have

$$|\ddot{x}|_{2}^{2} \leq |a|^{-1} (|\dot{x}|_{2}^{2} + |1 + \frac{\delta}{2}||\dot{x}|_{2}|x|_{\infty} + |\alpha|_{2}|\dot{x}|_{2} + |p|_{2}|\dot{x}|_{2})$$

Hence

$$|\ddot{x}|_2 \le c_5, c_5 > 0$$
 (3.18)
And thus

$$|\dot{x}|_{\infty} \le c_6, c_6 > 0$$
 (3.19)

Samuel A. Iyase / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 1, January -February 2013, pp.

(3.21)

1

Multiplying (3.9) by $-\ddot{x}(t)$ and integrating over $[0,2\pi]$ We get

$$\left|\ddot{x}\right|_{2}^{2} \leq \left|f(\ddot{x})\right|_{\infty} \left|\ddot{x}\right|_{2}^{2} + \left|1 + \frac{\delta}{2}\right| \left|\ddot{x}\right|_{2} \left|x\right|_{\infty} + \left|c\right|^{-1} \left|\alpha\right|_{2} \left|\ddot{x}\right|_{2} + \left|p\right|_{2} \left|\ddot{x}\right|_{2} + \left|b\right| \left|\ddot{x}\right|_{2}$$

Thus

$$\left| \ddot{x} \right|_2 \le c_7, c_7 > 0 \tag{3.20}$$

And hence

$$\left| \ddot{x} \right|_{\infty} \le c_8, c_8 > 0$$

Also

$$x^{(iv)}\Big|_{I} \le c_9, c_9 > 0$$
 (3.22)

Since $\ddot{x}(0) = \ddot{x}(2\pi)$ there exists $t_o \in [0,2\pi]$

Such that $\ddot{x}(t_o) = 0$ Hence

$$\ddot{x}\Big|_{\infty} \le c_{10}, c_{10} > 0$$
 (3.23)

From (3.17), (3.19), (3.22) and (3.23) our result follows.

4. Uniqueness Result

If in (1.1), $f(\dot{x}) = b$ a constant. The following uniqueness results holds.

Theorem 4.1

Let a, b, c, be constants with $c \neq 0$ a/c < 0. Suppose g is a caratheodony function satisfying

$$0 < \frac{g(t, x_1(t-\tau)) - g(t, x_2(t-\tau))}{c(x_1 - x_2)} < \Gamma(t)$$

For a e. $t \in [0, 2\pi]$ and all $x_1, x_2 \in \mathbb{R}$ $x_1 \neq \infty$

For a.e., $t \in [0,2\pi]$ and all x_1 , $x_2 \in \mathbb{R}$ $x_1 \neq x_2$ where $\Gamma \in L^2_{2\pi}$

Then the boundary value problem

$$x^{iv} + a\ddot{x} + b\ddot{x} + c\dot{x} + g(t, x(t - \tau)) = p(t)$$

$$x(0) = x(2\pi), \dot{x}(0) = \dot{x}(2\pi), \ddot{x}(0) = \ddot{x}(2\pi), \ddot{x}(0) = \ddot{x}(2\pi)$$
(4.1)
(4.1)
(4.1)

has art most one solution.

Proof

Let $u = x_1 - x_2$ for any two solutions x_1 , x_2 of (4.1). Then u satisfies the boundary value problem

$$c^{-1}[u^{(iv)} + a\ddot{u} + b\ddot{u}] + \dot{u} + \beta(t)u(t - \tau) = 0$$

$$u(0) = u(2\pi), \dot{u}(0) = \dot{u}(2\pi), \ddot{u}(0) = \ddot{u}(2\pi), \ddot{u}(0) = \ddot{u}(2\pi)$$

Where
$$\beta(t) \in L^2_{2\pi}$$
 is defined by

$$\frac{\beta(t) = \frac{g(t, x_1(t-\tau)) - g(t, x_2(t-\tau))}{c(x_1 - x_2)}$$

If $u = x_1 - x_2 \neq 0$ and since $0 < \beta(t) \leq \Gamma(t)$ for a.e $t \in [0,2\pi]$ then using the arguments of theorem 2.1 we have that u = 0 and thus $x_1 = x_2$ a.e.

REFERENCES

- [1] F. Ahmad. Linear delay differential equations with a positive and negative term. *Electronic Journal of Differential Equations. Vol. 2003 (2003) No. 9, 1-6.*
- [2] J.G. Dix. Asymptotic behaviour of solutions to a first order differential equations with variable delays. Computer and Mathematics with applications Vol 50 (2005) 1791 - 1800
- [3] R. Gaines and J. Mawhin, Coincidence degree and Non-linear differential equations, *Lecture Notes in Math*, *No.568 Springer Berlin*, (1977).
- [4] S.A. Iyase: On the existence of periodic solutions of certain third order Nonlinear differential equation with delay. *Journal of the Nigerian Mathematical Society Vol. 11, No. 1 (1992) 27 - 35*
- [5] S.A. Iyase. Non-resonant oscillations for some fourth-order differential equations with delay. *Mathematical Proceedings of theRoyal Irish Academy*, Vol.99A, No.1, 1999, 113-121
- [6] S.A. Iyase and P.O.K. Aiyelo, Resonant oscillation of certain fourth order Nonlinear differential equations with delay, *International Journal of Mathematics and Computation Vol.3 No.* J09, June 2009 p67-75
- [7] Oguztoreli and Stein, An analysis of oscillation in neuromuscular systems. *Journal of Mathematical Biology* 2 1975 87-105.
- [8] E.De. Pascal and R. Iannaci: Periodic solutions of generalized Lienard equations with delay, *Proceedings equadiff 82*, *Wurzburg (1982) 148 - 156*
- [9] H.O. Tejumola, Existence of periodic solutions of certain third order non-linear differential equations with delay. *Journal* of Nigerian Mathematical Society Vol. 7 (1988) 59-66