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ABSTRACT.  

A three-dimensional photo elasticity 

analysis and an interactive finite-element package 

were used in parallel to analyze the stress 

distribution on the root of blind-holes in thin 

plates. Experimental analysis was conducted via 

stress freezing method. The FEM analysis was 

performed with the ABAQUS commercial code 

using material properties obtained 

experimentally as input. The results showed that 

the maximum stress distribution occurred in 

three zones: the first one at the beginning of the 

blind-hole; the second one at the transition zone 

where the root begins his shape; and at the center 

of the root.These results are expected to improve 

blind-hole design according to its function. The 

combined use of experimental and numerical 

methods provides more information than each 

method taken alone. This information is essential 

when the relation between depth and thickness 

has to be taken into account. As shown here, the 

stresses near the free boundary are relevant for 

failure considerations, for example due to the 

presence of debris in thin plates or sheets. An 

analog statement can be made for blind-holes 

made to fasten metal sheets with bolts or hollows 

for human prosthesis. 

KEY WORDS- Blind-hole, stress-freezing method, 

FEM, photoelasticity, stress concentration. 

 

I. Introduction 
In engineering practice the presence of 

holes, notches or any other geometry that causes 

stress concentration has been studied since Kirsch 
[1] in 1898. Problems with abrupt change of 

geometry in structural components are well known: 

stress concentration may be induced around the hole 

or notch, causing severe reductions of the strength 

and fatigue life of a structure. An important technical 

example of this situation is given when debris are 

present in laminating processes; such defects can be 

well modeled as blind holes. Many are the cases 

when the structural component has blind-holes  

 

 

 

 

created to fasten different parts of the component, or 

simply by design. The determination of the stress 

concentration around holes and notches was, and 

still is, one of the most common applications of 2D 

and 3D photoelasticity of machine elements design. 

In the literature, theoretical, experimental and 

numerical solutions were obtained for several cases 

where a circular hole has a particular function in thin 

or thick plates.Iancuet. al. [2] evaluated the stress 

distribution inside thick bolted plates along the 
bearing plane normal to theplate surface. 

Their experimental and numerical results help them 

to develop an improved joint design. 

Another stress distribution research in plates with 

circular holes was developed by Wang et. al. [3]. In 

their paper, they proposed a replaced superposition 

method to reconstruct experimental photoelastic 
fringe patterns of a near-surface circular hole. 

Peindlet. al. [4] did an analysis of a total shoulder 

replacement system via photoelastic stress freezing. 

They showed that maximum stress occurred at the 

neck and at the component-bone interface beneath 

simulated PMMA inclusions on both axial and 

coronal planes. Those planes exhibit blind-holes for 

different depths and root-shapes due to the whole 

replacement system. 

However, to the best of our knowledge, no 

experimental-numerical solution of the stress 

distribution around a blind-hole when a thin plate is 
under tension loads available in the literature. Figure 

1 illustrates this point. 

The purpose of this paper is three-fold. First to 

reproduce the boundary conditions required at the 

plate and develop a model whereby stress freezing 

method is used. Second, to analyze and acquire new 

information about maximal stresses along blind-

hole's route and root. And third, to show how 

numerical results corroborate and support qualitative 

results from the experimental ones. 
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II. Mathematical statement of the 

problem 
Consider a homogeneous, isotropic, elastic body 

Ω ⊂ ℝ3at equilibrium define by |x| < L, |y| < A ,  |z| 

<2hwhere 𝐿, 𝐴,  > 0 are given. It contains a 

cylindrical blind-hole of radius a  whose generators 

are perpendicular to the bounding planes and 

consists of two geometries, a cylinder 

 

𝐶𝑙 =   𝑥, 𝑦, 𝑧  𝑥2 + 𝑦2 ≤ 𝑎2 , 0 ≤ 𝑧 ≤ 𝑐1  
 

and a semi-sphere SE 

 

𝑆𝐸
=   𝑥, 𝑦, 𝑧  𝑥2 + 𝑦2 +  𝑧 − 𝑐1 

2 ≤ 𝑟2; 𝑐1 ≤ 𝑧 ≤ 𝑐1 + 𝑟  
 

so the body Ω = 𝑅𝐸𝐶 ∖  𝐶𝑙 ∪ 𝑆𝐸 , where 𝑅𝐸𝐶 is the 

rectangle of dimensions 𝐿 × 𝐴 × 𝑡. 
For this particular study the plate has the dimensions: 

𝐿 = 60 mm 2.36 in , 𝐴 = 26 mm 1 in , 𝑎 =
2.4 mm 0.1 in , 𝑟 = 1.6 mm 0.06 in , 𝑡 =
9.2 mm 0.36 in . 
Let the plate be subjected to a non-uniform tensile 

load along the x-axis and parallel to the bounding 

planes (Figure 1). 

 

Figure 1 Geometrical configuration of a plate weakened by 

a circular blind-hole 

 

The linear system of partial differential equations for 

the fieldu, E and S is 

 

 

𝐄 𝕡, 𝑡 =
1

𝐸
  1 + 𝜈 𝐒 𝕡, 𝑡 − 𝜈 tr𝐒 𝕡, 𝑡  𝐈 

𝐄 𝕡, 𝑡 =
1

2
 𝛁𝐮 𝕡, 𝑡 + 𝛁𝐮 𝕡, 𝑡 T 

Div𝐒 𝕡, 𝑡 + 𝐛𝐨 𝕡, 𝑡 = 𝜌𝑜𝐮  𝕡, 𝑡  
 
 

 
 

 1  

 

whereE is called the infinitesimal strain field, S is the 

first Piola-Kirchhoff stress field, 𝐛𝐨is the body force, 

u is the displacement field and 𝐸, 𝜈 are called 

Young’s modulus and Poisson’s ratio respectively 

[5]. 

 

As to the boundary conditions, it is required that 
 

𝑎𝑡           𝑥 = 𝐿 ∶  
𝜕𝐮 𝕡, 𝑡 

𝜕𝐧
= 𝑓 𝑦  2  

 

𝑎𝑡           𝑦 = 𝐴 ∶  𝐮 𝕡, 𝑡 = 0                        3  
 

𝑎𝑡              𝑧 = 0,2 ∶  𝐮 𝕡, 𝑡 = 0                 4  
 

for every 𝕡 ∈ 𝜕Ω,n being a unit normal vector at 𝕡, 

and 𝑓 𝑦 is a singularity function [11] called the unit 

ramp starting at  𝑦 𝐴
2 

= 𝜎. 

 

III. Experimental Approach 
The employed loading system could 

produce only compression forces; we need to carry 

out a new system in order to generate the wanted 

loadon 𝜕Ω. Figure 2 illustrates the procedure that the 

authors propose to produce the same system as 

shown in Fig. 1. If a plate is subjected to a central 
load, as illustrated in Fig. 2a, the bending stresses 

are of equal magnitude at the top and bottom of the 

beam (compression at the top and tension at the 

bottom). The stress distribution over the cross 

section is shown in Fig. 2a (right). In order to have a 

stress from a constant value 𝜎 (top) to a constant 

value 𝜎𝑚𝑎𝑥 (bottom) at the plate, a rectangular 

groove was made long enough to have a shorter plate 

below the groove, as shown in Fig. 2b. 

 

Figure 2 Stress distribution diagrams in the plate with 

the groove and acting load. 

 

The shear force has the constant magnitude 𝐹 2  

between the load and each support. The shear stress 

is maximum at the mid-height of the plate and 

decreases parabolically as it reaches the bottom of 

the plate; in coordinates,  

 

 𝜏𝑥𝑦  𝑚𝑎𝑥
=

𝐹 2 

2 𝑡𝐻3 12  
  

𝐻

2
 

2

− 𝑦1
2  5  

 

The bending and shear stresses are of comparable 

magnitude if and only if W and H are of the same 

magnitude. Since for this particular problem 𝑊 =
280 𝑚𝑚 (10.9 𝑖𝑛), 𝐻 = 62 𝑚𝑚(2.4𝑖𝑛) from [11] 

 

 𝜏𝑥𝑦  
𝑚𝑎𝑥

 𝜎𝑥 𝑚𝑎𝑥

=
1

2

𝐻

𝑊
 6  
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the ratio between the maximum bending and shear 

stress in the plate will be 17.5:1 respectively. 

Having the groove offers one particular 

advantage: block the way of every fringe pattern 

produced by the loading cell so we can isolate the 

part under tension that is the analyze one. 

Once the rectangular groove was made, a blind-
hole at the mid-height and mid-width of the plate was 

drilled. Finally there is a plate with a centered 

circular blind-hole subjected to a non-uniform tensile 

load as shown in Fig. 2c and Fig. 1. 

 

IV. Experimental Method 
Stress freezing method was used to determine 

the stress distribution in the transversal and 

longitudinal planes at blind-hole´s neighborhood. 

Once the slices were obtained, a circular polariscope 
was employed to analyze the fringe patterns. 

As shown in the Fig. 3, transversal and 

longitudinal slices were cut out from the plate to be 

analyzed separately. Circular polariscope was used 

because the circular polarization eliminates isoclinics 

(loci of points of constant inclination of the principal 

axes of refraction). 

 

Model Fabrication 

A508 × 508 × 9.6 mm 20 × 20 ×
0.38 incommercial photoelastic sheet, PSM-9, was 

supplied by Photoelastic Division of Measurements 

Group, Inc. The room- temperature stress-optic 

coefficient, C, for PSM-9 is nominally10.5 kPa/
𝑓𝑟𝑖𝑛𝑔𝑒/𝑚. 

At the stress-freezing temperature 

of110°𝐶 𝑡𝑜 120°𝐶 230°𝐹 𝑡𝑜 250°𝐹 , the stress-

optic coefficient is approximately 0.50 kPa/
𝑓𝑟𝑖𝑛𝑔𝑒/𝑚 [10]. 

Eighteen280 × 62 × 9.6 mm 11.02 × 2.44 ×
0.38 inpieces were cut out from the commercial 

sheet. A blind-hole of4.8 mm 3 16 in in diameter 

with 

three3.175, 6.41and7.9 mm 1 8, 1 4, 5 16  in   diff

erent depths was drilled at 140 mm  5.5 in from the 

right side and13 mm 0.51 in from the bottom of the 

plate. A90 × 7.9 × 9.6 mm 3.5 × 0.31 ×
0.38 inrectangular groove was drilled at40 mm 1.57 
infrom the left side and31 mm1.22 infrom the 

bottom of the plate, as in Figure 2b. 

All the pieces were cut out from the commercial 

sheet with a band-saw operated at medium speed. 

The groove was made with an end mill with two 

fluted solid-carbide milling cutters with spiral flutes. 

Blind hole was drilled with a carbide-tipped boring 

tool at a medium speed (1280 rpm). 

Loading Conditions 

Two fasteners were made of aluminum alloy, 

2070-T6, with mechanical properties:𝐸 =
72 GPa 10.34 Mpsi , 𝜈 = 0.32to support the plate 

during the loading process. Loading was 

implemented by a load cell system instrumented 

with strain gages and a meter to read the force 

transmitted to plate. 

The specimens were loaded at room temperature 

and subjected to a conventional stress-freezing cycle 

with a critical temperature of115°𝐶  240°𝐹 . 

Figure 3 Slicing at the blind-hole´s neighborhood 

along planes of principal stress 

 

A950 N 212.5 lb force was produced by the cell 

load system to the plate once the critical temperature 

had been reach. The whole process was performed 

exactly as Dally and Riley [7] appoint. 

After stress freezing, the model was rough cut on 

a band saw and ground to a final thickness of: 

i)3.1 mm 0.23 in for cross-sectional slice, and 

ii)2.9 mm 0.11 in for longitudinal slice. Air jet-

cooling was used to prevent local heating. 

Finite Element Analysis 

This study was performed using the finite 

element code ABAQUS 6.7-1 [12]. The finite 

element model was built with the same finite 

element code and the postprocessor used to view the 

results was ABAQUS/Viewer 6.7-1. A typical mesh 

of a plate with a circular blind-hole is shown in Fig. 

4. 

To apply the boundary conditions, three areas 

were created to suffice this requirement. A first one 

of 1.5 × 9.6 mm 0.06 × 0.38 in to apply constant 

pressure. Then the second and third ones of1 ×
9.6 mm 0.04 × 0.38 in were created to apply 

displacement restrictions about y  and z axis. 

The plate is divided into two parts: a rectangle 

corresponding to the one containing the blind-hole, 
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shown in the Fig. 2c with a finer mesh surrounding 

the blind-hole and the second part corresponding to 

the rest of the plate with a coarser mesh. 48 elements 

were used around the blind-hole. 

Before the photoelastic stress-freezing test was 

performed a finite-element solution was obtained for 

the case of uniform pressure on the outer boundary 
(top rectangle) using the mechanical properties of the 

photoelastic material under stress-freezing 

conditions. The main purpose of this analysis was to 

estimate the amount of load to be applied on the 

model and to obtain an estimate of the 

displacements. 

 

 

Figure 4 Typical mesh of a thin plate with a circular 

blind-hole presence 

 

Experimental and Numerical Results 

Figure 5 shows the loci of points considered in 

this study for transversal and longitudinal slices. 

 

Transversal Slices 
 

Figure 6 shows photoelastic results on the plate 

subjected to 981 N 220.2 lb  load. On close 

evaluation we can see that the high-stress 

concentrations lie on both the transition zone (point 

7) and at the free boundary (point 11). 

The stress plotted in Fig. 7 correspond to the 

maximum principal stress, in this case the tangential 

stress, at the blind-hole’s boundary. 

At the boundary, one of the two principal stresses 

vanishes, so, in coordinates 
 

𝜎𝜃𝜃 =
𝑁𝑓𝜎
1

 7  

 

whereN is the fringe order, 𝑓𝜎  the material stress-

fringe value and 1 the slice thickness. 

Figure 7a, 7b and 7c shows the FEManalysis 

results. The maximum stress occurs at points 10 and 

11, with magnitudes of 25.6 MPa 3.70 ksi  and 

28.3 MPa  4.09 ksi  respectively for the first case. 

For the second and third cases it is more evident 

that the maximum stress occurred all along the blind-

hole’s route, having his higher value at points 

8  31.92 MPa 4.61 ksi  and 

11  34.22 MPa 4.95 ksi  . 

 

Figure 5 Loci of points considered for each slice 
 

 

From Figure 7 one can conclude that the fringe 

pattern indicates that the stress is more uniformly 

distributed over the thickness when the blind-hole´s 

depth is 6.4 mm 0.25 in  than the other two cases. 

From Figure 7c it is interesting to notice that 

point 8 has slightly higher stress value than point 11 

 34.1 MPa 4.93 ksi  𝑣𝑒𝑟𝑠𝑢𝑠 32.81 MPa 4.74 ksi  . 

 

 

Longitudinal Slices 

 

Photoelastic results for longitudinal slices are 

shown in Figure 6d, 6e and 6f. They illustrate how 

the stress concentration lies at point 15 (root) for all 

depths. Figure 8 shows more evidently this fact: a 
longitudinal slice from a plate with a 

4.6 mm 0.19 in  circular blind-hole deepness under 

a 2107 N 473 lb  load. The fringe pattern tends to 

concentrate at point 15. 
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Figure 6 Photoelastic patterns, shown for representative transversal and longitudinal slices for three plates 

subjected to a 981 N (220.2 lb) load each one

Figure 7 Distribution of maximum principal stress around the blind-hole under a 937 N (210 lb) load. First 

column corresponds to the transversal and longitudinal slices (3.1  mm depth); second and third columns are 

their similar for 6.4 mm and 7.9 mm blind-hole’s depth respectively 

 

 

Durelli and Riley [16, pp. 212-215] found that 

maximum stress for a strip with U-Shaped notches 

under axial load occurs at the center line of the notch 

with a deviation angle 𝜙. Rubayi and Taft [9] also 

obtained the same locus for the maximum stress for a 

thick bar with U-Shaped notches. 

The higher stress was 24.1 MPa 3.48 ksi  for the 

second case (blind-hole´s depth of 6.4 mm (0.25 in)). 

The difference obtained by photoelasticity and 

FEM for stress values are about 15-20%. Taking into 

consideration that photoelastic methods provide 

results within a margin of uncertainty of 

2.5 MPa 0.36 ksi  this is a reasonable result. 

 

 

Discussion and Conclusions 

 
Several experimental and numerical results were 

obtained to analyzed and evaluate the behavior of 

blind-holes in thin plates. The main interests of this 

study were stress concentration fields along the 
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root’s concavity and along blind-hole’s route under 

non-uniform tension loads. 

For the transversal slice, experimental and FEM 

results showed that the maximum stress fields 

occurred when blind-hole’s depth was 

7.9 mm 0.31 in  and were located at points 8 and 11 

(transition zone and at the free boundary plane 
respectively). The difference between both stresses is 

less than 3%. The fact that the maximal stresses were 

almost of the same magnitude at two points was 

significant. The finding demonstrates the importance 

of knowing that a possible failure (i.e. crack) may 

occur at either point, and not necessarily at point 11 

where the experimentalist normally could reach. 

For longitudinal slices, experimental results 

provide better qualitative understanding of the stress 

fields at the blind-hole’s boundary. 

The maximum stress occurs at point 15 (root’s 
center) as can be seen in Figure 7. The numerical 

results matches the fringe pattern obtained via 

photoelastic method. 

The experimental array in order to produce the 

requiring load for this study worked as well as we 

could expect for. For the cases when it was difficult 

to obtain qualitative results from experimental slices, 

the FEM is a very practical way to support them. 

It has been proven that the deeper the blind-hole 

is, stress at points 8 (for transversal slice) and 15 (for 

longitudinal slice) must be considered. 

Figure 8 shows the stress concentration factor 
behavior along blind-hole’s boundary. These results 

should give for a scientist and engineer better and 

reliable information of what happens inside the hole 

and be aware of any possible failure. 

After 17 iterations, FEM results converged within 

the expected results. 

 

 

Figure 8 Shear stress fringe patterns for a 

longitudinal slice with 2107 N (474 lb) load 
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