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Abstract.  
This study compares the performance of 

linear and quadratic tetrahedral elements and 

hexahedral elements in various structural 

problems. The problems selected demonstrate 

different types of behaviour, namely, bending, 

shear, torsional and axial deformations. It was 

observed that the results obtained with quadratic 

tetrahedral elements and hexahedral elements 

were equivalent in terms of accuracy. The 

comparison is done for linear static problems, 

modal analyses and nonlinear analyses involving 

large deflections, contact and plasticity. The 

advantages and disadvantages are shown using 

tetrahedral and hexahedral elements. Some 

recommendations and general rules are given for 

finite element users in choosing the element 

shape.    
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1. Introduction  
Finite element analysis has reached a state 

of maturity in which 3-D applications are 

commonplace. Most analysts, as well as most 

commercial codes (MSC/Nastran, etc.), use solid 

elements based on the iso-parametric formulation--

or variations of it for 3D analyses [1-4]. For simple 

geometries, or for applications in which it is 

possible to build a mesh "by hand", analysts have 

relied heavily on the 8-node hexahedral element 

commonly known as "brick" or "hexa" [5]. For more 

complex geometries, however, the analyst must rely 

on automatic (or semi-automatic) mesh generators. 
In general, automatic mesh generators produce 

meshes made of tetrahedral elements, rather than 

hexahedral elements. The reason is that a general 3-

D domain cannot always be decomposed into an 

assembly of bricks. However, it can always be 

represented as a collection of tetrahedral elements. 

As the demand for analyses of more complex 

configurations has grown, coupled with the 

increasing popularity of automatic mesh generators, 

the need to understand better the relative merits of 

tetrahedral and hexahedral elements has become 

apparent. It is known, for example, that linear 
tetrahedral elements do not perform very well--as 

expected because they are constant-strain elements; 

thus, too many elements are required to achieve a 

satisfactory accuracy. What remains unclear,  

 

 

however, is whether brick elements perform better 

or worse than quadratic tetrahedra, that is, 

tetrahedral elements including mid-side nodes. 

Specifically, for a given number of nodes (or 

degrees of freedom), the analyst needs to know 

under what circumstances it is better to use bricks 

instead of quadratic tetrahedra. This amounts to 
investigating the accuracy and efficiency of such 

elements under a variety of problems characterized 

by different deformation patterns, such as, bending, 

shear, torsion and axial behaviour. In addition, if a 

mesh made of linear tetrahedral elements does not 

yield a result within acceptable error, it is useful to 

know what strategy to follow: (a) decrease the size 

of the elements while keeping them linear, or (b) 

make the elements quadratic by introducing 

additional (mid-side) nodes. Previous authors have 

proposed some useful benchmark tests for 
individual elements or simple arrays of elements [6-

8]. However, no study comparing tetrahedra with 

hexahedra in a more general setting seems to be 

available. While it is difficult to give a final answer 

to all the issues involved, the aim of this study is to 

shed some light on this problem by investigating the 

performance of tetrahedral and hexahedral elements 

in a number of problems that have known analytical 

solutions. These findings are expected to be useful 

for finite elements analysts. 

Today, the some finite element method is 

not only applied to mechanical problems by some 
specialists anymore who know every single finite 

element and its function. The finite element method 

has become a standard numerical method for the 

virtual product development and is also applied by 

designers who are not permanent users and have less 

detailed understanding of the element functionality. 

With the rapid development in hardware 

performance and easy-to-use finite element 

software, the finite element method is not used only 

for simple problems any more. Today finite element 

models are often so complex that a mapped mesh 
with hexahedral shaped elements is often not 

economically feasible. Experience shows that the 

most efficient and common way is to perform the 

analysis using quadratic tetrahedral elements. As a 

consequence of that, the total number of the degrees 

of freedom for a complex model increases 

dramatically. Finite element models containing 

several millions degrees of freedom are regularly 

solved. Typically iterative equation solvers are used 



 Padmakar Raut / International Journal of Engineering Research and Applications 

 (IJERA)                    ISSN: 2248-9622               www.ijera.com 

Vol. 2, Issue 6, November- December 2012, pp.099-103 

100 | P a g e  

for solving the linear equations. Figure1shows 

typical models meshed with tetrahedra and 

hexahedra elements.  

With modern finite element tools it is not 

difficult to represent results as color pictures. 

However, the correctness of the results are actually 

the cornerstone of the simulation. The correctness of 
the numerical results crucially depends on the 

element quality itself. There are no general rules 

which can be applied just to decided which element 

shape should be preferred but there do exist some 

basic principles and also certain experiences from 

applications which can be very helpful in avoiding 

simulation errors and in judging the validity of the 

results. In this paper we compare some analytic 

solutions and experimental results with finite 

element results coming from a mesh of tetrahedra 

and hexahedra. We also compare the solutions on 

tetrahedra and hexahedra for complex models, 
performing linear and nonlinear static and dynamic 

analyses. 

 

2. Method 
2.1 Bending  

Consider a cantilever beam oriented in the 

y-direction and loaded in the z-direction (see Fig. 1). 

The beam has a rectangular cross-section and it 

deforms under the action of a load  per unit of length 
equal to 0.01. The beam dimensions are as follows: 

L (length)= 8, b (width) = 1 and h (height) --- 1. The 

material properties are: E (Young's modulus) = 1000 

and  u (Poisson's ratio) = 0.15. The analytical 

expression for the vertical displacement at the free 

end of the beam centre-line, including both bending 

and shear deformations (although bending is the 

dominant effect in this case), yields a value of 

0.0625 [9]. 

 

2.2 Shear  
Consider a short shear beam deforming 

under a unit distributed load (load per unit of length) 

as depicted in Fig. 2. The beam is oriented in the y-

direction and loaded in the z-direction. The beam 

dimensions are: L = 1, b = 0.6 and h = 1. The 

material properties are: E = 1000 and u = 0.15. The 

vertical displacement at the free end of the beam 

center-line, considering both bending and shear 

deformations (which in this case are dominant) is 

0.00538[10]. 

 

2.3 Torsion  
Consider a beam with a square cross-

section oriented along the y-axis. The beam 

dimensions are: L = 16, b = 1 and h = 1. Material 

properties: E = 1000 and u = 0.15. Displacements in 

the x- and z-directions are fixed at one end. At the 

other end, which is free, a rotation of 0.03 radians is 

applied (this corresponds to a 0.1146 torsional 

moment). The maximum value of the shear stress 

occurs at the mid-points of the cross-section sides. A 

solution based on a series expansion gives a value of 

0.551 for the maximum shear stress [11].This 

solution allows warping of the cross-section. 

 

2.4 Axial behaviour  

Consider a short beam clamped at both 

ends and oriented in the y-direction (see Fig. 4). L = 
4, b = 1 and h = 1. In addition, E = 1000, v = 0.0 and 

p (mass density per unit of  volume) = 1. The natural 

frequency corresponding to the first axial mode is 

3.953 Hz [12]. This problem was chosen because it 

involves a non uniform axial displacement field. 

 

3. Analysis 

The finite element analyses were 

performed using Nastran, a general-purpose finite 

element code for structural analysis [13]. Three 
solid elements were tested: 

 (a) C3D4, a 4-node tetrahedral element. This 

element was included only for comparison purposes; 

its performance was not expected to be good since it 

is a constant-strain element. One integration point is 

used. 

 (b) C3D10, a second-order 10-node tetrahedral 

element. In this study, the "intermediate" nodes 

were located exactly halfway between the corner 

nodes. Four integration points are used.  

(c) C3D8, an 8-node isoparametric hexahedral 
element. This is a trilinear element. In this case 

"full" Gauss integration was employed in the 

stiffness matrix determination. This means that the 

Gauss scheme used integrates the stiffness matrix 

terms exactly if 

 (i) the material properties are constant throughout 

the element and 

 (ii) the Jacobian of the mapping from the 

isoparametric coordinates to the physical 

coordinates is constant and diagonal throughout the 

element. 
 

Each problem was solved using four 

different models (four different meshes), described 

as Follows: 

 

Mesh 1. This is a regular mesh made of linear 

tetrahedral elements (C3D4).  

 

Mesh 2. This is a regular mesh made of 

quadratic tetrahedra (C3D10) obtained by adding  

mid-side nodes to Mesh 1. This represents an 

attempt to improve the accuracy of the results 
obtained with the first mesh.  

 

Mesh 3. This mesh corresponds to another attempt 

to improve the results obtained with 

  

Mesh 1, but in this case decreasing the size 

of the linear tetrahedra (C3D4). This mesh 

Obviously has more nodes than the mesh employed 

in the first model, but exactly the same  Number of 
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nodes as Mesh 2. This is to make the second and 

third model comparable in terms of the size (same 

number of degrees of freedom) and therefore 

address the issue of what strategy is better if one 

wants to improve the accuracy of the results given 

by a mesh of linear tetrahedra (Mesh 1): to increase 

the order of the interpolation (Mesh 2) or to reduce 
the size of the elements (Mesh 3).  

 

Mesh 4. This is a regular mesh of brick 

elements. Again, the number of nodes is the same as 

in Mesh 2. This is to compare the performance of 

two meshes with the same number of degrees of 

freedom, one made with bricks and the other made 

with quadratic tetrahedra. (Notice that nodal 

coordinates in Mesh 2 coincide with those of Mesh 

4). 

 

4. Results 
The four problems described before were 

solved using the four different meshes. The analysis 

was performed on CAE lab, Pune using Nastran. 

The models were setup with Hypermesh, a 

geometric modeller that has a parametric solid 

object representation and is integrated with an 

automatic mesh generator and a Nastran pre-

processor. Regular meshes were employed in all 

cases. In each case, the error was computed by 
comparing the result given by the finite element 

model against the analytical solution. 

Tables 1-4 summarize the results. The nomenclature 

is as follows: N is the number of nodes in the mesh 

(including mid-side nodes when quadratic tetrahedra 

are used); E is the number of elements in the mesh; 

∆x, ∆y, ∆z denote the node spacing in the x-, y- and 

z-direction (in meshes made of quadratic tetrahedra, 

the spacing is determined by the distance between 

corner nodes);  

 
Table 1- Result for Bending 

Me

sh 

Ty

pe 

E N ∆x ∆y ∆z Vertical 

Displace

ment × 

10 -2 (R) 

% 

Err

or 

Me

sh 

1 

57

6 

22

5 

0.

5 

0.3

33 

0.

5 

3.822 38.

9 

Me

sh 

2 

57

6 

12

25 

0.

5 

0.3

33 

0.

5 

6.210 0.7 

Me

sh 

3 

48

00 

12

25 

0.

25 

0.2

6 

0.

25 

5.334 14.

7 

Me

sh 

4 

96

0 

12

25 

0.

25 

0.2

6 

0.

25 

6.264 0.2 

The analytical solution gives the vertical 
displacement at the end of the beam centre line 

   R= 6.254 × 10 -2 

It is important to know that for bending dominated 

problems only linear hexahedra elements lead to 

good results if extra shape functions or enhanced 

strain formulations are used. Linear tetrahedrons 

tend to be too stiff in bending problems. By 

increasing the number of the elements in depth the 

structure is still too stiff. The quadratic mid-side 
node tetrahedron element shows the exact analytic 

solution for pure bending dominated problems even 

with a coarse mesh with only one element in 

depth.It is obvious that using a linear tetrahedron 

element yields unacceptable approximations. The 

user should not use it for bending dominated 

problems. On the other hand quadratic mid-side 

node tetrahedra elements are good for bending 

dominated problems. 

To illustrate the difference in mapping the 

stiffness of a structure in a correct manner using 

different element types we perform a modal analysis 
of a cantilever beam. The first two frequencies and 

mode shapes are computed. We take the solution of 

quadratic hexahedra elements as a reference solution 

and compare the results with a mesh of quadratic 

tetrahedra and linear tetrahedra with a coarse and a 

fine mesh respectively. 

A good agreement in modelling the 

stiffness of the structure correctly is just obtained if 

quadratic tetrahedra elements are taken. Even the 

fine mesh of linear tetrahedra elements does not 

result in a good approximation of the solution. 
 

Table 2- Result for Shear 

Me

sh 

Ty

pe 

E N ∆

x 

∆y ∆z Vertical 

Displace

ment × 

10 -3(R) 

% 

Err

or 

Me

sh 

1 

247

5 

76

8 

0.

3 

0.1

5 

0.1

5 

4.687 12.

8 

Me

sh 

2 

247

5 

41

23 

0.

3 

0.1

5 

0.1

5 

4.808 9.2 

Me

sh 

3 

342

0 

41

23 

0.

2 

0.0

33 

0.0

33 

4.739 11.

8 

Me

sh 
4 

196

20 

41

23 

0.

2 

0.0

33 

0.0

33 

4.756 11.

5 

 

The analytical solution gives the vertical 

displacement at the end of the beam centre line 

 R= 5.375× 10 -3 
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Table 3- Result for Torsion 

Mes

h 

Typ

e 

E N ∆x ∆y ∆z R % 

Erro

r 

Mes

h 1 

384 15

3 

0.5 1.0

0 

0.5 0.385

9 

30 

Mes

h 2 

384 82

5 

0.5 1.0

0 

0.5 0.579

9 

5.2 

Mes

h 3 

320

0 

82

5 

0.2

5 

0.5 0.2

5 

0.473

6 

14.1 

Mes
h 4 

640 82
5 

0.2
5 

0.5 0.2
5 

0.530
0 

3.8 

The analytical solution gives maximum shear stress 

on the cross section of the beam 

R = 0.5511. 

 

Table 4- Result for Axial Deformation 

Me

sh 

Typ

e 

E N ∆x ∆y ∆z R % 

Err

or 

Me

sh 1 

153

6 

425 0.2

5 

0.2

5 

0.2

5 

3.8

48 

2.7 

Me

sh 2 

153

6 

267

3 

0.2

5 

0.2

5 

0.2

5 

3.8

45 

2.8 

Me

sh 3 

107

52 

267

3 

0.1

25 

0.1

25 

0.1

25 

3.7

93 

4.2 

Me
sh 4 

179
2 

267
3 

0.1
25 

0.1
25 

0.1
25 

3.7
43 

4.2 

The analytical solution gives the fundamental 

frequency (Hz) for axial vibrations R = 3.953.. 

 

5. Tetrahedral and hexahedral element 

solution in nonlinearities  
Now we will compare the tetrahedra 

elements with the hexahedral elements in nonlinear 
applications. A nonlinear contact simulation has 

been performed first to compare the local stress 

coming from a quadratic tetrahedra discretization 

with the results from a quadratic hexahedra 

discretization. The material behaviour is linear. 

Geometric nonlinearities have been ignored.  

The advantage for hexahedra is, one can achieve the 

good stress result, without having very fine mesh. 

 

6. Discussion  
The main goal of this analysis was to 

investigate the performance of hexahedral elements 

versus quadratic tetrahedra under similar conditions. 

This has been achieved by comparing the results 

given by Mesh 2 and Mesh 4. The location of the 

nodes is identical in both meshes. Thus, the number 

of active degrees of freedom is exactly the same. 

This is necessary to make a meaningful comparison. 

In addition, the element aspect ratio in both meshes 

is equivalent (the ratio between the node spacing in 

the x-, y- and z-direction is the same in both 
meshes). It can be observed that the results obtained 

with bricks and quadratic tetrahedra, in terms of 

both accuracy, are roughly equivalent. This is 

significant because it indicates that analysts who 

rely on automatic mesh generators (which in general 

generate meshes made of tetrahedral elements) do 

not have a disadvantage compared to those analysts 

who use bricks. In other words, the trilinear brick 
element—a long-time favourite of many finite 

element practitioners--appears not to have a 

substantial advantage compared to the quadratic 

tetrahedron. A second conclusion is concerned with 

what is the best approach to take if a model made of 

linear tetrahedra does not give satisfactory results 

(Mesh 1). These analyses (Mesh 2 versus Mesh 3) 

suggest that, in general, it seems better to increase 

the order of the elements rather than refining the 

mesh with smaller linear elements. Except for 

Problem 4, in which Mesh 2 and Mesh 3 give 

approximately the same result, the quadratic 
tetrahedra do better than the linear tetrahedra, for the 

same number of nodes. In terms of CPU time, the 

advantage of quadratic tetrahedra is more clear-there 

is a threefold penalty, in all cases, for using linear 

tetrahedra. This is because Mesh 3 includes many 

more elements than Mesh 2 and consequently the 

CPU time required to generate the stiffness matrix 

and mass matrices increases, as does the time for 

solving the resulting linear system of equations. 

 

7. The quality of tetrahedra elements in thin-

walled structures  
Now we will investigate the quality of 

quadratic tetrahedral elements when used for 

simulating the mechanical behaviour of thin-walled 

structures. We investigate the stiffness of the plate 

by performing a modal analysis and compare the 

numerical results with the analytic solution for the 
first frequencies. Because of the nature of thin-

walled structure (no stiffness normal to plane) 

usually Kirchhof-Love or Reissner-Mindlin based 

shell elements are used for the finite element 

simulation instead of classical displacement based 

solid elements. The geometric modelling effort to be 

able to use finite shell elements might be expensive 

nowadays since for shell applications the user 

typically needs a mid-surface model. However, most 

of the CAD models are 3D solid models and the 

user must work on the solid model to obtain a mid-
surface model which is usually not an easy task. For 

very complicated 3D solid models it is very difficult 

and maybe even impossible to get the mid-surface in 

an efficient way. It follows that more and more thin-

walled 3D solid models are meshed and calculated 

using quadratic tetrahedral elements. Caution must 

be taken in using tetrahedral elements for thin-

walled structure since the structural behaviour could 

be much too stiff in bending, if the element size 

comparing to the thickness is not properly chosen. 

This also might result in numerically  ill-conditioned 

stiffness matrices. 
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