
 D. Viswabharathi, K. Raghuram, G. Rajesh Kumar / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.1654-1659

1654 | P a g e

High Speed Test Architecture for SRAM using Modified March

Algorithm

D. Viswabharathi*, K. Raghuram**, G. Rajesh Kumar***
*(Department ofElectronics & Communications Engineering, Pragati Engineering College)

** (Department ofElectronics & Communications Engineering, Pragati Engineering College)

*** (Department ofElectronics & Communications Engineering, Vishnu Institute of Technology)

ABSTRACT
Fault diagnosis and location in

semiconductor Random Access Memories (RAM)

are of prime importance in connection with the

increasing density and dominating portion of

embedded memories in system-on-chips (SOC).

Manufacturing defects should be detected,

diagnosed and located for further repair in order

to improve the product quality, reliability and

yield. It becomes highly important to test various

kinds of defects rapidly and precisely to reduce

the testing cost and to improve the memory

quality, especially in a SoC (system-on-a-chip)

design environment. Memory defects can be

modeled as stuck-at, coupling, transition, address

decoder, and pattern-sensitive faults. Industry-

wide use of memory fault models and March test

algorithms, with special emphasis on memory

fault simulation and test algorithm generation

are discussed here and an improved version of

March test algorithm for high speed memory

testing is implemented.

Keywords - Random Access Memory (RAM),
System-on-Chip (SOC), Stuck-at Faults, Coupling

Faults, Transition Faults, Address Decoder Faults,

Pattern-Sensitive Faults, March Test Algorithm

I. INTRODUCTION
It becomes highly important to test various

kinds of defects rapidly and precisely to reduce the

testing cost and to improve the memory quality,

especially in a SoC (system-on-a-chip) design
environment. Memory defects can be modelled as

stuck-at, coupling, transition, address decoder, and

pattern-sensitive faults, and it is known that the 80

% of the failures are due to leakage defects [11].

Among the different testing algorithms ranging from

O(p n) to O(nlog(n)), BIST(built-in self test)

techniques with O(p n) to O(n) complexity

algorithms have been widely adopted for embedded

memories [2]. Memory test patterns can be

generated deterministically or randomly [3] through

either test equipment or BIST circuitry. Test

patterns generated randomly can detect not only
modelled defects but also nonmodelled and timing

defects [4, 6] nevertheless, deterministic march

patterns, for their simplicity, are widely adopted for

BIST and chip testing. A few hardwired memory

BIST techniques have been developed [7], and

recently some microcoded memory BIST circuits

were implemented for embedded Memories [8]. In

general microcoded memory BIST techniques have

great exibility in applying di_erent combinations of
test patterns for static and dynamic defects. Memory

retention faults, as well as conventional static faults,

are major targets, with a register or SRAM storing

microcodes [1, 9]. We introduce a different

microcoded BIST technique which aims to capture

address decoder open faults in addition to

conventional static faults. Furthermore, a certain

degree of neighborhood pattern-sensitive faults are

detected by cellular-automata-based address and

pattern generators.

II. BUILT IN SELF TEST (BIST)
Figure 1 shows the BIST hardware

architecture in more detail. Basically, a design with

embedded BIST architecture consists of a test

controller, hardware pattern generator, input

multiplexer, Circuit Under Test (CUT). Optionally,

a design with BIST capability may include also the

comparator and Read-Only-Memory (ROM). As

shown in Figure 1, the test controller is used to

control the test pattern and test generation during
BIST mode. Hardware pattern generator functions

to generate the input pattern to the CUT.

Normally, the pattern generator generates

exhaustive input test patterns to the CUT to ensure

the high fault coverage. For example, a CUT with

10 inputs will require 1024 test patterns. Primary

Inputs are the input for CUT during the non-BIST

mode or in other word, functional mode. Input

multiplexer is used to select correct inputs for the

CUT for different mode.

During BIST mode, it selects input from
the hardware pattern generator while during

functional mode, selects primary inputs. Output

response compactor acts as compactor to reduce the

number of circuit responses to manageable size that

can be used as the signature and stored on the ROM.

Implementation of the pattern generation as well as

the response compactor will be discussed in more

details in section below.

 D. Viswabharathi, K. Raghuram, G. Rajesh Kumar / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.1654-1659

1655 | P a g e

Fig. 1 BIST Architecture

As mentioned earlier, a BIST block can

optionally consist of a ROM and a comparator.

ROM is used to store the golden signature obtained

from simulation at the pre-silicon phase. A

comparator is used to compare the signature

obtained during BIST mode with the golden

signature. If the signature matched with the golden
signature, then the chip is considered as fault free.

On the other hand, if the signature is not matching

with the golden signature, then the chip is

considered as faulty.

From Figure 3.2, the wires from primary

inputs to the input multiplexer and the wires from

circuit output P to primary outputs cannot be tested

by BIST. These wires require another testing

method such as an external ATE or JTAG Boundary

Scan hardware.

III. MARCH TEST ALGORITHM
Figure 2, taken from [19], depict the block

diagram of a BISR scheme, including the BIST

module, BIRA module, and test wrapper for the

memory. The BIST circuit detects the faults in the

main memory and spare memory and is

programmable at the March element level [19]. The

BIRA circuit performs redundancy allocation. The

test wrapper switches the memory between
test/repair mode and normal mode. In test/repair

mode, the memory is accessed by the BIST module,

whereas in normal mode the wrapper selects the

data outputs either from the main memory or the

spare memory (replacing the faulty memory cells)

depending on the control signals from the BIRA

module. This BISR is a soft repair scheme therefore,

the BISR module will perform testing, analysis, and

repair upon every power up. As figure 4.1 indicates,

the BIST circuit is activated by the power-on reset

(POR) signal. When we turn on the power, the BIST

module starts to test the spare memory.

Fig: 2 Block diagram of a BISR scheme [5].

Once a fault is detected, the BIRA module

is informed to mark the defective spare row or

column as faulty through the error (ERR) and fault

syndrome (FS) signals. After finishing the spare

memory test, the BIST circuit tests the main
memory. If a fault is detected (ERR outputs a pulse),

the test process pauses and the BIST module exports

FS to the BIRA module, which then performs the

redundancy analysis procedure. When the procedure

is completed and the memory testing is not yet

finished, the BIRA module issues a continue (CNT)

signal to resume the test process. During the

redundancy analysis procedure, if a spare row is

requested but there are no more spare rows, the

BIRA module exports the faulty row address

through the export mask address (EMA) and mask

address output (MAO) signals.
The memory will then be operated in a

downgraded mode (i.e., with smaller usable

capacity) by software-based address remapping. If

downgrade mode is not allowed, AO is removed and

EMA indicates whether the memory is repairable.

When the main memory test and redundancy

analysis are finished, the repair end flag (REF)

signal goes high and the BIRA module switches to

the normal mode. The BIRA module then serves as

the address remapped, and the memory can be

accessed using the original address bus (ADDR).
When the memory is accessed, ADDR is compared

with the fault addresses stored in the BIRA module.

If ADDR is the same as any of the fault addresses,

the BIRA module controls the wrapper to remap the

access to spare memory.

Although BIST schemes, such as the one in

the previous example, are promising, a number of

challenges in memory testing must be considered.

For example, BIST cannot replace external memory

testers entirely if the BIST schemes used are only

for functional testing. Even BIST with diagnosis

support is insufficient because of the large amount
of diagnosis data that must be transferred to an

external tester, typically through a channel with

limited bandwidth. Furthermore, memory devices

normally require burn-in to reduce field failure rate.

For logic devices IDDQ is frequently used during

 D. Viswabharathi, K. Raghuram, G. Rajesh Kumar / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.1654-1659

1656 | P a g e

burn-in to detect the failing devices, but IDDQ for

memories is difficult. What, then, should be done to

achieve the same reliability requirement when we

merge memory with logic? The combination of

built-in current sensors and BIST is one possible

approach, and the memory burn-in by BIST logic is

another.
One of the most efficient RAM test

algorithms currently in use, in terms of test time and

fault detection capability, is the March algorithm

[16]. This algorithm has a test time on the order of

22N, where N is the number of address locations. In

addition to classical stuck-at faults, this algorithm is

capable of detecting pattern sensitivity faults, intra

word coupling faults, and bridging faults in the

RAM. For word-oriented memories, a background

data sequence (BDS) must be added to detect these

faults within each word of the memory. March

Algorithm which is generally used for designing
testable SRAMs are described below.

{↕(w0)↓(r0,w1,r1,w1,r1)↓(r1,w0,r0,w0,r0)↑(r0,w1,r

1,w1,r1) ↑(r1,w0,r0,w0,r0) ↕(r0)}

The basic notations used in algorithm are as follows:

↑: address n-1 to 0

↓: address 0 to n-1

↕: either way

w0: Write 0 to the word

w1: Write 1 to the word

r0: Read a cell whose value should be 0

r1: Read a cell whose value should be 1

IV. MODIFIED MARCH ALGORITHM
Assume that the memory array under test

has R rows and C columns. A typical march

algorithm (such as Modified March algorithm)

could consist of four steps as shown below.

↕ (W0); ↑(R0,W1,R1); ↓(R1,W0,R0); ↕ (R0)

 The basic notations used in algorithm are as

follows:
↑: address 0 to n-1

↓: address n-1 to 0

↕: either way

W0: Write 0 to the word

W1: Write 1 to the word

R0: Read a cell whose value should be 0

R1: Read a cell whose value should be 1

This algorithm is described using Verilog

HDL. Figure 3 shows the Verilog hierarchical

diagram of the system.

Fig: 3 Verilog hierarchy.

Here it is presented graphically how the

FSM works and how the testing is done with March

Algorithm. Take SRAM of Size 32 Bytes. For this

SRAM testability is included. In March Algorithm,
first of all Write all 0‟s from top to bottom or from

bottom to top. Then read data from last address and

compare with “00000000”. If it is matched replace

“00000000” with “11111111” then read data from

the same location and compare with “11111111”. If

it is matched with it decrement the address. If not

error signal goes high. Decrement the address till it

reaches first location. If it reached first location then

do the read data from first location, compare with

“11111111‟. If it matched write “00000000” in the

first location. Again read and compare with

“00000000”. Do this process from top to bottom.
After that again Read and compare with “00000000”

from top to bottom or bottom to top.

Figure 4: SRAM chip at ↕ (W0) stage

Figure 4 shows the graphical representation

of SRAM chip which is controlled by BIST FSM.

When BIST is running and it is at ↕ (W0) stage it

loads “00000000” at each location in the SRAM

chip. That stage we can observe in above figure.

 D. Viswabharathi, K. Raghuram, G. Rajesh Kumar / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.1654-1659

1657 | P a g e

Figure 5: SRAM chip at↑(R0,W1,R1)stage

Figure 5 shows the graphical representation of

SRAM chip which is controlled by BIST FSM. Here

BIST is running and it is at ↑(R0,W1,R1)stage.

After writing “00000000” in all the locations of this

SRAM chip, Now the FSM is in ↑(R0,W1,R1)stage.
Figure 5 indicates up to this stage SRAM chip

working properly.

Figure 6: SRAM chip at↑(R0,W1,R1)stage

Figure 6 shows the graphical representation of

SRAM chip which is controlled by BIST FSM. Here

BIST is running and it is at ↑(R0,W1,R1) stage.

After writing “11111111”, now the FSM read a data

byte from the same location and compares it with

“11111111”. Figure 6 indicates up to this stage

SRAM chip working properly.

Figure 7: Faulty SRAM chip at↑(R0,W1,R1)stage

Figure 7 shows the graphical representation

of SRAM chip which is controlled by BIST FSM.

Here BIST is running and it is at ↑(R0,W1,R1)stage.

After writing “00000000” in all the locations of this

SRAM chip, Now the FSM is in ↑(R0,W1,R1)stage.

Here at 15th address during write operation there is
a fault. Instead of writing “00000000” it has written

“10101010”. So while read operation FSM read the

data byte and compares it with “00000000”. There is

a mismatch says that the chip is faulty one, which is

indicated as Faulty

V. SIMULATION RESULTS
Verilog HDL Design of Testable SRAM is

done with Xilinx ISE Simulator. The design is
simulated with the same tool ISE simulator.

Simulation results are shown below. For different

levels of the algorithm the simulated results we can

observe here. Figure 7.1 shows the simulation

results when the FSM is in (R0, W1, R1) stage and

figure 7.2 shows the simulation results when the

FSM is in (R0) stage. After this stage “finish” goes

high indicating testing process completed. After this

stage error signal is “low” indicating it is error free

chip.

Figure 8: Simulation results when the FSM is in

(R0, W1, R1) stage.
Above is the simulation result showing that

the FSM is in (R0, W1, R1) stage. After writing

“00000000” in all the locations of this SRAM chip,

 D. Viswabharathi, K. Raghuram, G. Rajesh Kumar / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.1654-1659

1658 | P a g e

Now the FSM is in (R0, W1, R1) stage. In this stage

„error‟ output is „0‟ indicating up to this stage chip

working properly and „finish‟ output signal „0‟

indicates the FSM still checking further.

Figure 9: Simulation results when the FSM is in

(R0) stage.

Above is the simulation result showing that the FSM

is in (R0) stage. After (R1, W0, R0) stage, Now the

FSM is in (R0) stage. In this stage „error‟ output is

„0‟ indicating up to this stage chip working properly.

After completion of this stage „finish‟ output signal

„1‟ indicates the FSM finished checking.

Figure 10: Simulation results when the FSM is in

 (R0, W1, R1) stage for a faulty chip

Above is the simulation result showing that the FSM

is in (R0, W1, R1) stage. After writing “00000000”

in all the locations of this SRAM chip, Now the

FSM is in (R0, W1, R1) stage. In this stage „error‟

output is „0‟ indicating up to this stage chip working

properly and „finish‟ output signal „0‟ indicates the

FSM still checking further.

Figure 11: Simulation results when the FSM is in

(R0, W1, R1) stage for a faulty chip.

Above is the simulation result showing that

the FSM is in (R0, W1, R1) stage. After writing

“00000000” in all the locations of this SRAM chip,

Now the FSM is in (R0, W1, R1) stage. In this stage

„error‟ output is „1‟ indicating up to this stage chip

working properly. Now after reading from the

address “00001111” that data byte is compared with

“00000000” and it does not matched with

“00000000”. So „error‟ signal goes logic „1‟

indicating it a faulty chip. The „finish‟ output signal

also goes logic „1‟ level indicating test completed.

VI. CONCLUSION
This algorithm is quite fast and can provide

excellent solutions in short run-times. My

experimental results indicate that this flow can save

the designer many days of work by offering good

BIST architectures which are complete in terms of

logical and physical attributes. BIST designed here

using March algorithm tests faster than the
previously proposed ones and nearly 100% fault

coverage .Compared with currently known

microcode-based BIST techniques, my design

requires only one third of those microcode storages

and the testing time is reduced fifty percent. It is

strongly believed that this BIST can be widely used

for the embedded memory testing especially under

the SoC design environment due to the superior

flexibility and extendibility in applying different

combination of memory test algorithms. Future

work will consider optimization algorithms other
than the March algorithm used in this work to obtain

better solutions.

REFERENCES
[1] S. W. Golomb, Shift Register Sequence,

Aegean Park Press, Laguna Hills, CA,

1982.

[2] F. Brglez and H. Fujiwara, A neutral

netlistof 10 combinational benchmark
circuits and a target translator in Fortran, in

Proc. Int. Symp. on Circuits and Systems,

pp. 663–698, June 1985.

[3] P. H. Bardell, W. H. McAnney, and J.

Savir, Built-In Test for VLSI:

 D. Viswabharathi, K. Raghuram, G. Rajesh Kumar / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.1654-1659

1659 | P a g e

Pseudorandom Techniques, John Wiley &

Sons, Somerset, NJ, 1987.

[4] R.-M. Chou, K. K. Saluja, and V. D.

Agrawal, Power constraint scheduling of

tests, in Proc. Int. Conf. on VLSI Design,

pp. 271–274, January 1994.

[5] L.-T. Wang, C.-W. Wu, and X. Wen,
editors, VLSI Test Principles and

Architectures: Design for Testability,

Morgan Kaufmann, San Francisco, 2006.

 [6] F. Corno, M. Rebaudengo, M.

SonzaReorda, G. Squillero, and M.

Violente, Low power BIST via non-linear

hybrid cellular automata, in Proc. VLSI

Test Symp., pp. 29–34, May 2000.

[7] P. Girard, L. Guiller, C. Landrault, and S.

Pravossoudovitch, A test vector inhibiting

technique for low energy BIST design, in

Proc. VLSI Test Symp., pp. 407–412, April
1999.

[8] P. Girard, L. Guiller, C. Landrault, S.

Pravossoudovitch, J. Figueras, S. Manich,

P. Teixeira, and M. Santos, Low energy

BIST design: Impact of the LFSR TPG

parameters on the weighted switching

activity, in Proc. Int. Symp.on Circuits and

Systems, CD-ROM Proceedings, June

1999.

[9] P. Girard, L. Guiller, C. Landrault, S.

Pravossoudovitch, and H. J. Wunderlich, A
modified clock scheme for a low power

BIST test pattern generator, in Proc. VLSI

Test Symp., pp. 306–311, May 2001.

[10] D. Gizopoulos, N. Kranitis, A. Paschalis,

M. Psarakis, and Y. Zorian, “Low

Power/Energy BIST Scheme for

Datapaths,” in Proc. VLSI Test Symp., pp.

23–28, May 2000.

 [11] M. Abramovici, M. A. Breuer, and A. D.

Friedman, Digital Systems Testing and
Testable Design, IEEE Press, Revised

Printing, Piscataway, NJ, 1994.

 [12] E. J. McCluskey, Logic Design Principles:

With Emphasis on Testable Semicustom

Circuits, Prentice-Hall, Englewood Cliffs,

NJ, 1986.

AUTHORS

D. Vishwa Bharathi: Asst. Professor in Pragati

Engineering College. Has Two years of teaching

experience. Major working areas are Digital

electronics, Image processing and VLSI.
K. Raghuram: Associate Professor in Pragati

Engineering College. Has Five years of teaching

experience. Major working areas are Embedded

systems, Image processing and VLSI.

G. Rajesh Kumar: Asst. Professor

in Vishnu institute of technology.

Has five years of teaching

experience. Major working areas are

Digital electronics, Embedded

Systems and VLSI. Presented
research papers in four international

conferences and two national

conferences. Published Research

papers in Four international journals.

