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ABSTRACT 
Fault diagnosis and location in 

semiconductor Random Access Memories (RAM) 

are of prime importance in connection with the 

increasing density and dominating portion of 

embedded memories in system-on-chips (SOC). 

Manufacturing defects should be detected, 

diagnosed and located for further repair in order 

to improve the product quality, reliability and 

yield. It becomes highly important to test various 

kinds of defects rapidly and precisely to reduce 

the testing cost and to improve the memory 

quality, especially in a SoC (system-on-a-chip) 

design environment. Memory defects can be 

modeled as stuck-at, coupling, transition, address 

decoder, and pattern-sensitive faults. Industry-

wide use of memory fault models and March test 

algorithms, with special emphasis on memory 

fault simulation and test algorithm generation 

are discussed here and an improved version of 

March test algorithm for high speed memory 

testing is implemented. 
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I. INTRODUCTION 
It becomes highly important to test various 

kinds of defects rapidly and precisely to reduce the 

testing cost and to improve the memory quality, 

especially in a SoC (system-on-a-chip) design 
environment. Memory defects can be modelled as 

stuck-at, coupling, transition, address decoder, and 

pattern-sensitive faults, and it is known that the 80 

% of the failures are due to leakage defects [11]. 

Among the different testing algorithms ranging from 

O( p n) to O(nlog(n)), BIST(built-in self test) 

techniques with O( p n) to O(n) complexity 

algorithms have been widely adopted for embedded 

memories [2]. Memory test patterns can be 

generated deterministically or randomly [3] through 

either test equipment or BIST circuitry. Test 

patterns generated randomly can detect not only 
modelled defects but also nonmodelled and timing 

defects [4, 6] nevertheless, deterministic march 

patterns, for their simplicity, are widely adopted for 

BIST and chip testing. A few hardwired memory  

 

 

BIST techniques have been developed [7], and 

recently some microcoded memory BIST circuits 

were implemented for embedded Memories [8]. In 

general microcoded memory BIST techniques have 

great exibility in applying di_erent combinations of 
test patterns for static and dynamic defects. Memory 

retention faults, as well as conventional static faults, 

are major targets, with a register or SRAM storing 

microcodes [1, 9]. We introduce a different 

microcoded BIST technique which aims to capture 

address decoder open faults in addition to 

conventional static faults. Furthermore, a certain 

degree of neighborhood pattern-sensitive faults are 

detected by cellular-automata-based address and 

pattern generators. 

 

II. BUILT IN SELF TEST (BIST) 
Figure 1 shows the BIST hardware 

architecture in more detail. Basically, a design with 

embedded BIST architecture consists of a test 

controller, hardware pattern generator, input 

multiplexer, Circuit Under Test (CUT). Optionally, 

a design with BIST capability may include also the 

comparator and Read-Only-Memory (ROM). As 

shown in Figure 1, the test controller is used to 

control the test pattern and test generation during 
BIST mode.  Hardware pattern generator functions 

to generate the input pattern to the CUT.  

Normally, the pattern generator generates 

exhaustive input test patterns to the CUT to ensure 

the high fault coverage. For example, a CUT with 

10 inputs will require 1024 test patterns.  Primary 

Inputs are the input for CUT during the non-BIST 

mode or in other word, functional mode.  Input 

multiplexer is used to select correct inputs for the 

CUT for different mode.  

During BIST mode, it selects input from 
the hardware pattern generator while during 

functional mode, selects primary inputs. Output 

response compactor acts as compactor to reduce the 

number of circuit responses to manageable size that 

can be used as the signature and stored on the ROM.  

Implementation of the pattern generation as well as 

the response compactor will be discussed in more 

details in section below.  
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Fig. 1 BIST Architecture 

 

As mentioned earlier, a BIST block can 

optionally consist of a ROM and a comparator.  

ROM is used to store the golden signature obtained 

from simulation at the pre-silicon phase.  A 

comparator is used to compare the signature 

obtained during BIST mode with the golden 

signature.  If the signature matched with the golden 
signature, then the chip is considered as fault free.  

On the other hand, if the signature is not matching 

with the golden signature, then the chip is 

considered as faulty.  

From Figure 3.2, the wires from primary 

inputs to the input multiplexer and the wires from 

circuit output P to primary outputs cannot be tested 

by BIST. These wires require another testing 

method such as an external ATE or JTAG Boundary 

Scan hardware. 

 

III. MARCH TEST ALGORITHM 
Figure 2, taken from [19], depict the block 

diagram of a BISR scheme, including the BIST 

module, BIRA module, and test wrapper for the 

memory. The BIST circuit detects the faults in the 

main memory and spare memory and is 

programmable at the March element level [19]. The 

BIRA circuit performs redundancy allocation. The 

test wrapper switches the memory between 
test/repair mode and normal mode. In test/repair 

mode, the memory is accessed by the BIST module, 

whereas in normal mode the wrapper selects the 

data outputs either from the main memory or the 

spare memory (replacing the faulty memory cells) 

depending on the control signals from the BIRA 

module. This BISR is a soft repair scheme therefore, 

the BISR module will perform testing, analysis, and 

repair upon every power up. As figure 4.1 indicates, 

the BIST circuit is activated by the power-on reset 

(POR) signal. When we turn on the power, the BIST 

module starts to test the spare memory. 

 

 
Fig: 2 Block diagram of a BISR scheme [5]. 

 

Once a fault is detected, the BIRA module 

is informed to mark the defective spare row or 

column as faulty through the error (ERR) and fault 

syndrome (FS) signals. After finishing the spare 

memory test, the BIST circuit tests the main 
memory. If a fault is detected (ERR outputs a pulse), 

the test process pauses and the BIST module exports 

FS to the BIRA module, which then performs the 

redundancy analysis procedure. When the procedure 

is completed and the memory testing is not yet 

finished, the BIRA module issues a continue (CNT) 

signal to resume the test process. During the 

redundancy analysis procedure, if a spare row is 

requested but there are no more spare rows, the 

BIRA module exports the faulty row address 

through the export mask address (EMA) and mask 

address output (MAO) signals. 
The memory will then be operated in a 

downgraded mode (i.e., with smaller usable 

capacity) by software-based address remapping. If 

downgrade mode is not allowed, AO is removed and 

EMA indicates whether the memory is repairable. 

When the main memory test and redundancy 

analysis are finished, the repair end flag (REF) 

signal goes high and the BIRA module switches to 

the normal mode. The BIRA module then serves as 

the address remapped, and the memory can be 

accessed using the original address bus (ADDR). 
When the memory is accessed, ADDR is compared 

with the fault addresses stored in the BIRA module. 

If ADDR is the same as any of the fault addresses, 

the BIRA module controls the wrapper to remap the 

access to spare memory. 

Although BIST schemes, such as the one in 

the previous example, are promising, a number of 

challenges in memory testing must be considered. 

For example, BIST cannot replace external memory 

testers entirely if the BIST schemes used are only 

for functional testing. Even BIST with diagnosis 

support is insufficient because of the large amount 
of diagnosis data that must be transferred to an 

external tester, typically through a channel with 

limited bandwidth. Furthermore, memory devices 

normally require burn-in to reduce field failure rate. 

For logic devices IDDQ is frequently used during 
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burn-in to detect the failing devices, but IDDQ for 

memories is difficult. What, then, should be done to 

achieve the same reliability requirement when we 

merge memory with logic? The combination of 

built-in current sensors and BIST is one possible 

approach, and the memory burn-in by BIST logic is 

another. 
One of the most efficient RAM test 

algorithms currently in use, in terms of test time and 

fault detection capability, is the March algorithm 

[16]. This algorithm has a test time on the order of 

22N, where N is the number of address locations. In 

addition to classical stuck-at faults, this algorithm is 

capable of detecting pattern sensitivity faults, intra 

word coupling faults, and bridging faults in the 

RAM. For word-oriented memories, a background 

data sequence (BDS) must be added to detect these 

faults within each word of the memory. March 

Algorithm which is generally used for designing 
testable SRAMs are described below. 

{↕(w0)↓(r0,w1,r1,w1,r1)↓(r1,w0,r0,w0,r0)↑(r0,w1,r

1,w1,r1) ↑(r1,w0,r0,w0,r0) ↕(r0)} 

The basic notations used in algorithm are as follows: 

↑: address n-1 to 0  

↓: address 0 to n-1  

↕: either way 

w0: Write 0 to the word 

w1: Write 1 to the word 

r0: Read a cell whose value should be 0 

r1: Read a cell whose value should be 1 
 

IV. MODIFIED MARCH ALGORITHM 
Assume that the memory array under test 

has R rows and C columns. A typical march 

algorithm (such as Modified March algorithm) 

could consist of four steps as shown below. 

↕ (W0); ↑(R0,W1,R1); ↓(R1,W0,R0); ↕ (R0)  

  The basic notations used in algorithm are as 

follows: 
↑: address 0 to n-1 

↓: address n-1 to 0 

↕: either way 

W0: Write 0 to the word 

W1: Write 1 to the word 

R0: Read a cell whose value should be 0 

R1: Read a cell whose value should be 1 

 

This algorithm is described using Verilog 

HDL. Figure 3 shows the Verilog hierarchical 

diagram of the system. 

 
Fig: 3 Verilog hierarchy. 

 

Here it is presented graphically how the 

FSM works and how the testing is done with March 

Algorithm. Take SRAM of Size 32 Bytes. For this 

SRAM testability is included. In March Algorithm, 
first of all Write all 0‟s from top to bottom or from 

bottom to top. Then read data from last address and 

compare with “00000000”. If it is matched replace 

“00000000” with “11111111” then read data from 

the same location and compare with “11111111”. If 

it is matched with it decrement the address. If not 

error signal goes high. Decrement the address till it 

reaches first location. If it reached first location then 

do the read data from first location, compare with 

“11111111‟. If it matched write “00000000” in the 

first location. Again read and compare with 

“00000000”. Do this process from top to bottom. 
After that again Read and compare with “00000000” 

from top to bottom or bottom to top. 

 
Figure 4: SRAM chip at ↕ (W0) stage 

 

Figure 4 shows the graphical representation 

of SRAM chip which is controlled by BIST FSM. 

When BIST is running and it is at ↕ (W0) stage it 

loads “00000000” at each location in the SRAM 

chip. That stage we can observe in above figure. 
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Figure 5: SRAM chip at↑(R0,W1,R1)stage 

 

Figure 5 shows the graphical representation of 

SRAM chip which is controlled by BIST FSM. Here 

BIST is running and it is at ↑(R0,W1,R1)stage. 

After writing “00000000” in all the locations of this 

SRAM chip, Now the FSM is in ↑(R0,W1,R1)stage. 
Figure 5 indicates up to this stage SRAM chip 

working properly. 

 
Figure 6: SRAM chip at↑(R0,W1,R1)stage 

 

Figure 6 shows the graphical representation of 

SRAM chip which is controlled by BIST FSM. Here 

BIST is running and it is at ↑(R0,W1,R1) stage. 

After writing “11111111”, now the FSM read a data 

byte from the same location and compares it with 

“11111111”. Figure 6 indicates up to this stage 

SRAM chip working properly. 

 
Figure 7: Faulty SRAM chip at↑(R0,W1,R1)stage 

 

Figure 7 shows the graphical representation 

of SRAM chip which is controlled by BIST FSM. 

Here BIST is running and it is at ↑(R0,W1,R1)stage. 

After writing “00000000” in all the locations of this 

SRAM chip, Now the FSM is in ↑(R0,W1,R1)stage. 

Here at 15th address during write operation there is 
a fault. Instead of writing “00000000” it has written 

“10101010”. So while read operation FSM read the 

data byte and compares it with “00000000”. There is 

a mismatch says that the chip is faulty one, which is 

indicated as Faulty 

 

V. SIMULATION RESULTS 
Verilog HDL Design of Testable SRAM is 

done with Xilinx ISE Simulator. The design is 
simulated with the same tool ISE simulator. 

Simulation results are shown below. For different 

levels of the algorithm the simulated results we can 

observe here. Figure 7.1 shows the simulation 

results when the FSM is in (R0, W1, R1) stage and 

figure 7.2 shows the simulation results when the 

FSM is in (R0) stage. After this stage “finish” goes 

high indicating testing process completed. After this 

stage error signal is “low” indicating it is error free 

chip.  

 
Figure 8:  Simulation results when the FSM is in 

(R0, W1, R1) stage. 
Above is the simulation result showing that 

the FSM is in (R0, W1, R1) stage. After writing 

“00000000” in all the locations of this SRAM chip, 
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Now the FSM is in (R0, W1, R1) stage. In this stage 

„error‟ output is „0‟ indicating up to this stage chip 

working properly and „finish‟ output signal „0‟ 

indicates the FSM still checking further. 

 

 
Figure 9: Simulation results when the FSM is in 

(R0) stage. 

Above is the simulation result showing that the FSM 

is in (R0) stage. After (R1, W0, R0) stage, Now the 

FSM is in (R0) stage. In this stage „error‟ output is 

„0‟ indicating up to this stage chip working properly. 

After completion of this stage „finish‟ output signal 

„1‟ indicates the FSM finished checking. 

 

 
Figure 10: Simulation results when the FSM is in 

 (R0, W1, R1) stage for a faulty chip 

Above is the simulation result showing that the FSM 

is in (R0, W1, R1) stage. After writing “00000000” 

in all the locations of this SRAM chip, Now the 

FSM is in (R0, W1, R1) stage. In this stage „error‟ 

output is „0‟ indicating up to this stage chip working 

properly and „finish‟ output signal „0‟ indicates the 

FSM still checking further. 

 

 
Figure 11: Simulation results when the FSM is in 

(R0, W1, R1) stage for a faulty chip. 
 

Above is the simulation result showing that 

the FSM is in (R0, W1, R1) stage. After writing 

“00000000” in all the locations of this SRAM chip, 

Now the FSM is in (R0, W1, R1) stage. In this stage 

„error‟ output is „1‟ indicating up to this stage chip 

working properly. Now after reading from the 

address “00001111” that data byte is compared with 

“00000000” and it does not matched with 

“00000000”. So „error‟ signal goes logic „1‟ 

indicating it a faulty chip. The „finish‟ output signal 

also goes logic „1‟ level indicating test completed. 
 

VI. CONCLUSION 
This algorithm is quite fast and can provide 

excellent solutions in short run-times. My 

experimental results indicate that this flow can save 

the designer many days of work by offering good 

BIST architectures which are complete in terms of 

logical and physical attributes. BIST designed here 

using March algorithm tests faster than the 
previously proposed ones and nearly 100% fault 

coverage .Compared with currently known 

microcode-based BIST techniques, my design 

requires only one third of those microcode storages 

and the testing time is reduced fifty percent. It is 

strongly believed that this BIST can be widely used 

for the embedded memory testing especially under 

the SoC design environment due to the superior 

flexibility and extendibility in applying different 

combination of memory test algorithms. Future 

work will consider optimization algorithms other 
than the March algorithm used in this work to obtain 

better solutions. 
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