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ABSTRACT 
In all image processing applications, 

there is huge demand for high-resolution images. 

Image resolution depends on the resolution of the 

image acquisition device like digital camera. One 

way to increase resolution is to go for very high-

resolution cameras but the major difficulty 

associated with using high-resolution cameras is, 

it increases the cost. An alternative to expensive 

high resolution cameras, super-resolution (SR) is 

used to obtain a high-resolution (HR) image from 

a sequence of multiple low-resolution (LR) 

observations of the same scene. SR image 

reconstruction is one of the most spotlighted 

research areas, because it can overcome the 

inherent resolution limitation of the imaging 

system and improve the performance of most 

digital image processing applications. In this 

paper, we demonstrate the Iterative-Back 

Projection (IBP) algorithm to obtain high-

resolution images. The analysis is first carried 

out in the 1-D domain to demonstrate the 

dealiasing capability of the super-resolution and 

extended to synthetic images. 

 

Keywords – Image reconstruction, IBP, LR, 

HR, SR. 

 

I. INTRODUCTION 
The SR image reconstruction is proved to 

be useful in many practical cases where images with 

high resolution are often required, in areas like 

medical imaging, satellite imaging, and video 

applications. Image resolution is defined as the 
smallest measurable detail in a visual representation. 

In digital image processing, the term resolution can 

be divided into three different classes - spatial 

resolution, brightness resolution and temporal 

resolution [1]. The spatial resolution of an image is 

determined by the imaging sensors. 

In charge-coupled device (CCD) camera, an image 

resolution is determined by the size of its photo-

detector. One way to increase resolution is by 

reducing the size of pixels. With decreasing the 

pixel size, the amount of light available for each 

pixel is also decreases and the image quality is 
degraded due to the enhancement of short noise. 

Thus it is difficult for a single CCD sensor to 

capture a high resolution image because of the  

 

 

 

 

limitaion on the size of current CCD sensing 

elements. It has been estimated that the minimum 

size of a photo-detectors should be approximately 

50μm2. This limit has already been attained by 

current CCD technology. Therefore, new techniques 

are needed to provide a high resolution image 
beyond the physical device performance which is 

possible using signal processing approach.  

An algorithmic way of enhancing the 

resolution is super-resolution. SR is process in 

which a high-resolution image is constructed from a 

set of LR images. Fundamentally, the task involves 

dealiasing, deblurring and denoising [1]-[3]. SR can 

be considered as a second generation problem of 

image reconstruction. Super-resolution algorithms 

can be broadly divided into two categories: motion 

based [4] and motion-free [5]-[6]. In comparison to 
motion-free methods, motion-based approach has 

attracted significantly more attention from the 

imaging community. In motion-based super-

resolution, sequences of multiple, sub-pixel shifted 

low-resolution observations are used to generate a 

high-resolution image.  

The aim of super-resolution (SR), for the 

motion-free case, is to remove the effects of blurring 

and aliasing, by making use of the information in 

the given set of defocused observations. The LR 

images are captured as sequence with different 

sensors which represent different”looks” at the same 
scene. The high resolution is constructed from these 

sub-sampled, noisy and blurred as well as shifted 

with sub-pixel LR images. If the LR images are 

shifted by integer units, then there is no new 

information that can used to reconstruct an HR 

image. If the LR images are shifted by sub-pixel 

values, then using this information an HR image can 

be reconstructed. Multiple scenes can be obtained 

from one camera with several captures or from 

multiple cameras located in different positions. 

These scene motions can occur due to the movement 
of local object or imaging systems. If these scene 

motions are known and if we combine these LR 

images, SR image reconstruction is possible.  

This paper is organized as follows. Section 

II, discusses the choice of the observation model. 

The IBP formulation of the problem is given in 

section III. Implementation issues [7] are given in 

section IV. Experimental results are given in section 

V while section VI concludes the paper. 
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II. OBSERVATION MODEL 
The In the process of recording a digital 

image, there is a natural loss of spatial resolution 

caused by the optical distortions, motion blur due to 

limited shutter speed, noise that occurs within the 
sensor or during transmission, and insufficient 

sensor density. Thus, the recorded image usually 

suffers from blur, noise, and aliasing effects. 

Therefore, the goal of SR techniques is to restore an 

HR image from noisy, blurred and aliased LR 

images. The first step in analyzing the problem is to 

formulate a suitable observation model that relates 

the original HR image to the LR observations. The 

relation between a lexicographically ordered LR 

observation and the original HR image can be 

expressed as 

 

  𝑦𝑟 = 𝐷𝐻𝑟𝑊𝑟𝑥 + 𝑛𝑟 ,      

1 ≤ 𝑟 ≤ 𝑚                         1  
Where, 

𝑥  = Original HR image of size (𝑁1 × 𝑁2) recorded 

in a vector of size (𝑁1𝑁2 × 1) , 

𝑦𝑟  = 𝑟𝑡ℎLR observation of size (𝑀1 × 𝑀2) recorded 

in a vector of size (𝑀1𝑀2 × 1) 

𝐷 = Down-sampling matrix (𝑀2𝑀1 × 𝑁1𝑁2), 

𝐻𝑟= Camera defocus blur matrix for the 𝑟𝑡ℎ  frame 

of dimension (𝑁1𝑁2 × 𝑁1𝑁2), 

𝑊𝑟= Geometric warping matrix for the 𝑟𝑡ℎ  frame of 

dimension (𝑁1𝑁2 × 𝑁1𝑁2),   

𝑛𝑟  = Noise in the 𝑟𝑡ℎ  frame which is assumed to be 

Gaussian, 

𝑚 = Number of LR observations. 
The motion that occurs during the image 

acquisition is represented by the warp matrix 𝑊𝑟 . It 

may contain translation and rotation. Since this 

information is generally unknown, therefore it is 

necessary to estimate the scene motion for each 

frame with reference to one particular frame. 

Blurring may be caused by an optical system and 

relative motion between the imaginary system and 

original scene, and the point spread function (PSF) 

of the LR sensor. It can be modulated as linear space 
invariant (LSI) or linear space variant (LSV), and 

represented by the matrix 𝐻𝑟 .  

In the SR image reconstruction, the 

finiteness of dimension in LR sensors is an 

important factor of blur and the characteristics of the 

blur are assumed to be known. The sub-sampling 

matrix D generates aliased LR images from the 

warped and blurred HR image. The observation 

model that we have discussed here is for an image 

and it also can be suitably changed for 1D case. 

 

III. ITERATIVE BACK-PROJECTION (IBP) 

FORMULATION 
In this algorithm, the HR image is 

estimated by back projecting the difference between 

simulated LR images and the observed LR images. 

Starting with an initial estimate for the HR image, 

the back-projection process is repeated iteratively 

for each incoming LR image. 

Eq. (1) can be expressed in matrix-vector form as  
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↔ 𝑥𝐿 = 𝐴𝑥𝐻 + 𝑒    (2) 

 

For practical reasons, it is assumed the noise is 

uncorrelated and has uniform variance. In this case, 

the maximum likelihood solution is found by 

minimizing the function 𝐸(𝑥𝐻), which can be 

expressed as  

𝐸 𝑥𝐻 =  
1

2
  𝑥𝐿 − 𝐴(𝑥𝐻) 

2
            (3)                                      

 

Taking the derivation of E with respect to 𝑥𝐻 and 

setting the gradient to zero: 

∇𝐸 = 0 → 𝐴𝑇 𝐴𝑥𝐻 − 𝑥𝐿 =  0 

↔  𝑊𝑟
𝑇𝐻𝑟

𝑇𝐷𝑇   𝐷𝐻𝑟𝑊𝑟𝑥𝐻 − 𝑥𝐿
𝑟 

𝑚

𝑟=1

= 0                                                                                      (4) 

 

Where the matrix 𝐴𝑇𝐴 operates on the vectors 𝑥𝐻 

and matrix 𝐴𝑇  operates on the 𝑥𝐿.For the simplest 

implementation of the eq. (4) IBP algorithm is used. 

For the 𝑟𝑡ℎ  LR image, the basic update equation can 
be written as: 

𝑥𝐻 𝑚 + 1 = 𝑥𝐻 𝑚 +  𝑊𝑟
𝑇𝐻𝑟

𝑇𝐷𝑇

𝑚

𝑟=1

 

             (𝑥𝐿
𝑟 − 𝐷𝐻𝑟𝑊𝑟𝑥𝐻(𝑚))                          (5) 

 

 Where 𝑥𝐻(𝑚) is a initial estimate and m represents 

the number of iterations. The matrices  

𝑊𝑟 ,  𝐻𝑟   and D model the image formulation process 

and their implementation is simply the image 

warping, blurring and sub-sampling respectively. 

The transpose matrices are also implemented as 

follows. 𝐷𝑇 is implemented by up- sampling the 
image without interpolation. For a convolution blur 

𝐻𝑟
𝑇 is implemented by convolution with the flipped 

blur kernel. For space-variant blur 𝐻𝑟
𝑇 is 

implemented by forward projection of the values, 

using the weights of the original blur kernel. 𝑊𝑟
𝑇 is 

implemented by backward warping of the motion. A 

small residual error suggests that the scene estimate 

is an accurate one; whereas a significant residual 

error indicates that the estimate is poor therefore the 

error information can be used to improve the scene 
estimate. By a process called back-projection the 

error residual is used to form an updated estimate of 

the scene which is a better approximation of the 

original. The approximation is better in the sense 

that the result of the simulated imaging process 

using the updated estimate has reduced residual 
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error as compared with the earlier estimate. This 

process is iterative and reduces the simulation 

residual error to a minimum. The iterative process 

thus comprises two steps: simulation of the observed 

images, and back-projection of the error to correct 

the estimate of the original scene. 

 

IV. IMPLEMENTATION ISSUES 
4.1 Warping 

The warping operation is typically 

performed using bilinear interpolation. Each pixel 

value in the warped image is calculated from its four 

neighboring pixels using the interpolation 

coefficients. Assuming a 2 × 2 pixel image 

   

   𝑎 =  
𝑎1 𝑎2

𝑎3 𝑎4
  (6)                                                                              

  

which must be warped by sub-pixel shifts 𝛿𝑥  and 𝛿𝑦  

in the 𝑥 and 𝑦 directions respectively. The values of 
the pixels corresponding to the warped image is

   

                𝑏 =  
𝑏1 𝑏2

𝑏3 𝑏4
                    (7)                                                                              

Where, 

𝑏1  = (1 − 𝛿𝑥)(1 − 𝛿𝑦  )𝑎1  +  𝛿𝑦  (1 − 𝛿𝑥)𝑎2

+  𝛿𝑥(1 − 𝛿𝑦  )𝑎3  +  𝛿𝑥𝛿𝑦  𝑎4 , 

𝑏2  =  1 − 𝛿𝑥  1 − 𝛿𝑦 𝑎2 +  𝛿𝑥 1 − 𝛿𝑦 𝑎4,   

𝑏3  = (1 − 𝛿𝑥)(1 − 𝛿𝑦)𝑎1  +  𝛿𝑦(1 − 𝛿𝑥)𝑎4 ,   

𝑏4  = (1 − 𝛿𝑥)(1 − 𝛿𝑦)𝑎4 

The warping operation can be expressed as 

                                  𝑏 = 𝑊𝑎 
Where, 

                𝑊 =

 
 
 
 
𝑊𝐴 𝑊𝐵 𝑊𝐶

0 𝑊𝐴 0
0 0 𝑊𝐴

     
𝑊𝐷

𝑊𝐶

𝑊𝐵 
 0        0       0        𝑊𝐴  

 
 
 

            (8)                                              

Here, 

𝑊𝐴 =  1 − 𝛿𝑥  1 − 𝛿𝑦 , 𝑊𝐵 = 𝛿𝑦 1 − 𝛿𝑥 ,   

          𝑊𝐶 = 𝛿𝑥 1 − 𝛿𝑦 , 𝑎𝑛𝑑 𝑊𝐷 = 𝛿𝑥𝛿𝑦   

The transpose operation can be expressed as 

                       𝑎 = 𝑊𝑇𝑏 
Where, 

       𝑊𝑇 =

 
 
 
 

𝑊𝐴 0 0
𝑊𝐵 𝑊𝐴 0
𝑊𝐶 0 𝑊𝐴

     
𝑊𝐷

𝑊𝐶

𝑊𝐵 
  𝑊𝐷      𝑊𝐶     𝑊𝐵      𝑊𝐴   

 
 
 

                   (9) 

 

The matrix  𝑊𝑇 spreads the intensity of a pixel 
proportional to the interpolation coefficients. Note 

that W and  𝑊𝑇 are not inverse of each other.                                                
 

4.2 Blurring 

The convolution operation is performed 

using linear convolution. Assume a vector of size 

1 × 4, 𝑎 =  𝑎1 𝑎2 𝑎3     𝑎4  and the blur kernel 

ℎ =  ℎ0 ℎ1 ℎ2 . Then, convolution of 𝑎 by ℎ can 

be written as 

  𝑐 =  𝑎1 𝑎2 𝑎3     𝑎4 ∗  ℎ0 ℎ1 ℎ2    (10)                                                                       

        = [𝑎1ℎ0 , 𝑎2ℎ0 + 𝑎1ℎ1 , 𝑎3ℎ0 + 𝑎2ℎ1 + 𝑎1ℎ2 , 
            𝑎4ℎ0 + 𝑎3ℎ1 + 𝑎2ℎ2 , 𝑎4ℎ1 + 𝑎3ℎ2 , 𝑎4ℎ2]   
  

For length of convolved vector as the 𝑎, this can be 

written as 

  𝑐 = [𝑎2ℎ0 + 𝑎1ℎ1 , 𝑎3ℎ0 + 𝑎2ℎ1 + 𝑎1ℎ2 , 𝑎4ℎ0 +
             𝑎3ℎ1 + 𝑎2ℎ2 , 𝑎4ℎ1 + 𝑎3ℎ2]        
The blurring operation can be expressed as  𝑐 = 𝐻𝑎,  

Where, 

                        𝐻 =

 
 
 
 
ℎ1 ℎ0 0
ℎ2 ℎ1 ℎ0

0 ℎ2 ℎ1

     
0
0
ℎ0 

 0      0      ℎ2      ℎ1 
 
 
 

                                                                                                        

If instead of ℎ, convolve 𝑎 with a flipped version of 

ℎ, then 

   𝑐 = [𝑎2ℎ2 + 𝑎1ℎ1 , 𝑎3ℎ2 + 𝑎2ℎ1 + 𝑎1ℎ0 ,
𝑎4ℎ2 +               𝑎3ℎ1 + 𝑎2ℎ0 , 𝑎4ℎ1 + 𝑎3ℎ0]      
In matrix-vector form 𝑐 = 𝐻𝑓𝑙𝑖𝑝 𝑎  

Where, 

                 𝐻𝑓𝑙𝑖𝑝 =

 
 
 
 
ℎ1 ℎ2 0
ℎ0 ℎ1 ℎ2

0 ℎ0 ℎ1

     
0
0
ℎ2 

 0      0      ℎ0      ℎ1 
 
 
 

 

Note that 𝐻𝑓𝑙𝑖𝑝  is the same as 𝐻𝑇, i.e., the operation 

𝐻𝑇a is the convolution of the vector with flipped 
version of h.  

4.3 Down-sampling 

Consider a small image of size 4 × 4 pixels value              

𝑎 =   

𝑎1 𝑎2 𝑎3

𝑎5 𝑎6 𝑎7

𝑎9 𝑎10 𝑎11

     

𝑎4

𝑎8

𝑎12 
𝑎13    𝑎14     𝑎15      𝑎16

         (11)                                          

After down-sampling by a factor of 2, 

      

 𝑏 =  
𝑏1 𝑏2

𝑏3 𝑏4
                                                        (12) 

Where, 

𝑏1 =
𝑎1 + 𝑎2 + 𝑎5 + 𝑎6

4
,               

 𝑏2 =
𝑎3 + 𝑎4 + 𝑎7 + 𝑎8

4
,      

𝑏3  =
 𝑎9 + 𝑎10 + 𝑎13 + 𝑎14 

4
,      

 𝑏4 =
𝑎11 + 𝑎12 + 𝑎15 + 𝑎16

4
 

 

The transpose operation yields the expanded image 

as 

          𝑏𝑇 =
1

4

 
 
 
 

 

𝑏1 𝑏1 𝑏2

𝑏1 𝑏1 𝑏2

𝑏3 𝑏3 𝑏4

     

𝑏2

𝑏2

𝑏4 
𝑏3    𝑏3      𝑏4      𝑏4 

 
 
 

         (13) 

The matrix  𝑏𝑇 spreads the intensity value in a lower 
dimension to a higher dimension. Note that b and  

𝑏𝑇 are not inverse of each other.                                                
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V. EXPERIMENTAL RESULTS 
In the experiments, IBP algorithm was 

tested on both 1D and 2D signals respectively. In 

experiment, Mean Square Error (MSE) is calculated, 

which can be expressed as 
 

        𝑀𝑆𝐸 =
1

𝑁1𝑁2
 𝑋 − 𝑋  

2
                  (14)                                        

Where, 

𝑋     : Original image, 

𝑋      : Super-resolved image and 

𝑁1𝑁2 : Number of rows and columns in the 

image 
In the first experiment, a sine wave (Fig. 

1(a)) with 𝑓𝑚  = 400Hz is considered. It is sampled 

by 𝑓𝑠 = 1000Hz. Four LR observations are generated 

from a good quality sine wave of size 1 × 2500 by 

warping to the sub pixel shift parameters (0.1), 

(0.25), (0.5) and (0.6). Each of the LR observations 

is blurred by Gaussian blur of standard deviation 

(0.000005) and down-sampled by a factor of 2. 

Gaussian noise of variance (0.000005) is then 

added. In this experiment, we observed that aliasing 
is taken place in LR signal as shown in Fig. 1(b). 

Using interpolation, it is not possible to get back 

original signal as shown in Fig. 1(c). Therefore, 

interpolation methods are not considered as SR. 

Using IBP technique with low blur (0.000005) and 

low noise (0.000005), it is possible to get signal 

same as original signal. The reconstructed results of 

the super-resolution algorithm are shown in Fig. 

1(d). 

 

Next, to verify the algorithm, 
increase/decrease the value of both standard 

deviation and variance for blur, noise respectively. 

Results of sine wave with low blur and low noise 

(ideal case) is shown in Fig. 2(a) and Fig. 2(b). With 

increase in noise (0.33), noisy samples have 

appeared and the decreasing MSE has increased as 

shown in Fig. 2(c) and Fig. 2(d). With increasing the 

blur (0.5), blurred samples at frequency 100, 900 are 

not completely suppressed and MSE is increased as 

shown in Fig. 2(e) and Fig. 2(f). 

 
In the next experiment, “Lena” image (Fig. 

3(a)) is considered of dimension 132 × 132 pixels 

from which four low-resolution observations are 

generated by warping, blurring and down-sampling. 

Sub-pixel shifts (0, 0), (0, 1), (1, 0), and (1, 1) are 

used. One such LR observation and bilinear 

interpolation output are shown are Fig. 3(b) and Fig. 

3(c). The reconstructed results of the super-

resolution algorithm are shown in Fig. 3(d) which is 

close to the original image.  

Results of ’Lena’ image with low blur and 

low noise (ideal case) is shown in Fig. 4(a). An 
image with high noise (0.15), low blur (0.000005) 

and low noise (0.000005), high blur (0.5) are shown 

in Fig. 4(b) and Fig. 4(c). The mean squared error 

(MSE) per pixel between the original and the 

reconstructed image is also given for comparison. 

With increase in noise and blur, the quality of an 

image is decreased as compared to the original 

image. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. Results for a sine wave spectrum of (a) 

Original Signal. (b) An LR observation. (c) 

Interpolation output. and (d) Super-resolved signal.. 

 
(a) 

(b) 

 
(c) 
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(d) 

 

 
(e) 

(f) 

Fig. 2. I. Results for a sine wave spectrum of (a) 

Super-resolved signal with low blur and low noise 

(Ideal case). (c) Super-resolved signal with low blur 

and high noise. (e) Super-resolved signal with high 

blur and low noise. 

II. Results for a MSE plot of (b) MSE with low blur 

and low noise (Ideal case). (d) MSE with low blur 

and high noise. and (f) MSE with high blur and low 
noise. 

        
(a)                                   (b)       
             

    
     (c)                                   (d) 

Fig. 3. Results for an image. (a) Original image. (b) 

An LR observation. (c) Initial estimate. (d) Super-

resolved image. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Results for an image. (a) An image with low 

blur and low noise (Ideal case). (b) An image with 

low blur and high noise and (c) An image with high 

blur and low noise. 

 

VI. CONCLUSION 
The IBP algorithm has been demonstrated 

in this paper to enhance an image resolution. 

Algorithm uses the information available from 

multiple observations to obtain high quality image. 

An analysis is carried out in the 1D and 2D domain 

and it is observed that the resolution of image has 

increased after performing super-resolution on the 

LR observations. The performance of the IBP 

algorithm is good in case of low blur and low noise 

but it is highly sensitive to noise and blur. In IBP 

algorithm, an improvement can be obtained under 
noisy conditions by regularization. 
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