
Richa Purohit, Yogendra Singh, Dr. Upendra Mishra, Dr. Abhay Bansal / International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.2137-2142

2137 | P a g e

Integrtation of Encryption and Hash Function for Improved

Message Authenticity

Richa Purohit (Arya), Yogendra Singh, Dr. Upendra Mishra, Dr. Abhay

Bansal
Amity School of Engineering. & Technology Amity University Rajasthan Jaipur, India

Dy. Manager- IT, Au Financiers India Pvt. Ltd. Jaipur, India

Amity School of Engineering. & Technology Amity University Rajasthan Jaipur, India

Amity School of Engineering. & Technology Amity University Uttar Pradesh Noida, India

Abstract
 Hash function is an important tool for

implementing data and information integrity.

Presently there are many integrity techniques,

that support hashing, but almost every technique

faces one or other attack or any other security or

performance related issue. The main problem is

the possibility of creating forged hash value by

intruder, which may be transferred with the

changed message, and being received and

accepted by receiver. This paper discusses how to

provide data origin authenticity along with data

integrity by integrating symmetric key

encryption algorithm with a hash algorithm.

Hash functions provide data integrity, while

encryption techniques provide source or origin

authenticity by using a shared secret key. In the

paper the technique to combine both hash

function and encryption algorithm-DES is given

so that, both features, data integrity and source

authentication, may be availed while

communicating message between sender and

receiver on a network.

Keywords: DES, hash function, MD5,

message authentication, message integrity

I. INTRODUCTION
Hash functions are one of the fundamental

importances in cryptographic protocols. They are

applied in digital signatures, data integrity, time

stamping, password verification, digital

watermarking, group signature, e-vash and in many

other cryptographic protocols.

Hash Functions take a block of data as

input, and produce a hash or message digest as

output. The usual intent is that the hash can act as a
signature for the original data, without revealing its

contents. Therefore, it's important that the hash

function be irreversible - not only should it be nearly

impossible to retrieve the original data, it must also

be unfeasible to construct a data block that matches

some given hash value. A hash function takes a long

string (or message) of any length as input and

produces a fixed length string as output, sometimes

termed a message digest or a digital fingerprint[1].

II. CLASSIFICATION OF HASH FUNCTIONS
For data origin authentication there is a special class

of hash functions that use a key. The hash functions
without a key are used for data integrity.

According to [2] a function used mainly to detect

changes in the signed messages is called

modification detection code (MDC) or

manipulation detection code, and less commonly as

message integrity code (MIC). MDC is a subclass of

unkeyed hash functions.

A one-way hash function (OWHF) is MDC

for which it is difficult to find an input which hashes

to a prespecified hash-value.

A collision resistant hash function (CRHF) is
characterized by difficulty in finding any two inputs

having the same hash-value.

For data origin authentication purpose

message authentication codes (MAC) are used. The

purpose of a MAC is to facilitate, without the use of

any additional mechanisms, assurances regarding

both the source of a message and its integrity.

MACs have two functionally distinct parameters, a

message input and a secret key.

MACs are keyed hash functions [2]. In case of

MAC, the design intent is to be infeasible to
produce the same output without knowledge of the

key.

Currently MD5 [3] and SHA-1 [4] are

widely used all over the world as estab;lished hash

functions. Both of these hash functions are derived

from MD4 [5]. Successful attacks have been

performed on MD4, so all hash functions that are

based upon its structure may also have common

weaknesses.

In this paper, we will describe the design

algorithm of cryptographic hash function along with

the use of Data Encryption Standard (DES). Here,
DES is an already proven symmetric encryption

scheme that produces cipher text in 64 bit block

taking 64 bit plain text as input. Merging of

encryption algorithm will provide additional facility

of source authentication and thus, will improve

stucture of hash function that supports message

integrity only. Here authentication means to provide

a means to receiver for assurance that the message is

actually sent by original sender, not by some

Richa Purohit, Yogendra Singh, Dr. Upendra Mishra, Dr. Abhay Bansal / International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.2137-2142

2138 | P a g e

intruder, and at the same time the message is also

authenticated and original. The paper also discusses

the working of MD5 and DES functions and there

key features. Then it describes the proposed method

and analyzes its cost and potential applications.

III. PROPERTIES OF HASH ALGORITHM
 Some of the properties of hash functions

are due to the requirements in implementation. For

instance, it is useful to have a hash function which is

easy to implement (easy to compute the hash of a

message) on one side and on the other side it has to

be able to compress the information (the message).

Other properties are driven from the cryptographic

environment requirements. As such we have three

properties[6]:

* Preimage Resistance (one way function) – Given
a hash h it should be difficult to find any

message m such that h= hash(m). This concept

is known as one-way function. Functions that lack

this property are vulnerable to preimage attacks.

* 2nd-Preimage Resistance (also known as collision

resistance) – Given an input m1, it should be

difficult to find another input m2 where m1 ≠ m2

such that hash(m1) = hash(m2). This property is

sometimes known as weak collision resistance, and

functions that lack this property are vulnerable

to second-preimage attacks.
* Collision Resistance (also called strong collision

resistance) – It should be difficult to find two

different messages m1 and m2 such that hash(m1) =

hash(m2). Such a pair is called a cryptographic

hash collision. This property is sometimes known

as strong collision resistance. It requires a hash

value at least twice as long as that required for

preimage-resistance, otherwise collisions may be

found by a birthday attack.

These properties imply that a

malicious adversary cannot replace or modify the
input data without changing its digest. Thus, if two

strings have the same digest, one can be very

confident that they are identical.

The one-way hash function is a hash

function (i.e., offering ease of computation and

compression) with the additional properties, as

defined above: preimage resistance, 2nd-preimage

resistance [7]. The collision resistant hash function

is a hash function characterized by 2nd-preimage

resistance and collision resistance.

In our solution, we will use MD5

algorithms. The MD5 is a widely used algorithm to
verify data integrity through the creation of a 128-

bit message digest from data input (which may be a

message of any arbitrary length) that is claimed to

be as unique to that specific data as a fingerprint is

to the specific individual. MD5, which was

developed by Professor Ronald L. Rivest of MIT, is

intended for use with digital signature applications,

which require that large files must be compressed by

a secure method before being encrypted with

a secret key, under a public key cryptosystem. MD5

is currently a standard, Internet Engineering Task

Force (IETF) Request for Comments (RFC) 1321.

According to the standard, it is "computationally

infeasible" that any two messages that have been

input to the MD5 algorithm could have as the output

the same message digest, or that a false message
could be created through apprehension of the

message digest. MD5 is the third message digest

algorithm created by Rivest. All three (the others are

MD2 and MD4) have similar structures, but MD2

was optimized for 8-bit machines, in comparison

with the two later formulas, which are optimized for

32-bit machines. The MD5 algorithm is an

extension of MD4, which the critical review found

to be fast, but possibly not absolutely secure. In

comparison, MD5 is not quite as fast as the MD4

algorithm, but offers much more assurance of data

security.
Following are the steps involved in MD5 algorithm

to create a digest value:

1. First of all the original message is padded with

100…00 bits, so that the original message length ≡

448 mod 512.

2. As next step, original message length (in 264 bit

representation) is appended to the output of previous

step.

3. After initialization of 128 bit MD buffer, the

message (output from previous stage) is processed

in blocks of 512 bit each. Processing is done on
individual blocks, where, each step consists of 4

individual rounds, and each round contains 16 steps,

thus total 64 steps.

4. After processing each individual 512 bit block,

the output is taken in the 128 bit buffer, and this

buffer is used as current value in processing of next

512 bit block. In such a way, after processing all

512 bit blocks, the final output in buffer, obtained

by processing last block of message, is termed as

final message digest value of the whole message.

 So, If we have two distinct messages, M1

and M2, the difficulty of computing their digest,
such that MD5(M1) = MD5(M2), is in the order of

264 operations. Similarly, for a given a message

digest h, the difficulty of computing a message, M

such that MD5(M) = h, is on the order of 2128

operations.

An attack on MD5 was presented in 2005,

using differential analysis, which allows finding

collisions efficiently[8]. The same attack, applied on

HAVAL-128, MD4, RIPEMD, and SHA-0 reduced

the number of operation for determining a second

message with the same hash. Even if the number of
operations required for the attack is considerable,

such attacks are reducing the ideal number of

operations assumed to be required for breaking hash

functions. Such findings motivated NIST to find

new, resistant hash functions [9].

Richa Purohit, Yogendra Singh, Dr. Upendra Mishra, Dr. Abhay Bansal / International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.2137-2142

2139 | P a g e

IV. PROPERTIES OF THE DES BLOCK CIPHER
 DES originated at IBM in 1977 and was

adopted by the U.S. Department of Defense. It is

specified in the ANSI X3.92 and X3.106 standards

and in the Federal FIPS 46 and 81 standards. DES is
a block cipher encryption algorithm i.e. it takes

input in block and produces output also in block.

The block size is specific for each algorithm. DES

deals with 64 bit block [10]. Cryptographers say that

a block cipher is secure if both C→E(P) and

P→D(C) are indistinguisable from a randomly

selected permutation. This cascade construction

extends the collosion resistance and pre-image

resistance[11], (here, C= Cipher text, E= Encryption

algorithm, P= Plain text and D= Decryption

algorithm). DES is symmetric encryption technique,

that is it uses similar key for both encryption and
decryption algorithms.

In processing, DES consists of two

permutation operations with 16 identical rounds of

operations in between. It uses a 64 bit long key,

where 8 bits are reserved as parity bits (one bit for

each of the eight words in the key), thus effective

key length is 56 bit. For each of the sixteen round a

48 bit key is used, which is made up by permutation,

combination, shifting and other operations

performed on initial 56 bit key, and all 16 keys are

diferent each time. The performance of a block
cipher is dependent on the cost of both the

encryption routine and key setup.For bulk

encryption the cost of a single key setup is

amortized over the entire encryption session.

However, when used as the basis for a hash

function, the cost of the key schedule becomes a

significant factor. Most modern ciphers, including

the DES, tend to have a lightweight key

schedule[12].

V. PROPOSED SOLUTION
One approach would be to try to buid the

new function based on existing techniques only. For

example- we may concatenate the outputs of two

different hash functio techniques and treat this

concatenated output as final digest. But for this

solution, both of the existing hash functions should

be independent of each other.

One more method may include the

techniques to strengthen the existing hash
algorithms by inceasing the number of rounds,

adding some coding or scrambling steps, increasing

the buffer size (so as to increasing the digest size),

making the mixing step varing with the rounds[13].

Our method involves combination of two

established techniques. Now, we describe our newly

proposed hash function based on MD5 and DES.

The hash function has following properties-

1. It produces a 128 bit digest value. {0,1} < 264 →

128 bit value. Here {0,1} < 264 denotes the set of all

messages whose length is at most 264-1 which is

reasonable in all practical applications.

2. Our hash function is also a wide pipe hah

function. Like other hash functions we will use an

initial value and a variant of padding rule which

provides a dynamic hash.

Algorithm:

1. Padding - Padding is done in following two steps-

a. Pad1:-In the first step, the given message is
padded so that |M| < 264 . The padding is done by 1

followed by neccasray number of 0 bits:-

Pad1 (M) = M||1||0k

b. Pad2:- (Append message length) In the second

step, the output of step (a) is padded with 64 bit

binary representation of message length. i.e. pad2

(M) = M||1||0k||bin64 (|M|).

2. Generate intermediate hash- let M1|| M2|| ---||Mt

be the padded message and each Mi is a 512 bit

block of message. We initialize an MD buffer with

some predefined initial values, i.e. (S0, j0) = (SIV, 0).

Now, we invoke a SHA-1 like compression function
C and produce a 128 bit intermediate hash value.

(S0, j0)
𝑀1
 (S1, j1)

3. Apply Symmetric Encryption Algorithm- After

getting intermediate digest value; we divide it into

two blocks of 64 bit each. And apply symmetric key
encryption algoroithm on each block separately,

which again gives us two individual blocks of 64

bits as output.

4. Getting output of processing of a single block- the

outputs of encryption on two 64 bit blocks are

combined together (by simple append operation)

and one 128 bit block is formed. (After first block it

is known as (S1, j1) and so on.) (Figure 1).

5. Output:- This new (Sn, jn) is used as input values

for IV for next 512 bit block of message for

processing. After processing all t blocks, the final

(St, jt) is final hash value for initial message. (Figure
2)

Figure 1:Intermediate processing of a single 512

bit block

Richa Purohit, Yogendra Singh, Dr. Upendra Mishra, Dr. Abhay Bansal / International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.2137-2142

2140 | P a g e

Figure 2:Final Procesing

Use of DES as an intermediate symmetric

encryption algorithm needs Key Distribution Center

(KDC) [14], that will distribute the symmetric key

(or session key) to both parties- sender and receiver

in encrypted form, using its own private key, so that

no other party in the network may gain access to the

key and the proposed solution is secure in this

manner.

The proposed solution increases the present

processing of a single block, as does not directly

feeds the output of previos block as current value for

next block, rather it first devides the 128 bit output

into two 64 bit partitions, encrypts them using DES

algorithms, and further uses the output after

concatednation of both 6 bit cipher blocks as current
value for next block.

CV0=IV

CVq= E (K,B1) || E (K,B2)

Where,

IV= Initialization value of MD buffer set by MD5

E= DES scheme

B1= Left 64 bits of output of MD5 digest value

B2= Right 64 bits of output of MD5 digest value

K= DES key

Following diagram shows overall processing of the

algorithm.

Richa Purohit, Yogendra Singh, Dr. Upendra Mishra, Dr. Abhay Bansal / International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.2137-2142

2141 | P a g e

VI. VII ANALYSIS OF PROPOSED METHOD
One major drawback of using DES

algorithm while generating the hash is the

comparative slow speed of DES, which may

ultimately slow down the whole process. This is

because the usual DES Encryption algorithm

streches the given 56-bit DES key into 48*16 bits

(16 rounds of operations, where each round uses
different 48 bit key made up from initial 56 bit

DES key). One way to improve the rate of DES

based hash algorithm would be to skip the key-

scheduling algorithm and feed 16*48 bits of input

text directly as a key. This consuiderably increases

the rate of digest construction. Using the streched

output as the DES key would effectively allow us

to compress 512 bits per DES-call.

The strength of the algorithm may taken

by considering brute force attack on it. Here, the

adversary may need to perform at least 2196 trials

for a successful attack, that is equivalent to both

attack on DES alone and attack on MD5 alone. It

says that the algorithm is stronger than MD5. At

the same time the cost of proposed solution is also

more than simple MD5 as it combines two

algorithms. But one Still the analysis of the

performance of cryptographic algorithms is closely

related to their security: high performance

applications require an optimal trade-off between
security and speed. [15]

The security of the proposed solution can

be split into a consideration of underlying block

cipher and then of the compression function and

chaining mode. The latter concerns are handled by

the results of Damgård, Merkle, Black et al [16],

and Biham and Dunkelman [17] so for reasons of

128 bit

128 bit 128 bit

Message 1…..0000000

(Padding bits)

Message length

(k mod 2 64)

K bits

L*512 bits= N*32 bits

Y0
YL-1 Yq Y1

512 bits 512 bits 512 bits
512 bits

H MD5 H MD5

H MD5

H MD5

IV

128 bit

DES DES DES DES

128 bit

encrypted

hash value

128 bit

encrypted

hash value

128 bit

DES DES

128 bit
encrypted

hash value

128 bit 128 bit 128 bit

Final 128 bit message digest

DES DES

128 bit

encrypted

hash value

128 bit

Figure 3: An illustrated view of processing of MD5 having DES in between

Richa Purohit, Yogendra Singh, Dr. Upendra Mishra, Dr. Abhay Bansal / International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.2137-2142

2142 | P a g e

space we concentrate on the cipher within the

compression function and particularly on DES.

VII. CONCLUSION
The poposed method is easy to implement

and analyze, whih enhancec its acceptability and

applicability. The algorithm is of importance where

source authentication is equally important as that of

message integrity. The solution considers two

already established and world wide used two

algorithms- MD5 and DES. The other similar

solutions may also be provided combining any

other hash function and encryption techiques such

as SHA-1, whirlpool, Tiger etc or Advanced

Encryption Standard (AES).

BIBLIOGRAPHY
[1] S. M. Bellovin and E. K. Rescorla.

Deploying a new hash algorithm.

In Proceedings of NDSS '06, 2006.

[2] P. Rogaway , T. Shrimpton. ―

Cryptographic Hash - Function Basics:

Definitions, Implications, and Separations

for Preimage Resistance, Second-Preimage

Resistance, and Collision Resistance.

Springer-Verlag 2004.
[3] R. Rivest. The MD5 Message-Digest

Algorithm. RFC 1321, April 1992.

[4] National Institute of Standards and

Technology, U.S. Department of

Commerce. Secure Hash Standard, 2002.

FIPS PUB 180-2.

[5] R.L. Rivest. MD4 Message Digest

Algorithm. RFC 1186, October 1990.

[6] M. Stanek. Analysis of Fast Block Cipher

Based Hash Function. Computational

Science and its Applications. 2006, vol-
3982/2006, pp- 426-435. DOI:

10.1007/11751595_46

[7] R. Rivest, The MD4 Message Digest

Algorithm, Procesedings of CRYPTO’90,

August 1990.

[8] X. Wang and H. Yu, How to Break MD5

and Other Hash Functions, Advances in

Cryptology – EUROCRYPT 2005, 2005,

pages 19-35.

[9] R. Tirtea, Cryptographic hash functions.

Trends and challenges, Journal of
Computer Science and Control Systems ,

2009, Vol 2, issue 2, pp- 62-65.

[10] M.E. Smid, D.K.Branstad. The Data

Encryption Standard- Past and Future.

Proceedings of IEEE, Vol 76, no.5, pages

42-64.

[11] J. Walker, M. Kounavis, S.Gueron,

G.Graunke, Recent Contribution to

Cryptographic Hash Function, Intel

Technology Journal, 2009, Vol 13, issue

2, pp 80-95.

[12] B. Olivier, J.B.R. Mathew, S. Yannick,

L.Y.Yiqun. Looking Back at a New Hash

Function, ACISP 2008, LNCS 5107, pp.

239-253.

[13] S. Al- Kuwari, J.H Davenport, R.J.

Bradford, Cryptographic hash functions:

recent design trends and security notions,
Short Paper Proceedings of 6th China

International Conference on Information

Security and Cryptology (Inscrypt

'10). 2010, Science Press of China, pp.

133-150.

[14] L. Harn and C. Lin, Authenticated Group

Key Transfer Protocol Based on Secret

Sharing. Computers, IEEE Transactions

on, June 2010, vol 59, issue- 3, pp-842-

846.

[15] B. Preneel, Software Performance of

Encryption Algorithms and Hash
Algorithms, Appeared in Selected Areas in

Cryptography, 2nd Annual International

Workshop, SAC 1995, pp. 89–98, 1995.

[16] J. Black, P. Rogaway, and T. Shrimpton.

Black-Box Analysis of the Block-Cipher-

Based Hash-Function Constructions from

PGV. In M. Yung, editor, Advances in

Cryptology – CRYPTO 2002, volume

2442 of Lecture Notes in Computer

Science, pages 320–335. Springer-Verlag,

2002.
[17] E. Biham and O. Dunkelman. A

Framework for Iterative Hash Functions -

HAIFA. Presented at Second NIST

Cryptographic Hash Workshop, August

24-25, 2006. Available at: csrc. nist. gov/

groups/ ST/ hash/.

