
Pardeep Sharma, Gurpreet Singh / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.2016-2020

2016 | P a g e

Analysing Single Precision Floating Point Multiplier on Virtex 2P

Hardware Module

Pardeep Sharma, Gurpreet Singh
Assistant Professor, Department of Electronics & Communication,

Shaheed Bhagat Singh State Technical Campus, Ferozepur.

Abstract
FPGAs are increasingly being used in the

high performance and scientific computing

community to implement floating-point based

hardware accelerators. We present FPGA

floating-point multiplication. Such circuits can be

extremely useful in the FPGA implementation of

complex systems that benefit from the

reprogramability and parallelism of the FPGA

device but also require a general purpose

multiplier unit. While previous work has

considered circuits for low precision floating-

point formats, we consider the implementation of

32-bit Single precision circuits that also provide

rounding and exception handling. We introduce

an algorithm for multiplication and analyze its

performance on Virtex2P hardware module at

speed grade -7.

Keywords - Floating point Multiplier, FPGAs,

Xilinx and Virtex.

I. INTRODUCTION
Many people consider floating-point

arithmetic an esoteric subject. This is rather

surprising because floating-point is ubiquitous in

computer systems. Almost every language has a

floating-point data type. Floating Point numbers

represented in IEEE 754 format are used in most of

the DSP Processors. Floating point arithmetic is

useful in applications where a large dynamic range is

required or in rapid prototyping applications where

the required number range has not been thoroughly

investigated. The floating Point Multiplier IP helps

designers to perform floating point Multiplication on

FPGA represented in IEEE 754 single precision

floating point format. The single precision multiplier

is divided into three main parts corresponding to the

three parts of the single precision format [1]. The

normalized floating point numbers have the form of

Z = (-) * * (1.M) (1)

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1

2-22+ m0 2-23;

Bias = 127.

The first part of the floating point multiplier is sign

which is determined by an exclusive OR function of

the two input signs. The second part is the exponent

which is calculated by adding the two input

exponents. The third part is significand or mantissa

which is determined by multiplying the two input

significands each with a “1” concatenated to it. That

“1” is the hidden bit. The main applications of

floating points today are in the field of medical

imaging, biometrics, motion capture and audio

applications, including broadcast, conferencing,

musical instruments and professional audio.

II. FPGA (FIELD PROGRAMMABLE GATE

ARRAY)
FPGA stands for Field Programmable Gate

Array. It is a semiconductor device containing

programmable logic components and programmable

interconnects. The programmable logic components

can be programmed to duplicate the functionality of

basic logic gates such as AND, OR, XOR, NOT or

more complex combinational functions such as

decoders or simple mathematical functions [3] [8].

In most FPGAs, these programmable logic

components (or logic blocks, in FPGA parlance) also

include memory elements, which may be simple flip

flops or more complete blocks of memories. A

hierarchy of programmable interconnects allows the

logic blocks of an FPGA to be interconnected as

needed by the system designer, somewhat like a one-

chip programmable breadboard shows in figure 1.

These logic blocks and interconnects can be

programmed after the manufacturing process by the

customer/designer (hence the term "field

programmable", i.e. programmable in the field) so

that the FPGA can perform whatever logical function

is needed [4].

Pardeep Sharma, Gurpreet Singh / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.2016-2020

2017 | P a g e

Figure 1: FPGA board

FPGAs are generally slower than their

application specific integrated circuit (ASIC)

counterparts, as they can't handle as complex a

design, and draw more power. However, they have

several advantages such as a shorter time to market,

ability to re-program in the field to fix bugs, and

lower non recurring engineering cost costs. Vendors

can sell cheaper, less flexible versions of their

FPGAs which cannot be modified after the design is

committed. The development of these designs is

made on regular FPGAs and then migrated into a

fixed version that more resembles an ASIC.

Complex programmable logic devices, or CPLDs,

are another alternative.

III. FLOATING POINT FORMAT
The advantage of floating point format over

fixed point format is the range of numbers that can

be presented with the fixed number of bits. Floating

point number is composed of three fields and can be

of 16, 18, 32 and 64 bit. Figure shows the IEEE

standard for floating point numbers [2].

31 30 22 0

Figure 2: Standard for floating point numbers

1 bit sign of signifies whether the number is

positive or negative. „1‟ indicates negative number

and „0‟ indicate positive number. 8 bit exponent

provides the exponent range from E (min) =-126 to

E (max) =127. 23 bit mantissa signifies the fractional

part of a number the mantissa must not be confused

with the significand. The leading „1‟ in the

significant is made implicit [3].

A. Conversion of Decimal to Floating numbers

Conversion of Decimal to Floating point 32 bit

formats is explained in 1 & 2 example.

Example:

Step 1: Suppose a decimal number 129.85 is taken.

Step 2: Convert it into binary number of 24 bits

i.e.10000001.1101110000000000.

Step 3: Shift the radix point to the left such that there

will be only one bit which is left of the radix point

and this bit must be 1. This bit is known as hidden

bit.

Step 4: Count the number of times radix points is

shifted to the left say „x‟. The number which is

formed after shifting of radix point is

1.00000011101110000000000. Here x=7.

Step 5: The number which is after the radix point is

called mantissa which is of 23 bits and the whole

number including hidden bit is called significand

which is of 24 bits.

Step 6: The value „x‟ must be added to 127 to get the

original exponent value which is 127 + „x‟. In this

case exponent is 127 + 7 = 134 which is 10000110.

Step 7: Number is +ve hence MSB of number is 0.

Step 8: Now assemble result into 32 bit format in the

form of sign, exponent and mantissa

01000011000000011101110000000000.

IV. MULTIPLICATION ALGORITHM FOR FLOATING

POINT NUMBERS

As stated in the introduction, normalized floating

point numbers have the form of

Z = (-) * * (1.M) (1)

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1

2-22+ m0 2-23;

Bias = 127.

To multiply two floating point numbers the

following steps are taken [1] [6]:

Step 1: Multiplying the significand; i.e.

(1.M1*1.M2)

Step 2: Placing the decimal point in the result

Step 3: Adding the exponents; i.e. (E1 + E2 – Bias)

Step 4: Obtaining the sign; i.e. s1 xor s2 and put the

result together

Step 5: Normalizing the result; i.e. obtaining 1 at the

MSB of the results‟ significand shown in figure 3.

Figure 3: Normalization of sign, exponent and

mantissa

We present a floating point multiplier in

which rounding technique is implemented. Rounding

support can be added as a separate unit that can be

Sign Exponent Mantissa

Pardeep Sharma, Gurpreet Singh / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.2016-2020

2018 | P a g e

accessed by the multiplier or by a floating point

adder, thus accommodating for more precision. The

multiplier structure; Exponents addition, Significand

multiplication, and Result‟s sign calculation are

independent shown in figure 5.4. The significand

multiplication is done on two 24 bit numbers and

results in a 48 bit product, which we will call the

intermediate product (IP). The IP is represented as

(47 downto 0). The following sections detail each

block of the floating point multiplier.

Figure 4: Algorithm for floating point multiplication

A. An example of floating point multiplier with

proposed algorithm

A: 0 10000111 10010101001110000101000 (32

bit)

B: 0 10000110 10010010011010111000010 (32

bit)

To multiply A and B

Step 1: Multiplying the significand (including hidden

bit)

110010101001110000101000 (24 bit)*

110010010011010111000010 (24 bit)

=10011111001111110010011101000110100111100

1010000 (48 bit)

Step 2: Placing the decimal point in the result

10.011111001111110010011101000110100111100

1010000

Step 3: Adding the exponents; i.e. (E1 + E2 – Bias)

Adding of exponents =10000111 (E1) +10000110

(E2)

The exponent representing the two numbers is

already shifted/biased by the bias value (127) and is

not the true exponent; i.e. EA = EA-true + bias and

EB = EB-true + bias And EA + EB = EA-true + EB-

true + 2 bias

So we should subtract the bias from the resultant

exponent otherwise the bias will be added twice.

Exponent Result = 10000111 (E1) +10000110 (E2)

– 01111111 (Bias 127) = 10001110

Eresult = 10001110

Step 4: Obtaining the sign; i.e. s1 xor s2 and put the

result together

0 Xor 0 = 0, so the sign of the number is +ve

0 10001110

10.011111001111110010011101000110100111100

1010000

Step 5: Normalizing the result

Normalize the result so that there is a 1 just before

the radix point (decimal point). Moving the radix

point one place to the left increments the exponent

by 1; moving one place to the right decrements the

exponent by 1

Before Normalizing

 0 10001110

10.011111001111110010011101000110100111100

1010000

After normalization

0 10001111

1.0011111001111110010011101000110100111100

1010000 (including hidden bit)

Step 6: Rounding the result to the nearest number [3]

[5]

The mantissa bits are more than 23 bits (mantissa

available bits); rounding is needed. If we applied the

round to nearest rounding mode then the stored value

is:

01000111100111110011111100100111(After

rounding)

Step 7: Checking for underflow/overflow occurrence

There are four main cases that the exponent is

affected by normalization. It depends upon the

Eresult that is calculated above [7] i.e.

Table 1 Normalization effect on result‟s Exponent

and Overflow/Underflow detection

Eresult Category Comments

-125 ≤

Eresult < 0

Underflow Can‟t be

compensated

during

normalization

Eresult = 0

Zero

May turn to

normalized

number during

normalization (by

adding 1 to it)

1 < Eresult

< 254

Normalized

number

May result in

overflow during

Normalization

255 ≤

Eresult

Overflow Can‟t be

compensated

Pardeep Sharma, Gurpreet Singh / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.2016-2020

2019 | P a g e

There are some special conditions while

implementing floating point multiplier which needs

to be handle these are explained in table.

The flow graph of overall algorithm for floating

point multiplier including rounding is shown in

figure 5.

Figure 5: Floating point multiplier flow graph

V. FINAL RESULTS/SYNTHESIS REPORT
Results of Virtex2P FPGA (XC2VP2-FG256) Speed

grade: -7

Table 2 Results/ Synthesis report

Seria

l no.

Logic Utilization Used Avail

able

Utilizati

on in

%age

1. Number of Slices 663 1408 47

2. Number of Slice

Flip Flops

31 2816 1

3. Number of 4 input

LUTs

1232 2816 43

4. Number of

bonded IOBs

96 140 68

5. Number of

GCLKs

1 16 6

6. Memory Usage 189172

kilobytes

7. Combinational

Delay

 With offset

 Without offset

61.459

ns

59.085

ns

VI. SIMULATION WAVEFORM (USING

MODEL SIM SIMULATOR)
Case 1: When both the numbers are of same sign

1st input no. 405.22 =

01000011110010101001110000101000

2nd input no. 201.21 =

01000011010010010011010111000010

Desired output no. 81534.31 =

01000111100111110011111100100111

Figure 6: Signals in Model Sim

Simulation result 81534.31 =

01000111100111110011111100100111

Figure 7: Simulation result for Floating point

multiplier

Case 2: When both the numbers are of different

sign

1st input No. 721.51 =

01000100001101000110000010100011

2nd input No -902.12 =

11000100011000011000011110101110

Desired output no -650888.6 =

11001001000111101110100010001000

Figure 8: Signals in Model Sim

Simulation result -650888.6 =

11001001000111101110100010001000

Pardeep Sharma, Gurpreet Singh / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.2016-2020

2020 | P a g e

Figure 9: Simulation result for Floating point

multiplier

VII. CONCLUSIONS
The floating point multiplier has been

designed, optimized and implemented on Virtex

module. From the final results it is concluded that

implementation of floating point multiplier on

Virtex2P (XC2VP2-FG256) Speed Grade: -7 causes

small combinational delay i.e. 61.459 ns and less

number of slices (utilization of area) i.e. 663.

ACKNOWLEDGMENT
I would like to thanks the anonymous

reviewers for their insightful comments.

REFERENCES
[1] Al-Ashrafy M., Salem A. and Anis W., “An

Efficient Implementation of Floating Point

Multiplier”, 2011.

[2] Eldon A.J., Robertson C., “A Floating Point

Format For Signal Processing”, pp. 717-

720, 1982.

[3] Brisebarre N., Muller J.M., “Correctly

Rounded Multiplication by Arbitrary

Precision Constants”, Symposium on

Computer Arithmetic, pp. 1-8, 2005.

[4] Enriquez A.B., and JONES K.R., “Design

of a Multi-Mode Pipelined Multiplier for

Floating-point Applications”, pp. 77-81,

1991.

[5] Amaricai A., Vladutiu M., Udrescu M.,

Prodan L. and Boncalo O., “Floating Point

Multiplication Rounding Schemes for

Interval Arithmetic”, pp. 19-24, 2008.

[6] Louca L., Cook T.A. and Johnson W.H.,

“Implementation of IEEE Single Precision

Floating Point Addition and Multiplication

on FPGAs”, pp. 107-116, 1996.

[7] Awan M.A., Siddiqui M.R., “Resolving

IEEE Floating-Point Error using Precision-

Based Rounding Algorithm”, pp. 329-333,

2005.

[8] Fagin B., Renard C., “Field Programmable

Gate Arrays and Floating Point Arithmetic”,

pp. 365-367, Vol. 2, No. 3, 1994.

