Pardeep Sharma, Gurpreet Singh / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 5, September- October 2012, pp.2016-2020 Analysing Single Precision Floating Point Multiplier on Virtex 2P Hardware Module

Pardeep Sharma, Gurpreet Singh

Assistant Professor, Department of Electronics & Communication, Shaheed Bhagat Singh State Technical Campus, Ferozepur.

Abstract

FPGAs are increasingly being used in the high performance and scientific computing community to implement floating-point based hardware accelerators. We present FPGA floating-point multiplication. Such circuits can be extremely useful in the FPGA implementation of complex systems that benefit from the reprogramability and parallelism of the FPGA device but also require a general purpose multiplier unit. While previous work has considered circuits for low precision floatingpoint formats, we consider the implementation of 32-bit Single precision circuits that also provide rounding and exception handling. We introduce an algorithm for multiplication and analyze its performance on Virtex2P hardware module at speed grade -7.

Keywords - Floating point Multiplier, FPGAs, Xilinx and Virtex.

I. INTRODUCTION

Many people consider floating-point arithmetic an esoteric subject. This is rather surprising because floating-point is ubiquitous in computer systems. Almost every language has a floating-point data type. Floating Point numbers represented in IEEE 754 format are used in most of the DSP Processors. Floating point arithmetic is useful in applications where a large dynamic range is required or in rapid prototyping applications where the required number range has not been thoroughly investigated. The floating Point Multiplier IP helps designers to perform floating point Multiplication on FPGA represented in IEEE 754 single precision floating point format. The single precision multiplier is divided into three main parts corresponding to the three parts of the single precision format [1]. The normalized floating point numbers have the form of $\alpha(E-1)$

$$Z = (-1^{*}) * 2^{(k-blas)} * (1.M)$$
(1)

Where $M = m22 \ 2-1 + m21 \ 2-2 + m20 \ 2-3 + ... + m1 \ 2-22 + m0 \ 2-23;$ Bias = 127. The first part of the floating point multiplier is sign which is determined by an exclusive OR function of the two input signs. The second part is the exponent which is calculated by adding the two input exponents. The third part is significand or mantissa which is determined by multiplying the two input significands each with a "1" concatenated to it. That "1" is the hidden bit. The main applications of floating points today are in the field of medical imaging, biometrics, motion capture and audio applications, including broadcast, conferencing, musical instruments and professional audio.

II. FPGA (FIELD PROGRAMMABLE GATE Array)

FPGA stands for Field Programmable Gate Array. It is a semiconductor device containing programmable logic components and programmable interconnects. The programmable logic components can be programmed to duplicate the functionality of basic logic gates such as AND, OR, XOR, NOT or more complex combinational functions such as decoders or simple mathematical functions [3] [8].

In most FPGAs, these programmable logic components (or logic blocks, in FPGA parlance) also include memory elements, which may be simple flip flops or more complete blocks of memories. A hierarchy of programmable interconnects allows the logic blocks of an FPGA to be interconnected as needed by the system designer, somewhat like a onechip programmable breadboard shows in figure 1. These logic blocks and interconnects can be programmed after the manufacturing process by the customer/designer (hence the term "field programmable", i.e. programmable in the field) so that the FPGA can perform whatever logical function is needed [4].

Pardeep Sharma, Gurpreet Singh / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 5, September- October 2012, pp.2016-2020

Figure 1: FPGA board

FPGAs are generally slower than their application specific integrated circuit (ASIC) counterparts, as they can't handle as complex a design, and draw more power. However, they have several advantages such as a shorter time to market, ability to re-program in the field to fix bugs, and lower non recurring engineering cost costs. Vendors can sell cheaper, less flexible versions of their FPGAs which cannot be modified after the design is committed. The development of these designs is made on regular FPGAs and then migrated into a fixed version that more resembles an ASIC. Complex programmable logic devices, or CPLDs, are another alternative.

III. FLOATING POINT FORMAT

The advantage of floating point format over fixed point format is the range of numbers that can be presented with the fixed number of bits. Floating point number is composed of three fields and can be of 16, 18, 32 and 64 bit. Figure shows the IEEE standard for floating point numbers [2].

31	30	22	0
Sign	Exponent		Mantissa

Figure 2: Standard for floating point numbers

1 bit sign of signifies whether the number is positive or negative. '1' indicates negative number and '0' indicate positive number. 8 bit exponent provides the exponent range from E (min) =-126 to E(max) = 127.23 bit mantissa signifies the fractional part of a number the mantissa must not be confused with the significand. The leading '1' in the significant is made implicit [3].

A. Conversion of Decimal to Floating numbers

Conversion of Decimal to Floating point 32 bit formats is explained in 1 & 2 example.

Example:

Step 1: Suppose a decimal number 129.85 is taken. Step 2: Convert it into binary number of 24 bits i.e.10000001.1101110000000000.

Step 3: Shift the radix point to the left such that there will be only one bit which is left of the radix point and this bit must be 1. This bit is known as hidden bit.

Step 4: Count the number of times radix points is shifted to the left say 'x'. The number which is formed after shifting of radix point is 1.00000011101110000000000. Here x=7. Step 5: The number which is after the radix point is called mantissa which is of 23 bits and the whole number including hidden bit is called significand which is of 24 bits.

Step 6: The value 'x' must be added to 127 to get the original exponent value which is $127 + x^2$. In this case exponent is 127 + 7 = 134 which is 10000110.

Step 7: Number is +ve hence MSB of number is 0. Step 8: Now assemble result into 32 bit format in the form of sign, exponent and mantissa

01000011000000011101110000000000.

IV. MULTIPLICATION ALGORITHM FOR FLOATING POINT NUMBERS

As stated in the introduction, normalized floating point numbers have the form of

$$7_{-}(1^{s}) * 2^{(E-Bias)}$$

* (1.M) $Z = (-^{-})^{*}$ (1)Where $M = m22 \ 2-1 + m21 \ 2-2 + m20 \ 2-3 + ... + m1$ 2-22+ m0 2-23;

Bias = 127.

To multiply two floating point numbers the following steps are taken [1] [6]:

Step 1: Multiplying the significand; i.e. (1.M1*1.M2)

Step 2: Placing the decimal point in the result

Step 3: Adding the exponents; i.e. (E1 + E2 - Bias)Step 4: Obtaining the sign; i.e. s1 xor s2 and put the result together

Step 5: Normalizing the result; i.e. obtaining 1 at the MSB of the results' significand shown in figure 3.

Figure 3: Normalization of sign, exponent and mantissa

We present a floating point multiplier in which rounding technique is implemented. Rounding support can be added as a separate unit that can be

Pardeep Sharma, Gurpreet Singh / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 5, September- October 2012, pp.2016-2020

accessed by the multiplier or by a floating point adder, thus accommodating for more precision. The multiplier structure; Exponents addition, Significand multiplication, and Result's sign calculation are independent shown in figure 5.4. The significand multiplication is done on two 24 bit numbers and results in a 48 bit product, which we will call the intermediate product (IP). The IP is represented as (47 downto 0). The following sections detail each block of the floating point multiplier.

Figure 4: Algorithm for floating point multiplication

A. An example of floating point multiplier with proposed algorithm

A: 0 10000111 10010101001110000101000 (32 bit)

B: 0 10000110 10010010011010111000010 (32 bit)

To multiply A and B

Step 1: Multiplying the significand (including hidden bit)

110010101001110000101000 (24 bit)* 110010010011010111000010 (24 bit)

=10011111001111110010011101000110100111100 1010000 (48 bit)

Step 2: Placing the decimal point in the result

10.011111001111110010011101000110100111100 1010000

Step 3: Adding the exponents; i.e. (E1 + E2 - Bias)Adding of exponents =10000111 (E1) +10000110 (E2)

The exponent representing the two numbers is already shifted/biased by the bias value (127) and is not the true exponent; i.e. EA = EA-true + bias and

EB = EB-true + bias And EA + EB = EA-true + EB-true + 2 bias

So we should subtract the bias from the resultant exponent otherwise the bias will be added twice.

Exponent Result = 10000111 (E1) +10000110 (E2) - 01111111 (Bias 127) = 10001110

Eresult = 10001110

0

0

0

Step 4: Obtaining the sign; i.e. s1 xor s2 and put the result together

0 Xor 0 = 0, so the sign of the number is +ve

10001110

10.011111001111110010011101000110100111100 1010000

Step 5: Normalizing the result

Normalize the result so that there is a 1 just before the radix point (decimal point). Moving the radix point one place to the left increments the exponent by 1; moving one place to the right decrements the exponent by 1

Before Normalizing

10001110

10.011111001111110010011101000110100111100 1010000

After normalization

10001111

1.0011111001111110010011101000110100111100 1010000 (including hidden bit)

Step 6: Rounding the result to the nearest number [3] [5]

The mantissa bits are more than 23 bits (mantissa available bits); rounding is needed. If we applied the round to nearest rounding mode then the stored value is:

010001111001111100111111001001111(After rounding)

Step 7: Checking for underflow/overflow occurrence There are four main cases that the exponent is affected by normalization. It depends upon the Eresult that is calculated above [7] i.e.

 Table 1 Normalization effect on result's Exponent and Overflow/Underflow detection

Eresult	Category	Comments		
<i>-</i> 125 ≤	Underflow	Can't be		
Eresult < 0		compensated		
		during		
		normalization		
		May turn to		
		normalized		
Eresult = 0	Zero	number during		
		normalization (by		
		adding 1 to it)		
		May result in		
1 < Eresult	Normalized	overflow during		
< 254	number	Normalization		
255 ≤	Overflow	Can't be		
Eresult		compensated		

256) Speed Figure 7: Simulation result for Floating point multiplier

Case 2:	When bot	h the num	pers are of di	ifferent
sign				
1.4	innet	N.	701 51	

1st	input	No.	721.51	=	
0100010	0000110100	011000001	0100011		
2nd	input	No	-902.12	=	
1100010	0001100001	100001111	0101110		
Desired	outpu	t no	-650888.6	=	
1100100	0100011110	0111010001	0001000		
signals					
ile Edit	View Wind	w			
I- 🖬 in1		0100010000	110100011000001010	00011	
		1100010001	100001100001111010	01110	
🖅 – 🗾 out1		1100100100	011110111010001000	01000	
Figure 8	: Signals in	Model Sim			
Figure 8 Simulati	: Signals in	Model Sim esult	-650888.6	=	

Table 2 Results/ Synthesis report				
Seria l no.	Logic Utilization	Used	Avail able	Utilizati on in %age
1.	Number of Slices	663	1408	47
2.	Number of Slice Flip Flops	31	2816	1
3.	Number of 4 input LUTs	1232	2816	43
4.	Number of bonded IOBs	96	140	68
5.	Number of GCLKs	1	16	6
6.	Memory Usage	189172 kilobytes		
7.	Combinational Delay • With offset • Without offset	61.459 ns 59.085 ns		

grade: -7

Pardeep Sharma, Gurpreet Singh / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 5, September- October 2012, pp.2016-2020

🙀 wave - default	
File Edit Cursor Zoom	Format Window
🗃 🛛 🍯 🟅 🛍 🛍 🕯	
⊡/Ipm/in1 ⊡/Ipm/in2 ⊡/Ipm/out1	

Figure 9: Simulation result for Floating point multiplier

VII. CONCLUSIONS

The floating point multiplier has been designed, optimized and implemented on Virtex module. From the final results it is concluded that implementation of floating point multiplier on Virtex2P (XC2VP2-FG256) Speed Grade: -7 causes small combinational delay i.e. 61.459 ns and less number of slices (utilization of area) i.e. 663.

ACKNOWLEDGMENT

I would like to thanks the anonymous reviewers for their insightful comments.

REFERENCES

- Al-Ashrafy M., Salem A. and Anis W., "An Efficient Implementation of Floating Point Multiplier", 2011.
 Eldon A.J., Robertson C., "A Floating Point
- [2] Eldon A.J., Robertson C., "A Floating Point Format For Signal Processing", pp. 717-720, 1982.
- [3] Brisebarre N., Muller J.M., "Correctly Rounded Multiplication by Arbitrary Precision Constants", Symposium on Computer Arithmetic, pp. 1-8, 2005.
- [4] Enriquez A.B., and JONES K.R., "Design of a Multi-Mode Pipelined Multiplier for Floating-point Applications", pp. 77-81, 1991.
- [5] Amaricai A., Vladutiu M., Udrescu M., Prodan L. and Boncalo O., "Floating Point Multiplication Rounding Schemes for Interval Arithmetic", pp. 19-24, 2008.
- [6] Louca L., Cook T.A. and Johnson W.H., "Implementation of IEEE Single Precision Floating Point Addition and Multiplication on FPGAs", pp. 107-116, 1996.
- [7] Awan M.A., Siddiqui M.R., "Resolving IEEE Floating-Point Error using Precision-Based Rounding Algorithm", pp. 329-333, 2005.
- [8] Fagin B., Renard C., "Field Programmable Gate Arrays and Floating Point Arithmetic", pp. 365-367, Vol. 2, No. 3, 1994.