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Abstract 
FPGAs are increasingly being used in the 

high performance and scientific computing 

community to implement floating-point based 

hardware accelerators. We present FPGA 

floating-point multiplication. Such circuits can be 

extremely useful in the FPGA implementation of 

complex systems that benefit from the 

reprogramability and parallelism of the FPGA 

device but also require a general purpose 

multiplier unit. While previous work has 

considered circuits for low precision floating-

point formats, we consider the implementation of 

32-bit Single precision circuits that also provide 

rounding and exception handling. We introduce 

an algorithm for multiplication and analyze its 

performance on Virtex2P hardware module at 

speed grade -7.   
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I. INTRODUCTION 
Many people consider floating-point 

arithmetic an esoteric subject. This is rather 

surprising because floating-point is ubiquitous in 

computer systems. Almost every language has a 

floating-point data type. Floating Point numbers 

represented in IEEE 754 format are used in most of 

the DSP Processors. Floating point arithmetic is 

useful in applications where a large dynamic range is 

required or in rapid prototyping applications where 

the required number range has not been thoroughly 

investigated. The floating Point Multiplier IP helps 

designers to perform floating point Multiplication on 

FPGA represented in IEEE 754 single precision 

floating point format. The single precision multiplier 

is divided into three main parts corresponding to the 

three parts of the single precision format [1]. The 

normalized floating point numbers have the form of  

Z = (- ) *  * (1.M)            (1) 

 

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 

2-22+ m0 2-23; 

Bias = 127.  

 

 

 

 

 

The first part of the floating point multiplier is sign 

which is determined by an exclusive OR function of 

the two input signs. The second part is the exponent 

which is calculated by adding the two input 

exponents. The third part is significand or mantissa 

which is determined by multiplying the two input 

significands each with a “1” concatenated to it. That 

“1” is the hidden bit.  The main applications of 

floating points today are in the field of medical 

imaging, biometrics, motion capture and audio 

applications, including broadcast, conferencing, 

musical instruments and professional audio. 

 

II. FPGA (FIELD PROGRAMMABLE GATE 

ARRAY) 
FPGA stands for Field Programmable Gate 

Array. It is a semiconductor device containing 

programmable logic components and programmable 

interconnects. The programmable logic components 

can be programmed to duplicate the functionality of 

basic logic gates such as AND, OR, XOR, NOT or 

more complex combinational functions such as 

decoders or simple mathematical functions [3] [8]. 

In most FPGAs, these programmable logic 

components (or logic blocks, in FPGA parlance) also 

include memory elements, which may be simple flip 

flops or more complete blocks of memories. A 

hierarchy of programmable  interconnects allows the 

logic blocks of an FPGA to be interconnected as 

needed by the system designer, somewhat like a one-

chip programmable breadboard shows in figure 1. 

These logic blocks and interconnects can be 

programmed after the manufacturing process by the 

customer/designer (hence the term "field 

programmable", i.e. programmable in the field) so 

that the FPGA can perform whatever logical function 

is needed [4]. 



Pardeep Sharma, Gurpreet Singh / International Journal of Engineering Research and 

Applications (IJERA) ISSN: 2248-9622   www.ijera.com  

  Vol. 2, Issue 5, September- October 2012, pp.2016-2020 

2017 | P a g e  

Figure 1: FPGA board 

FPGAs are generally slower than their 

application specific integrated circuit (ASIC) 

counterparts, as they can't handle as complex a 

design, and draw more power. However, they have 

several advantages such as a shorter time to market, 

ability to re-program in the field to fix bugs, and 

lower non recurring engineering cost costs. Vendors 

can sell cheaper, less flexible versions of their 

FPGAs which cannot be modified after the design is 

committed. The development of these designs is 

made on regular FPGAs and then migrated into a 

fixed version that more resembles an ASIC. 

Complex programmable logic devices, or CPLDs, 

are another alternative. 

 

III. FLOATING POINT FORMAT 
The advantage of floating point format over 

fixed point format is the range of numbers that can 

be presented with the fixed number of bits. Floating 

point number is composed of three fields and can be 

of 16, 18, 32 and 64 bit. Figure shows the IEEE 

standard for floating point numbers [2].  

 

31                30                    22                0 

 

 

Figure 2: Standard for floating point numbers 

 

1 bit sign of signifies whether the number is 

positive or negative. „1‟ indicates negative number 

and „0‟ indicate positive number. 8 bit exponent 

provides the exponent range from E (min) =-126 to 

E (max) =127. 23 bit mantissa signifies the fractional 

part of a number the mantissa must not be confused 

with the significand. The leading „1‟ in the 

significant is made implicit [3]. 

 

A. Conversion of Decimal to Floating numbers 

Conversion of Decimal to Floating point 32 bit 

formats is explained in 1 & 2 example.  

Example: 

Step 1: Suppose a decimal number 129.85 is taken. 

Step 2: Convert it into binary number of 24 bits 

i.e.10000001.1101110000000000.  

Step 3: Shift the radix point to the left such that there 

will be only one bit which is left of the radix point 

and this bit must be 1. This bit is known as hidden 

bit.  

Step 4: Count the number of times radix points is 

shifted to the left say „x‟. The number which is 

formed after shifting of radix point is 

1.00000011101110000000000. Here x=7. 

Step 5: The number which is after the radix point is 

called mantissa which is of 23 bits and the whole 

number including hidden bit is called significand 

which is of 24 bits.  

Step 6: The value „x‟ must be added to 127 to get the 

original exponent value which is 127 + „x‟. In this 

case exponent is 127 + 7 = 134 which is 10000110.  

Step 7: Number is +ve hence MSB of number is 0. 

Step 8: Now assemble result into 32 bit format in the 

form of sign, exponent and mantissa  

01000011000000011101110000000000.  

IV. MULTIPLICATION ALGORITHM FOR FLOATING 

POINT NUMBERS 

As stated in the introduction, normalized floating 

point numbers have the form of  

Z = (- ) *   * (1.M)             (1) 

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 

2-22+ m0 2-23; 

Bias = 127. 

To multiply two floating point numbers the 

following steps are taken [1] [6]: 

Step 1: Multiplying the significand; i.e. 

(1.M1*1.M2) 

Step 2: Placing the decimal point in the result  

Step 3: Adding the exponents; i.e. (E1 + E2 – Bias) 

Step 4: Obtaining the sign; i.e. s1 xor s2 and put the 

result together 

Step 5: Normalizing the result; i.e. obtaining 1 at the 

MSB of the results‟ significand shown in figure 3. 

 
Figure 3: Normalization of sign, exponent and 

mantissa 

We present a floating point multiplier in 

which rounding technique is implemented. Rounding 

support can be added as a separate unit that can be 

Sign            Exponent          Mantissa 
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accessed by the multiplier or by a floating point 

adder, thus accommodating for more precision. The 

multiplier structure; Exponents addition, Significand 

multiplication, and Result‟s sign calculation are 

independent shown in figure 5.4. The significand 

multiplication is done on two 24 bit numbers and 

results in a 48 bit product, which we will call the 

intermediate product (IP). The IP is represented as 

(47 downto 0). The following sections detail each 

block of the floating point multiplier. 

 

 
Figure 4: Algorithm for floating point multiplication 

 

A. An example of floating point multiplier with 

proposed algorithm 

A:  0 10000111 10010101001110000101000 (32 

bit) 

B:  0 10000110 10010010011010111000010 (32 

bit) 

To multiply A and B 

Step 1: Multiplying the significand (including hidden 

bit) 

110010101001110000101000 (24 bit)* 

110010010011010111000010 (24 bit) 

=10011111001111110010011101000110100111100

1010000 (48 bit) 

Step 2: Placing the decimal point in the result  

10.011111001111110010011101000110100111100

1010000 

Step 3: Adding the exponents; i.e. (E1 + E2 – Bias) 

Adding of exponents =10000111 (E1) +10000110 

(E2) 

The exponent representing the two numbers is 

already shifted/biased by the bias value (127) and is 

not the true exponent; i.e. EA = EA-true + bias and 

EB = EB-true + bias And EA + EB = EA-true + EB-

true + 2 bias 

So we should subtract the bias from the resultant 

exponent otherwise the bias will be added twice. 

Exponent Result = 10000111 (E1) +10000110 (E2) 

– 01111111 (Bias 127) = 10001110 

Eresult = 10001110 

Step 4: Obtaining the sign; i.e. s1 xor s2 and put the 

result together  

0 Xor 0 = 0, so the sign of the number is +ve 

0 10001110 

10.011111001111110010011101000110100111100

1010000 

Step 5: Normalizing the result 

Normalize the result so that there is a 1 just before 

the radix point (decimal point). Moving the radix 

point one place to the left increments the exponent 

by 1; moving one place to the right decrements the 

exponent by 1 

Before Normalizing 

 0 10001110 

10.011111001111110010011101000110100111100

1010000 

After normalization  

0 10001111 

1.0011111001111110010011101000110100111100

1010000 (including hidden bit) 

Step 6: Rounding the result to the nearest number [3] 

[5] 

The mantissa bits are more than 23 bits (mantissa 

available bits); rounding is needed. If we applied the 

round to nearest rounding mode then the stored value 

is: 

01000111100111110011111100100111(After 

rounding) 

Step 7: Checking for underflow/overflow occurrence 

There are four main cases that the exponent is 

affected by normalization. It depends upon the 

Eresult that is calculated above [7] i.e. 

Table 1 Normalization effect on result‟s Exponent 

and Overflow/Underflow detection 

 

Eresult Category Comments 

-125 ≤ 

Eresult < 0 

Underflow Can‟t be 

compensated 

during 

normalization 

 

 

Eresult = 0 

 

 

Zero 

May turn to 

normalized 

number during 

normalization (by 

adding 1 to it) 

 

1 < Eresult 

< 254 

 

Normalized 

number 

May result in 

overflow during 

Normalization 

255 ≤ 

Eresult 

Overflow Can‟t be 

compensated 
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There are some special conditions while 

implementing floating point multiplier which needs 

to be handle these are explained in table. 

The flow graph of overall algorithm for floating 

point multiplier including rounding is shown in 

figure 5. 

 
Figure 5: Floating point multiplier flow graph 

V. FINAL RESULTS/SYNTHESIS REPORT 
Results of Virtex2P FPGA (XC2VP2-FG256) Speed 

grade: -7 

 

Table 2 Results/ Synthesis report 

Seria

l no. 

Logic Utilization Used Avail

able 

Utilizati

on in 

%age 

1. Number of Slices 663 1408 47 

2. Number of Slice 

Flip Flops 

31 2816 1 

3. Number of 4 input 

LUTs 

1232 2816 43 

4. Number of 

bonded IOBs 

96 140 68 

5. Number of 

GCLKs 

1 16 6 

6. Memory Usage 189172 

kilobytes 

  

7. Combinational 

Delay 

 With offset 

 Without offset 

 

 

61.459 

ns 

59.085 

ns 

  

 

 

VI. SIMULATION WAVEFORM (USING 

MODEL SIM SIMULATOR) 
Case 1: When both the numbers are of same sign 

1st input no. 405.22 = 

01000011110010101001110000101000 

2nd input no. 201.21 =     

01000011010010010011010111000010 

Desired output no. 81534.31 =    

01000111100111110011111100100111 

 
Figure 6: Signals in Model Sim 

Simulation result 81534.31 =    

01000111100111110011111100100111 

 
Figure 7: Simulation result for Floating point 

multiplier 

 

Case 2: When both the numbers are of different 

sign 

1st input No. 721.51 =     

01000100001101000110000010100011 

2nd input No -902.12 =     

11000100011000011000011110101110 

Desired output no -650888.6 =    

11001001000111101110100010001000 

 
Figure 8: Signals in Model Sim 

Simulation result -650888.6 =    

11001001000111101110100010001000 
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Figure 9: Simulation result for Floating point 

multiplier 

 

VII. CONCLUSIONS 
The floating point multiplier has been 

designed, optimized and implemented on Virtex 

module.  From the final results it is concluded that 

implementation of floating point multiplier on 

Virtex2P (XC2VP2-FG256) Speed Grade: -7 causes 

small combinational delay i.e. 61.459 ns and less 

number of slices (utilization of area) i.e. 663. 
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