
V Ashok, B.Chinna rao, P.M.Francis / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1432-1439

1432 | P a g e

A Streamlined Architecture For 3-D Discrete Wavelet

Transformation And Inverse Discrete Wavelet Transform

V Ashok B.Chinna rao P.M.Francis
M.tech(PG student) Prof.&Head,Dept.of ECE Asst.Prof. in Dept. of ECE

GITAS GITAS GITAS

Abstract

This paper presents an architecture of

the lifting based running 3-D discrete wavelet

transform (DWT), which is a powerful image and

video compression algorithm. The proposed

design is one of the first lifting based complete 3-

DDWT architectures without group of pictures

restriction. The new computing technique based

on analysis of lifting signal flow graph minimizes

the storage requirement. This architecture enjoys

reduced memory referencing and related low

power consumption, low latency, and high

throughput compared to those of earlier reported

works. Further, the digital data can be retrieved

using Inverse Discrete Wavelet Transform

(IDWT). The images need to be retrieved without

loosing of information. The proposed

architecture has been successfully implemented

on Xilinx Spartan series field-programmable gate

array, offering a speed of 40 MHz, making it

suitable for realtime compression even with large

frame dimensions. Moreover, the architecture is

fully scalable beyond the present coherent

Daubechies filterbank (9, 7).

Index Terms—Discrete wavelet transform, image

compression, lifting, video, IDWT, VLSI

architecture.

I. Introduction
STILL IMAGE compression technique

based on 2-D discrete wavelet transform (DWT) has

already gained superiority over traditional JPEG

based on discrete cosine transform and is

standardized in forms like JPEG2000 [1]. Quite

similarly, the application of its 3-D superset, i.e., 3-

D-DWT on video, outperforms the current
predictive coding standards, like H.261-3, MPEG1-

2,4 by rendering the quality features like better peak

signal-to-noise ratio (PSNR), absence of blocky

artifacts in low bit rates. Furthermore, it has the

added provisions of highly scalable compression,

which is mostly coveted in modern communications

over heterogeneous channels like the Internet [2].

Successful application of 3-D-DWT has been

reported in the literature in emerging fields like

medical image compression [3], hyper-spectral and

space image compression [4], etc. Software-based
approaches are experimented to combat the huge

computational complexity and memory requirement

associated with 3-D-DWT realization [5], [6].

Though the processor speed of modern computers

soars high at the order of GHz, data fetching and

communicating with external memories consume

several T states, making the computation quite

slower at the end. As the speeds of the peripherals
are still far behind the modern processors, it causes

more problems.

Nowadays, most of the applications require

real-time DWT engines with large computing

potentiality for which a fast and dedicated very-

large-scale integration (VLSI) architecture appears

to be the best possible solution. While it ensures

high resource utilization, that too in cost effective

platforms like field programmable gate array

(FPGA), designing such architecture does offer
some flexibilities like speeding up the computation

by adopting more pipelined structures and parallel

processing, possibilities of reduced memory

consumptions through better task scheduling or low-

power and portability features.

To overcome one of the toughest problems

associated with 3-D-DWT architectures—viz., the

memory requirement, block based [7], [8] or scan-

based architectures [9]–[11] with independent group

of pictures (GOP) transform have been reported.

However, blocking degrades the PSNR quality
while the independent GOPs introduce annoying

jerks in video playback due to PSNR drop at

transform boundaries [12]. Alternatively, some

successful scan-based running transform

architectures with convolution filtering have been

reported in [13], [14] avoiding these limitations.

This paper fulfills the requirement herewith

presenting a scan-based complete 3-D architecture

having infinite GOP. Among the transform

components involved in three dimensions, the
column and temporal directional transforms are

characteristically parallel in nature (for a row-wise

scan). The novelty of this paper lies in introducing

an ingenious analysis of signal flow graph (SFG),

which subsequently shows a newer methodology for

computing those parallel transform components with

reduced storage overhead. Synchronous data flow

and memory arrangements in conjunction with

decimated addressing schemes are proposed

V Ashok, B.Chinna rao, P.M.Francis / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1432-1439

1433 | P a g e

afterward for incorporating this methodology in

hardware. Thus, the designed processor has a

minimum memory requirement and much smaller

hardware budget with a two-fold throughput and

half computing time, latency or memory referencing

compared to those of [12], [17]. With a single adder

in its critical path, the processor achieves a high
speed, which is a fruitful effect of pipelining and

incorporation of flipping scheme. Inside the

processor, the treatments of the signals at the

boundary are done with the mirror extensions

proposed in [1].

Section II summarizes the theory of

flipping as latest modification on lifting. The

proposed architecture along with the analyzed SFG

is illustrated in Section III. Section IV discusses the

issues related to implementation along with the

obtained results after mapping the design in re-
configurable Xilinx FPGAs. Besides, a performance

comparison with other related works is also

furnished in this section. Finally, the paper is

concluded in Section V.

 II. Theoretical Framework

 As the DWT intrinsically constitutes a pair of

filtering operations, a unified representation of the

polyphase matrix is introduced as follows [16]:

 (1)

where h(z) and g(z) stand for the transfer

functions for the lowpass and highpass filterbanks,

respectively, and all suffixes e and o in the literature

correspond to even and odd terms, respectively.

Thus, the transform is symbolized with the equation

(λ(z) γ(z)) = (xe(z) 𝑧−1xo(z)) P(z)

with λ(z) and γ(z) signifying the filtered lowpass and

highpass parts of the input x(z).

The lifting scheme [15], [16] factorizes the

polyphase representation into a cascade of upper and

lower triangular matrices and a scaling matrix which

subsequently return a set of linear algebraic

equations in the time domain bringing forth the

possibility of a pipelined processor. Several other

advantages of lifting are mentioned in [16].

For instance, the common Daubechies (9, 7)
filterbank can be factorized as

 P(z) = 1 𝛼(1 + 𝑧−1

0 1

1 0
𝛽(1 + 𝑧) 1

 1 𝛾(1 + 𝑧−1

0 1

1 0
𝛿(1 + 𝑧) 1

𝜁 0
0 (1/𝜁)

(3)

The related algebraic equations are

where α = −1.586134342, β =
−0.05298011854, γ =

0.8829110762, δ = 0.4435068522, and δ =

1.149604398 [16], and also 0 ≤ i ≤ −1, L is the data

length.

 As a fruitful result, the processing speed

increases significantly when the flipped equations

are mapped into hardware.

 Following the modification on SFG, the final

equations for flipping are

where A = (1/α) = −0.630463, B = (1/16αβ)

= 743750, C = (1/32βγ) = −0.668067, D = (1/4γδ)

= 0.638443, K0 = (64αβγδ) = 2.590697 and K1 =

(32αβγ/δ) = 1.929981 (up to six fractional digits)

and also 0 ≤ i ≤ L − 1, L is the data length [18].

To handle the truncation of the signals at

oundaries, mirror extension is utilized by

incorporating corresponding changes into (5) at the

start and stop of frame sequences and at the

individual frame boundaries as well as for the 3-D

transforms.

Now, during the computation of 3-D

wavelets, the order of spatial and temporal

transform components involved can be interchanged

where both the arrangements conform to the

definition of 3-D-DWT. However, first temporal
and then spatial (t + 2-D) transform suffer from

certain limitations with

V Ashok, B.Chinna rao, P.M.Francis / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1432-1439

1434 | P a g e

spatial scalability or spatio-temporal decomposition

structure [2] which restrict its future extensions.

Thus, during the design of the present system, first

spatial and then temporal (2-D + t) decomposition

are chosen though in due requirement, the reverse

method can be equally mapped into hardware

without any difficulty.

III. Proposed Architecture
A. Working Principle

Fig. 1 presents the proposed scan-based 1

level 3-D wavelet transform architecture with a

block level illustration of principal functional

modules. Clearly from the figure, the proposed

architecture does the spatial transform first,

followed by its temporal counterpart. The following

two parts in this section give a detailed view about
hand-in-hand working of

the different functional blocks to realize those two

transform components.

The following sections discuss the detailed

design of principal working modules in the

architecture.

Fig. 2. Spatio-temporal wavelet decomposition with

proposed architecture. (a) Original frame sequence.

(b) After 1 level spatial transform. (c) Lowpass

frames after the temporal transform. (d) Highpass

frames after the temporal transform.

Fig. 3. (a) Architecture of RPE with (b) illustration

of a generic P/U module

Fig. 4. Two snapshots of RMEM with a model

image size of 8 × 8.

B. RPE and the RMEM

Among all the micro-architectures for

different submodules, which transform the input

video in three directions, the RPE module is the
simplest. As described in Fig. 3, it is a

straightforward implementation of (5) with

pipelining applied to speed up the operations.

Scanned with a dual clock, the incoming pixels are

separated into successive duos of odd and even ones

at the SPLITTER stage and move forward in

parallel throughout the pipeline. The required

datapath operations of lifting are performed upon

these pixels at consecutive Predict (Pi), Update (Ui),

and Shift (Si) stages of the RPE (as depicted in Fig.

3) which finally produces pairs of highpass and

lowpass pixels available from the ports OUT EVEN
and OUT ODD in a streamlined fashion or manner.

These pixels, prior to column processing,

are temporarily put in RMEM which generate the

synchronized dataflow to store as well as feed the

coefficients to CPE. After processing the initial two

rows of a frame the transformed coefficients

completely fill up the memory locations as

illustrated in snapshot 1 of Fig. 4. At the very next

clock cycle, two new pixels viz., l(2,0) and h(2,0),

arrive from RPE and they are placed at the locations
of R1 and R3 (refer to snapshot 2), which are just

left vacant as stored data, namely, l(0,0) and l(1,0)

are read out at the commencement of column

processing. Subsequent locations are similarly

refreshed till all the coefficients from row 2 are

stored in those two RAMs. Similarly, during

processing of the next row, RAMs R2 and R4

undergo a series of memory refreshments as the

locations previously containing h0 and h1

coefficient blocks are attributed to the storage of

coefficients of h3 and i3, available from RPE. Thus,

a periodic pattern can be identified among the
refreshed RAM pairs, which are further given in a

tabular form in Fig. 4 against the processed rows.

The proposed memory arrangement is free from any

such scenario where the RAM resources would be

unnecessarily occupied with stale data which are not

to be used for future computation.

C. Analysis of SFG to Facilitate Parallel

Computation

The problems associated with designing

architectures for column and temporal directional
transforms are however critical. In a setup where

video frames are scanned row-wise and processed

coefficients from RPE are spaced contiguously in

rows, the column processor has to wait for an entire

row to get another input sample for processing and

the temporal processor needs to hold back for the

entire frame before it can proceed with the next

V Ashok, B.Chinna rao, P.M.Francis / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1432-1439

1435 | P a g e

computation step. Like many other signal processing

architectures, the 3-D-DWT processor thus

inherently carries a huge memory and latency

overhead in its working principle. Clearly, a

pipelined design like RPE does not fit in for column

and temporal processing and parallel architectures

are mostly sought to address this issue. The overall
advantage of any DWT processor lies in addressing

these performance bottlenecks successfully.

The SFG of lifting, shown in Fig. 5, holds

the key for analyzing data dependence inside any

DWT processor. Each input and output sample to

this SFG denotes a block of data. For row

processing, these blocks refer to image pixels

adjacently spaced in rows. However, for column

transform, each of these blocks signifies a group of

processed l and h band coefficients of size N/2.

Similarly, for temporal transform they relate to 2-D
transformed individual frames of N2 pixels. Thus,

when the row processor can freely ―sweep across‖

this graph producing a stream-lined output, an

intelligent column or temporal processor must wait

and partially finish the computation with available

inputs before they proceed to the next step. The key

for such parallel processing is to find an optimized

basic step of computation which minimizes the

latency together with memory overhead for overall

architecture.

A careful observation of SFG shown in
Fig. 5(a)–(c), infers that the individual slices are the

most distinguished representation of the aforesaid

basic computation steps. Highlighted in blue, the

predict and update calculations inside each such

Fig. 5. Data-dependence analysis of SFG for parallel

computation. (a) SFG during computation of slice 1.

(b) SFG during computation of slice 2. (c) SFG

during computation of slice 3. (d) Explanation of

color code.

slice can be perfectly represented as the
function of two input samples from previous slice

(colored in green), one input block from current

slice (shown in red) and computed predict and

update coefficient blocks from previous slice

(highlighted in pink). Since slice 0 holds only input

samples, computation should commence with slice

1. Following the sequence in Fig. 5(a)–(c), the

computation can henceforth continue for successive

slices until the termination of SFG which happens at

the end of each frame of column processing or at the

termination of video sequence for temporal

processing. A pair of output sample blocks
(highlighted in brown) from each individual slice

are the natural outcomes of this computation.

The present architecture successfully

implements this slicewise computing strategy

carefully preserving the critical latency and memory

requirement with the help of some unique memory

arrangement techniques. Explained in Fig. 5(d), the

individual group of memory blocks is handled

differently during the column transform of l and h

bands and temporal transform. While for the l band
processing, the computation starts with input

coefficient block in red reaching on-the-go from

RPE and the green ones being fed from RMEM,

during the h band processing all three of them are

read from RMEM. For the temporal transform, the

frame from the current slice is actually stored in

SMEM and read back at half rate. The intermediate

coefficients in pink are stored in CMEM and

TMEM, respectively.

Fig. 6. (a) Snapshot of CPE pipeline and (b) detailed

P/U module.

D. CPE

The architecture of CPE, shown in Fig.

6(a), is quite similar to that of RPE. Fig. 6(b)

presents its inside details with a P/U module.

However, the continuity of RPE pipeline is
purposefully broken at several places creating a new

set of input and output ports which contribute to the

V Ashok, B.Chinna rao, P.M.Francis / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1432-1439

1436 | P a g e

aforesaid parallel computation. Among all the ports,

IN 1-3 and OUT

4-5 are connected to RMEM and SMEM

respectively and help creating a streamlined

dataflow from spatial processor to temporal

processor, as depicted in the main architecture (refer

to Fig. 1). The other ports, IN 4-6 and OUT 1-3
from RPE are utilized to exchange intermediate

coefficients with the six CMEM buffers which is the

key to slice-wise computation.

E. SMEM

Once transformed spatially, the frames are

directed to SMEM (refer to Fig. 1), which requires a

minimum of two frame buffers for the data

management. While the first two frames can be

given room in those two frame buffers easily,

complexity arises when the third frame arrives from

SP and the computation is simultaneously started by
the TP. While in every clock cycle, a pixel pair of

frame 2 can be allocated into the vacant memory

locations from where the two pixels of the frames 0

and 1 have been read out for the computation, the

temporal processing methodology demands an extra

set of the read operation to be carried out; for

collecting the corresponding pixels of frame 2 which

act as the third set of input in computation of the

first lifting step (refer to slice 1 in Fig. 5).

 Fig. 7. Arrangement of SMEM frame buffers.

Importantly, this second set of data cannot

be provided online to the TP, as the frames are

arriving at double rate and computation needs them
at single clock. So, all that is needed is to read them

back from memory with a half data rate. Thus, the

memory arrangement of Fig. 7 is followed where

port A of the dual port RAMs is used for reading

older frames from memory as well as storing the

newer ones in those locations when the Port B

remains dedicated for the second set of read

operations. Thus, the first kind of operations in

effect refreshes the memory with the consecutive

duos of frames 0, 1 and 2, 3 and so on, while the

second operations are solely responsible for

providing the additional pixels of frame 2i during

computations involving slice i (i = 1, 2, 3, . . .).

As depicted in snapshot 1 of Fig. 8, the
frames 0 and 1, being divided in parts L and H,

where L and H signify the fact that those pixels

emerge from the lowpass and highpass ports of

CPE, initially arrange themselves in buffers of

SMEM. Once the computation progresses, the pixels

of the two frames are replaced with those of frame 2

and as a matter of fact, the new frame gets

decimated inside the RAMs as the pixels of the new

frame are allocated to memory locations, just

released off the older frames every time. Thus, as

the computation of slice 2 is completed, the new

frames 2 and 3 reposit themselves according to the
topography described in snapshot 2 of that figure.

The order of decimation increases as the

computation moves ahead following a manner very

similar to that of fast Fourier transform addressing.

The pattern repeats itself after log2(𝑁2) cycles.
Fig. 9 helps us

Fig. 8. Two snapshots of the SMEM.

Fig. 9. Addressing pattern in SMEM. RAMs

illustrated for a memory depth of 8.

V Ashok, B.Chinna rao, P.M.Francis / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1432-1439

1437 | P a g e

Fig. 10. Snapshot of the TP. to visualize the

addressing pattern for a sample RAM depth of 8.

The dual port BlockRAMs of Xilinx

FPGA, which is used as target platform for the

proposed architecture, provides the facility of ―read

before write‖ operations in the same clock cycle at

the memory locations. Utilizing it, simultaneous

read and write operations are performed by an

address in port A through the channels DIA and

DOA, according to the requirements. The address in

port B follows the same practice, only changing at a

half speed, as they simultaneously pick up two

pixels from the RAM pairs in a clock cycle which
are further multiplexed to feed INT 2 of TP at single

clock rate.

F. Latency and Complete Memory Requirement

Following the SFG of lifting (refer to Fig.

5), the minimum number of inputs required for

computing a wavelet coefficient is restricted to five.

Thus, with the provision of the fifth input to arrive

online during the computation, the CPE and TP,

respectively, need a minimum wait time of four

rows (2N clock cycles) and four frames (2𝑁2
cycles) to produce the first output from the

architecture, thereby resulting in a total parametric
latency of T clock cycles, where

T = 2𝑁2 + 2N + LatencyRPE + LatencyCPE +
LatencyTP . (6)

The extra terms arise due to the pipelined

design of each computing unit. The memory

requirement for five frames and ten N/2 length line

buffers is 5𝑁2 + 5N.

IV. Implementation Results and Discussions
A. Multipliers and Datapath Precisions

After the details of the architecture and the
data management principles have been thoroughly

chalked out, the issues related to mapping the design

into a reconfigurable device are of prime interest.

These include the precision of the multipliers in the

architecture.

Being irrational numbers, the flipping

coefficients corresponding to (4) are not ideally

realizable in architecture with the hardware

multipliers. Instead, those numbers could be

considered up to a finite precision during designing.

However, the impacts of this limited precision are

experienced with lowered PSNR values and

subsequent degradation of the quality of reproduced

video during the decompression. Additionally, the

precision of the data samples right after each
multiplier affects the PSNR in a quite similar way.

B. Implementation Results

The architecture has been mapped into

Xilinx programmable device (FPGA) XC4VFX140

with speed grade of 12 through the Xilinx ISE 7.1i

tool. A uniform wordlength of 17 bits has been

maintained throughout the processor to afford

sufficient data depth. After pipelining the

multipliers, the critical path for the processor

consists of single adder, making it quite fast. A fast

counter based controller was designed which
handles all the address generation and other

switching operations at the high speed of main data-

path. Such controllers are programmable and can

synchronize the control signal generation according

to different video frame sizes. So other than

standard N × N, they can handle standard quarter

common intermediate format or common

intermediate format or various different aspect

ratios. The adders from the library and device dual

port block RAMs have been utilized as the principal

resources for the designed processor. Simulation is
performed by ModelSim XE III 6.0a, which yields a

set of end results completely matching the results

from MATLAB 7.0.0, where a model of the

hardware is created.

The overall design report can be formulated as

Custom frame size 256×256

Group of frames (GOP) Infinite

Maximum clock frequency 321 MHz

Throughput Two results/cycle

Initial latency 2N2 + 2Nψ + 47 clock cycles

Number of occupied slices 1776 (2%)
Total number four input

LUTs 2188 (1%)

Number of block RAMs 350 (63%).

C. Inverse discrete wavelet transform

The inverse DWT (IDWT) is the

computational reverse. The lowest low-pass and

highpass data-streams are up-sampled (ie. a zero is

placed between each data-word) and then filtered

using filters related to the decomposition filters. The

two resulting streams are simply added together to
form the low-pass result of the previous level of

processing. This can be combined with the high-

pass result in a similar fashion to produce further

levels, the process continuing until the original data-

stream is reconstructed.

V Ashok, B.Chinna rao, P.M.Francis / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1432-1439

1438 | P a g e

Fig: Simulation Result of IDWT Block with Final

Pixel Values

Figure shows the final pixel value of the

original image calculated and hence they are given

out serially. Thus the pixel values given at the input
of the DWT block is compared and verified with the

final output pixel vales from the IDWT block.

V. Conclusion
The applications of 3-D wavelet based

coding are opening new vistas in video and other

multidimensional signal compression and

processing. The prominent needs in these diversified

application areas are efficient 3-D-DWT engines
with good computing power which draws the

attention of the dedicated VLSI architectures as the

best possible solution. Though the researches of 2-

D-DWT architectures are progressing quite fast,

fewer approaches are reported in the literatures

designing their 3-D counterpart.

This paper has presented a lifting based 3-

D-DWT architecture with running transform,

possibly the first of its kind. The main flavors of the

design are minimized storage requirement and

memory referencing, low latency and power
consumption and increased throughput, which

become evident when they are compared with those

of existing ones. Having single adder in its critical

path, the mapped processor achieves a high speed of

321 MHz, offering large computing potentials which

opens up new vista for real-time video processing

applications.

Compared to the original 3-D-DWT

transform, successful application of motion

compensations before temporal transform has been

reported in the literature [2] as a good alternative for

predictive coding. It is worth mentioning that the
present design is fully scalable to those future

modifications and can be accepted as an

introductory step toward those future 3-D wavelet

computing machines.

References
[1] A. Skodras, C. Christopoulos, and T.

Ebrahimi, ―The JPEG 2000 still image

compression standard,‖ IEEE Signal

Process. Mag., vol. 18, no. 5, pp. 36–58,
Sep. 2001.

[2] J.-R. Ohm, M. van der Schaar, and J. W.

Woods, ―Interframe wavelet coding:

Motion picture representation for universal

scalability,‖ J. Signal Process. Image

Commun., vol. 19, no. 9, pp. 877–908, Oct.

2004.

[3] G. Menegaz and J.-P. Thiran, ―Lossy to

lossless object-based coding of 3-D MRI

data,‖ IEEE Trans. Image Process., vol.

11, no. 9, pp. 1053– 1061, Sep. 2002.

[4] J. E. Fowler and J. T. Rucker, ―3-D
wavelet-based compression of

hyperspectral imagery,‖ in Hyperspectral

Data Exploitation: Theory and

Applications, C.-I. Chang, Ed. Hoboken,

NJ: Wiley, 2007, ch. 14, pp. 379–407.

[5] L. R. C. Suzuki, J. R. Reid, T. J. Burns, G.

B. Lamont, and S. K. Rogers, ―Parallel

computation of 3-D wavelets,‖ in Proc.

Scalable High- Performance Computing

Conf., May 1994, pp. 454–461.

[6] E. Moyano, P. Gonzalez, L. Orozco-
Barbosa, F. J. Quiles, P. J. Garcia, and A.

Garrido, ―3-D wavelet compression by

message passing on a Myrinet cluster,‖ in

Proc. Can. Conf. Electr. Comput. Eng.,

vol. 2. 2001, pp. 1005–1010.

[7] W. Badawy, G. Zhang, M. Talley, M.

Weeks, and M. Bayoumi, ―Low power

architecture of running 3-D wavelet

transform for medical imaging

application,‖ in Proc. IEEE Workshop

Signal Process. Syst., Taiwan, 1999, pp.
65–74.

[8] G. Bernab´e, J. Gonz´alez, J. M. Garc´ia,

and J. Duato, ―Memory conscious 3-D

wavelet transform,‖ in Proc. 28th

Euromicro Conf. Multimedia Telecommun.,

Dortmund, Germany, Sep. 2002, pp. 108–

113.

[9] M. Weeks and M. A. Bayoumi, ―Three-

dimensional discrete wavelet transform

architectures,‖ IEEE Trans. Signal

Process., vol. 50, no. 8, pp. 2050–2063,

Aug. 2002.
[10] Q. Dai, X. Chen, and C. Lin, ―Novel VLSI

architecture for multidimensional discrete

wavelet transform,‖ IEEE Trans. Circuits

Syst. Video Technol., vol. 14, no. 8, pp.

1105–1110, Aug. 2004

[11] W. Badawy, M. Weeks, G. Zhang, M.

Talley, and M. A. Bayoumi, ―MRI data

compression using a 3-D discrete wavelet

V Ashok, B.Chinna rao, P.M.Francis / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1432-1439

1439 | P a g e

transform,‖ IEEE Eng. Med. Biol. Mag.,

vol. 21, no. 4, pp. 95–103, Jul.–Aug. 2002.

[12] J. Xu, Z. Xiong, S. Li, and Y.-Q. Zhang,

―Memory-constrained 3-D wavelet

transform for video coding without

boundary effects,‖ IEEE Trans. Circuits

Syst. Video Technol., vol. 12, no. 9, pp.
812–818, Sep. 2002.

[13] B. Das and S. Banerjee, ―Low power

architecture of running 3-D wavelet

transform for medical imaging

application,‖ in Proc. Eng. Med. Biol.

Soc./Biomed. Eng. Soc. Conf., vol. 2. 2002,

pp. 1062–1063.

[14] B. Das and S. Banerjee, ―Data-folded

architecture for running 3-D DWT using 4-

tap Daubechies filters,‖ IEE Proc. Circuits

Devices Syst., vol. 152, no. 1, pp. 17–24,

Feb. 2005.
[15] W. Sweldens, ―The lifting scheme: A

custom-design construction of biorthogonal

wavelets,‖ Appl. Comput. Harmon. Anal.,

vol. 3, no. 15, pp. 186–200, 1996.

[16] I. Daubechies and W. Sweldens, ―Factoring

wavelet transforms into lifting steps,‖ J.

Fourier Anal. Appl., vol. 4, no. 3, pp. 247–

269, 1998.

[17] Z. Taghavi and S. Kasaei, ―A memory

efficient algorithm for multidimensional

wavelet transform based on lifting,‖ in
Proc. IEEE Int. Conf. Acoust. Speech

Signal Process. (ICASSP), vol. 6. 2003, pp.

401–404.

[18] C.-T. Huang, P.-C. Tsneg, and L.-G. Chen,

―Flipping structure: An efficient VLSI

architecture for lifting-based discrete

wavelet transform,‖ IEEE Trans. Signal

Process., vol. 52, no. 4, pp. 1080–1090,

Apr. 2004.

[19] C. Pilrisot, M. Antonini, and M. Barlaud,

―3-D scan based wavelet transform and

quality control for video coding,‖ Eur.
Assoc. Signal Process. J. Appl. Signal

Process., vol. 2003, pp. 56–65, Jan. 2003.

[20] S. Barua, J. E. Carletta, K. A. Kotteri, and

A. E. Bell, ―An efficient architecture for

lifting-based two-dimensional discrete

wavelet transforms,‖ VLSI J. Integration,

vol. 38, no. 3, pp. 341–352, Jan. 2005.

[21] G. Kuzmanov, B. Zafarifar, P. Shrestha,

and S. Vassiliadis, ―Reconfigurable DWT

unit based on lifting,‖ in Proc. Program

Res. Integr. Syst. Circuits, Veldhoven, The
Netherlands, Nov. 2002, pp. 325–333.

[22] I. S. Uzun and A. Amira, ―Design and

FPGA implementation of nonseparable 2-D

biorthogonal wavelet transforms for

image/video coding,‖ in Proc. Int. Conf.

Image Process. (ICIP), vol. 4. Belfast,

U.K., Oct. 2004, pp. 2825–2828.

[23] B. Girod and S. Han, ―Optimum update for

motion-compensated lifting,‖ IEEE Signal

Process. Lett., vol. 12, no. 2, pp. 150–153,

Feb. 2005.

[24] A. Secker and D. Taubman, ―Motion-

compensated highly scalable video

compression using an adaptive 3-D wavelet
transform based on lifting,‖ in Proc. IEEE

Int. Conf. Image Process., Thessaloniki,

Greece, Oct. 2001, pp. 1029–1032.

[25] B. Pesquet-Popescu and V. Bottreau,

―Three-dimensional lifting schemes for

motion compensated video compression,‖

in Proc. IEEE Int. Conf. Acoust. Speech

Signal Process., Salt Lake City, UT, May

2001, pp. 1793–1796.

[26] N. Bozinovi´c, J. Konrad, T. Andr´e, M.

Antonini, and M. Barlaud, ―Motion-

compensated lifted wavelet video coding:
Toward optimal motion/transform

configuration,‖ in Proc. 12th Eur. Signal

Process. Conf., Vienna, Austria, Sep. 2004,

pp. 1975–1978.

[27] L. Luo, S. Li, Z. Zhuang, and Y.-Q. Zhang,

―Motion compensated lifting wavelet and

its application in video coding,‖ in Proc.

IEEE Int. Conf. Multimedia Expo, Tokyo,

Japan, 2001, pp. 365–368.

[28] Architecture and Features of a Fully

Scalable Motion-Compensated 3-D
Subband Codec, document M7977.doc,

ISO/IEC/JTC1/SC29/ WG11, Mar. 2002.

[29] Improved MC-EZBC with Quarter-Pixel

Motion Vectors, document 813

MPEG2002/M8366, ISO/IEC

JTC1/SC29/WG11, May 2002.

