Flow Analysis of Rocket Nozzle Using Computational Fluid Dynamics (Cfd)

Pardhasaradhi Natta*, V.Ranjith Kumar**, Dr.Y.V.Hanumantha Rao***
*(Department of Mechanical Engineering, koneru lakshmahiaUniversity, Guntur)
**(Assistant professor, Department of Mechanical Engineering, koneru lakshmahiaUniversity, Guntur)
*** (professor, Department of Mechanical Engineering, koneru lakshmahiaUniversity, Guntur)

ABSTRACT
A nozzle is used to give the direction to the gases coming out of the combustion chamber. Nozzle is a tube with variable cross-sectional area. Nozzles are generally used to control the rate of flow, speed, direction, mass, shape, and/or the pressure of the exhaust stream that emerges from them. The nozzle is used to convert the chemical-thermal energy generated in the combustion chamber into kinetic energy. The nozzle converts the low velocity, high pressure, high temperature gas in the combustion chamber into high velocity gas of lower pressure and low temperature. Our study is carried using software like gambit 2.4 for designing of the nozzle and fluent 6.3.2 for analyzing the flows in the nozzle. Numerical study has been conducted to understand the air flows in a conical nozzle at different divergence degrees of angle using two-dimensional axisymmetric models, which solves the governing equations by a control volume method. The nozzle geometry co-ordinates are taken by using method of characteristics which usually designed for De-Laval nozzle. The present study is aimed at investigating the supersonic flow in conical nozzle for Mach number 3 at various divergence degree of angle. The throat diameter and inlet diameter is same for all nozzles with various divergence degree of angles. The flow is simulated using fluent software. The flow parameters like pressure, Area of nozzle at exit are defined prior to the simulation. The result shows the variation in the Mach number, pressure, temperature distribution and turbulence intensity.

Key words —conical nozzle, degree of angle, supersonic flow, Mach number, Control Volume

I. INTRODUCTION
Swedish engineer of French descent who, in trying to develop a more efficient steam engine, designed a turbine that was turned by jets of steam. The critical component – the one in which heat energy of the hot high-pressure steam from the boiler was converted into kinetic energy – was the nozzle from which the jet blew onto the wheel. De Laval found that the most efficient conversion occurred when the nozzle first narrowed, increasing the speed of the jet to the speed of sound, and then expanded again. Above the speed of sound (but not below it) this expansion caused a further increase in the speed of the jet and led to a very efficient conversion of heat energy to motion. The theory of air resistance was first proposed by Sir Isaac Newton in 1726. According to him, an aerodynamic force depends on the density and velocity of the fluid, and the shape and the size of the displacing object. Newton’s theory was soon followed by other theoretical solution of fluid motion problems. All these were restricted to flow under idealized conditions, i.e. air was assumed to possess constant density and to move in response to pressure and inertia. Nowadays steam turbines are the preferred power source of electric power stations and large ships, although they usually have a different design-to make best use of the fast steam jet, de Laval’s turbine had to run at an impractically high speed. But for rockets the de Laval nozzle was just what was needed.

II. MATERIAL AND METHODS
MATHEMATICAL MODEL
A mathematical model comprises equations relating the dependent and the independent variables and the relevant parameters that describe some physical phenomenon. Typically, a mathematical model consists of differential equations that govern the behavior of the physical system, and the associated boundary conditions. To start with fluent, it is necessary to know if the meshed geometry is correct, so is checked. To ensuing, we are to define the model, material, operating condition and boundary condition. Models are to be set in order to define if any energy equation is dealt with our study, if the flow is viscous...etc. We have chosen coupled solver, 2d implicit, absolute velocity formulation, cell based gradient option, superficial velocity porous formulation. As our flow is dealt with energy equation so is necessary to check them up. The material is selected as air and the density as ideal gas to make the solution simpler. Under the solve
In this, the nozzle is designed for Mach no. 3. From Figure, it is clearly visualized that in the convergent section at inlet point, Mach number, is in the Sub-sonic region (=0.35) while at the throat, flow becomes Sonic (=1.02) and at the nozzle exit it becomes Super-Sonic (=2.90) for which the nozzle is designed. Near the wall, the Mach number is 1.65. This is due to the viscosity and turbulence in the fluid.

From the graph it is clearly observed that the velocity is increased.

The following are the results of nozzle with divergence angle of 7 degrees.

VELOCITY COUNTOUR

In this, the nozzle is designed for Mach number 3. From Figure, it is clearly visualized that in the convergent section at inlet point, Mach number, is in the Sub-sonic region (=0.35) while at the throat, flow becomes Sonic (=1.02) and at the nozzle exit it becomes Super-Sonic (=2.90) for which the nozzle is designed. Near the wall, the Mach number is 1.65. This is due to the viscosity and turbulence in the fluid.

From the graph it is clearly observed that the velocity is increased.
STATIC PRESSURE:

Static pressure is the pressure that is exerted by a fluid. Specifically, it is the pressure measured when the fluid is still, or at rest. The above Figure reveals the fact that the gas gets expanded in the nozzle exit. The static pressure in the inlet is observed to be 108 Pa and as we move towards the throat there is a decrease and the value at the throat is found out to be 56 Pa. After the throat, there is sudden expansion and the static pressure falls in a more rapid manner towards the exit of the nozzle. At the exit it is found to be 3.75 Pa.

TOTAL TEMPERATURE

The total temperature almost remains a constant in the inlet up to the throat after which it tends to increase. Near the walls the temperature increases to 302 K. In the inlet and the throat the temperature is 300 K. After the throat, the temperature increases to 301K at the exit. As we move from the centre vertically upwards at the exit, there is variation. At the centre it is 300 K, at the walls it is 302 K and moving inward a little bit from the wall the temperature reaches a maximum of 301 K.
The turbulent intensity at the convergent section is very low (=1.01e+03 %). Almost till the throat it remains almost a constant. At the throat there is a very small increase to 1.25e+03 %. As soon as it crosses the throat, there is a sudden increase in the turbulent intensity due to the sudden increase in the area. As we move towards the exit, there is a small patch in the centre where the turbulent intensity increases (1.48e+03 %) and then as the fluid stabilizes near the exit, there is a decrease in the turbulent intensity (1.25e+03 %). Near the walls the turbulent intensity is high due to the reversals of flow. At the exit near the walls the turbulent intensity reaches a maximum (=4.56e+03 %).

CASE 2:

The following are the results of nozzle with divergence angle of 20 degrees.

VELOCTITY COUNTOUR

From the Figure, it is clearly observed that Mach number in the convergent section is 0.24 (Sub-Sonic), at the throat it is 1.15 (Sonic) and as we move in the divergent section, it keeps increasing and at the exit it is 2.84 (Super-Sonic). Parallel flow is observed which is a characteristic of the conical nozzle and its design purpose (for Mach 3) is also solved. Mach number near the wall is less due to the viscosity and the turbulence (=1.54). The Mach number for the default angle turns out to be 2.90 but for a divergence angle of 20 degrees it comes out to be 2.84. This is due to the change in the geometry due to which flow also changes.
The above Figure shows that the gas gets over expanded in the nozzle exit. The static pressure in the inlet is observed to be 106 Pa and the value at the throat is found out to be 65.2 Pa. At the exit the pressure is found to be 8.85 Pa. Right from the inlet to the throat to the exit the static pressure tends to decrease. There is a considerable decrease observed after the throat to the exit where there is a large drop in the static pressure. As compared to the previous case there is a change in the exit static pressure value.

TOTAL TEMPERATURE

The total temperature almost remains a constant in the inlet up to the throat. Increase is observed after some distance from the throat towards the exit as seen in the above Figure. Near the walls the temperature decreases to 298 K. In the inlet and the throat the temperature is 300 K. After the throat, the temperature increases to 302 K at the exit. At the exit, moving vertically upward there is variation. The maximum value is not attained at the centre but at some distance from the centre. At the centre it is 301 K and at the wall it is 298 K. The maximum value of 302 K is attained near the walls but some distance away from it. There is not much difference in the total temperature contour when compared to the default nozzle but the fact that in the default nozzle, the temperature increases as soon as the throat is crossed but in this it is clearly observed that there is a beginning in the rise in temperature after some distance from the throat.

Turbulence intensity

The total temperature almost remains a constant in the inlet up to the throat. Increase is observed after some distance from the throat towards the exit as seen in the above Figure. Near the walls the temperature decreases to 298 K. In the inlet and the throat the temperature is 300 K. After the throat, the temperature increases to 302 K at the exit. At the exit, moving vertically upward there is variation. The maximum value is not attained at the centre but at some distance from the centre. At the centre it is 301 K and at the wall it is 298 K. The maximum value of 302 K is attained near the walls but some distance away from it. There is not much difference in the total temperature contour when compared to the default nozzle but the fact that in the default nozzle, the temperature increases as soon as the throat is crossed but in this it is clearly observed that there is a beginning in the rise in temperature after some distance from the throat.
The turbulent intensity at the convergent section is $8.17 \times 10^1 \%$ which is low. It remains a constant almost up to the throat. At the throat it increases to $8.75 \times 10^2 \%$. Since there is an increase in the area, there is also an increase in the turbulent intensity as we move towards the exit from the throat. There is a difference when compared to the default nozzle. There is a larger increase in the area just after in the default case where as the increase in the area is more gradual in the divergence angle of 7 degree case. As we move towards the exit, there is a small patch in the centre extending from the throat to almost the centre between the throat and the exit where the turbulent intensity increases ($1.93 \times 10^3 \%$) and as we exit there is stabilization of the fluid near the exit of the nozzle ($1.67 \times 10^3 \%$). The turbulent intensity reaches a maximum of $4.84 \times 10^3 \%$ near the walls as there is reversal of flow and turbulence due to the walls.

CASE 3: The following are the results of nozzle with divergence angle of 30 degrees.

The region in the inlet is sub-sonic and has an inlet value of 0.23. As it nears the throat it becomes sonic and at the throat it is 1.51 and the exit is super-sonic and it exits with a Mach number of 3.06. The motive of the design of the conical nozzle is also achieved with parallel flow. There are irregularities near the walls due to the reversals of flow. The Mach number as observed in the previous case of divergence angle of 20 degrees was 2.84 which is less than the present case.

STATIC PRESSURE:
The static pressure contour is also similar to that of the previous version. It decreases to the throat and then continues to decrease till the exit. The value at the inlet is 106 Pa and at the throat it is 55 Pa. There is also a steep decrease after the throat where the static pressure reduces to 2.72 Pa at halfway around outlet and remains the same till the exit. There is a slight decrease in the minimum value of static pressure from 8.8 to 2.24 pa.

Total temperature:

![Figure: Total Temperature Contour With Divergence Angle Of 30 Degrees]

There is a lot of variation in the total temperature plot. In the previous case it was observed that there is an increment in the temperature after the throat and midway from the exit but in this case, there is a difference. Here the temperature tends to increase just after inlet. After this it remains a constant till the exit except near the walls where it increases further and then decreases as we move from the centre to the wall. The value at the inlet is 300 K and then increases near the inlet to 300.25 K. At the throat as well as the exit, the value remains the same. The maximum value attained is 301 K which is, moving vertically from the wall, some distance from it before which the value steeply increases up to the maximum value and then decreases a little. The maximum value has reduced a little by 1 K considering this case and the previous case of divergence angle of 20 degrees.

Turbulence intensity:

![Figure: Turbulence Intensity Contour With Divergence Angle Of 30 Degrees]

![Figure: XY Plot of Turbulence Intensity With Divergence Angle of 30 Degrees]

The turbulent intensity at the convergent section is 1.01e+03 % which is very low. It remains a constant almost up to the throat. At the throat it increases to 1.25e+03%. There is an increase in the value after the throat as there is a sudden expansion to a bigger area than the nozzle. There is also a difference in the pattern when compared to the 7 nozzle. There were patches in the 1st 2 nozzles (default and 20) but here there are no patches and the flow stabilization which was observed towards the end of the nozzle in the other nozzles is not observed here as the increase is right from the throat to the exit. The maximum value however is reached near the walls as the reversals cause more turbulence. The exit turbulent Intensity value at the centre is 1.49e+03%. Moving vertically upward (or) downward at the exit, at the centre it is 1.49e+03 % which remains a constant up to some distance after which there is a slight decrease to 1.73e+03% and again it decrease after which there is a steep increase up to the wall where it attains a maximum value to 5.32e+03 %. There is an increase in the maximum value when compared to the previous nozzle.
CASE 4:
The following are the results of nozzle with divergence angle of 40 degrees.

VELOcity Contour

Figure: Velocity Contour With Divergence Angle of 40 Degrees

The Mach number at the inlet is 0.383 which is Sub-Sonic, 1.42 at the throat and 3.10 at the exit. There is a decrease in the value of Mach number near the walls. Its value is 1.71. Turbulence and viscosity are the cause for this decrease. The Mach number has increased in this case to 3.10 whereas it was 2.84 in the case of divergence angle of 30 degrees.

TOTAL TEMPERATURE

Figure: Total Temperature Contour With Divergence Angle of 40 Degrees

The total temperature contour is also similar to the previous version. There is uniformity observed from the inlet to some distance from the throat where it remains a constant whose value is 300 K. After which it increases to 301 K in the centre. The maximum value of 302 K is attained some distance from the wall. There is decrease near the wall. Vertically moving from the centre, it is 301 K up to more than the upper (or) lower half after which it reaches the maximum value of 302 K and then it decreases to the wall where it has a value of 297 K. The variation is similar in the case of 30 nozzles also.

STATIC PRESSURE

Figure: Static Pressure Contour With Divergence Angle of 40 Degrees
There is a continuous decrease in the value of static pressure from the inlet to the throat and to the exit. At the inlet it is 106 Pa. It then keeps on decreasing to 75 Pa which is also observed in the case of 30 nozzles. The main difference arises in the exit where there is a deviation in the minimum value in 30 nozzle was 2.24 Pa same as 2.24 Pa for this nozzle. Other than that there is no major difference between the two. The pattern is also similar.

Result Table:

<table>
<thead>
<tr>
<th>Case</th>
<th>Angle</th>
<th>Mach Number</th>
<th>Total Temperature (K)</th>
<th>Static Pressure (Pascal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>2.9</td>
<td>301</td>
<td>3.24</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>2.84</td>
<td>300.5</td>
<td>3.86</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>3.06</td>
<td>300</td>
<td>2.72</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>3.19</td>
<td>301</td>
<td>2.24</td>
</tr>
</tbody>
</table>

The above values are considered at the exit of the nozzle.

Conditions at Throat:

<table>
<thead>
<tr>
<th>Case</th>
<th>Angle</th>
<th>Mach Number</th>
<th>Total Temperature (K)</th>
<th>Static Pressure (Pascal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>1.19</td>
<td>300</td>
<td>65.8</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>1.02</td>
<td>300</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>1.08</td>
<td>300</td>
<td>64.8</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>1.12</td>
<td>300.25</td>
<td>59.6</td>
</tr>
</tbody>
</table>

The above values are considered at the throat of the nozzle.
CONCLUSION
The following observations were found in the nozzles with different divergence angles considering default divergence angle as 7 degrees

- In the nozzle with divergence angle of 20 degrees Mach number is 1.15 at throat and at divergence angle of 7 degrees Mach number is 1.19. From Default angle Mach number is increasing up to 2.917 at the nozzle exit while for divergence angle of 20 degrees the Mach number at exit is nearly 2.84.
- At the throat the velocity magnitude is same for all divergence degrees of angle and it is 260 m/s.
- Near the wall, the Mach number is decreasing for all the nozzles. This is due to the viscosity and turbulence in the fluid. For a nozzle of divergence angle of 20 degrees the Mach number at exit is very low compared to other nozzles.
- While when the divergence angle is 30 degrees the Mach number at nozzle exit is 3.06 and but an divergence angle 40 degrees it gives the Mach number at nozzle exit is 3.19 and it is lowest at an divergence angle 20 degrees.
- The turbulence intensity is very high for a divergence angle of 20 degrees at exit.
- For maximum velocity we can go with 30 or 40 degrees of divergence angle conical nozzle.
- The efficiency of the nozzle increases as we increase the divergence angle of the nozzle up to certain extent.

REFERENCES
1. K.M. Pandey, Member IACSIT and A.P. Singh "CFD Analysis of Conical Nozzle for Mach 3 at Various Angles of Divergence with Fluent Software”