
P. Jeyanthi, V. Anuratha / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.807-814

807 | P a g e

Bwt Based Lossless Reversible Transformation Algorithms

– An Analysis

P. Jeyanthi*, V. Anuratha**
*(Research Scholar in Computer Science, Sree Saraswathi Thyagaraja College, Pollachi -642 107, Tamilnadu)

** (Asst. Prof, PG Department of Computer Applications, Sree Saraswathi Thyagaraja College,

Pollachi -642 107, Tamilnadu, India)

ABSTRACT
This paper presents and analyzes the

benefits provided in lossless compression by using

various preprocessing methods that takes

advantage of redundancy of the source file.

Textual data holds a number of properties that

can be taken into account in order to improve

compression. Pre-processing deals with these

properties by applying a number of

transformations that make the redundancy “more

visible” to the compressor. Here our focus is on

the Burrows-Wheeler Transformation (BWT),

Star Transformation, Intelligent Dictionary Based

Encoding (IDBE), Enhanced Intelligent

Dictionary Based Encoding (EIDBE) and

Improved Intelligent Dictionary Based Encoding

(IIDBE). The algorithms are briefly explained

before calling attention to their analysis.

Keywords - BWT, EIDBE, IDBE and IIDBE

I. INTRODUCTION
While technology keeps developing, the

world keeps minimizing. It would be an

understatement to merely term this transformation as

a technological growth; rather it should be termed as

a technological explosion. It is in fact charming to

figure out that data compression and its wide

techniques have smoothed the progress of this

transformation. The amplified spread of computing

has led to a massive outbreak in the volume of data to

be stored on hard disk and transmitted over the

internet. And so it is inevitable that the massive

world of internet has to extensively employ data
compression techniques in innumerable ways.

Data compression is one of the very exciting

areas of computer science. Almost every type of

computer users, from students to the business-sector

industries depend on data compression techniques to

store as much data as possible and maximize the use

of storage devices. Data compression is the process

of encoding the data in such a way that, fewer bits are

needed to represent the data than the original data and

thus reducing its size. This process is carried out by

means of specific encoding schemes. The key

objective is to reduce the physical capacity of data.
The text compression techniques have

grabbed the attention more in the recent past as there

has been a massive development in the usage of

internet, digital storage information system,

transmission of text files, and embedded system

usage.

Though there are copious methods existing,

however, none of these methods has been able to

reach the theoretical best-case compression ratio

consistently, which suggests that better algorithms
may be possible. One approach to attain better

compression ratios is to develop different

compression algorithms. A number of sophisticated

algorithms have been proposed for lossless text

compression of which Burrows Wheeler Transform

(BWT) [1] and Prediction by Partial Matching [2]

outperform the classical algorithms like Huffman,

Arithmetic and LZ families [3] of Gzip and Unix –

compress [4]. PPM achieves better compression than

almost all existing compression algorithms but the

main problem is that it is intolerably slow and also
consumes large amount of memory to store context

information. BWT sorts lexicographically the cyclic

rotations of a block of data generating a list of every

character and its arbitrarily long forward context. It

utilizes Move-To-Front (MTF) [5] and an entropy

coder as the backend compressor. Efforts have been

made to improve the efficiency of PPM [6], [7], [8]

and BWT [5], [9], [10].

An alternative approach, however, is to

develop generic, reversible transformations that can

be applied to a source text that improves an existing

compression algorithm‟s ability to compress. Thus
Preprocessing techniques shows the face in to the

picture.

Several significant observations could be

made regarding this model. The transformation has to

be perfectly reversible, in order to keep the lossless

feature of text compression [2]. The compression and

decompression algorithms remain unchanged, thus

they do not exploit the transformation-related

information during the compression [8], [3]. The goal

is to boost the compression ratio compared to the

results obtained by using the compression algorithm
only. Thus these techniques achieve much better

compression ratio. These notions are clearly depicted

in the figure.

P. Jeyanthi, V. Anuratha / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.807-814

808 | P a g e

Figure 1. Text compression paradigm incorporating

a lossless, reversible transformation

Text preprocessing algorithms are reversible

transformations, which are performed before the

actual compression scheme during encoding and

afterwards during decoding. The original text is

offered to the transformation input and its output is

the transformed text, further applied to an existing

compression algorithm. Decompression uses the

same methods in the reverse order: decompression of
the transformed text first and the inverse transform

after that. Since textual data make up a substantial

part of the internet and other information systems,

efficient compression of textual data is of significant

practical interest.

In the following sections we explain the

Burrows-Wheeler Transform (BWT), Star

Transform, Intelligent Dictionary Based Encoding

(IDBE), Enhanced Intelligent Dictionary Based

Encoding (EIDBE) and finally Improved Intelligent

Dictionary Based Encoding (IIDBE), followed by
their Experimental Results and the last section

contains the conclusion remarks.

II. BURROWS-WHEELER TRANSFORMATION
BWT was introduced in 1994 by Michael

Burrows and David Wheeler. The following

information and analysis data are derived from their

work, for this paper. As declared by them, the BWT

is an algorithm that procures a block of data and
restructures it using a sorting algorithm, then piped

through a Move-T0-Front(MTF) stage, then the Run

Length encoder Stage and finally an entropy encoder

(Huffman coding or Arithmetic Coding) [11]. This is

shown in Fig 2. The output block that results from

BWT contains exactly the same data element that is

fed as input but with differing only in their ordering.

This transformation is reversible, which means that

the actual ordering of the data elements can be

reestablished without losing its fidelity.

Figure 2. Algorithms following BWT in sequence

A good number of well-known lossless
compression algorithms in our day, functions in

streaming mode, reading a single byte or a few bytes

at a time. But the BWT is applied on an entire block

of data at once, and hence also called Block Sorting

algorithm. This algorithm is based on a permutation

of the input sequence of data which groups symbols

with a similar context close together.

If the original string had quite a few

substrings that occurred often, then the transformed
string will have several places where a single

character is repeated multiple times in a row [9]. By

applying techniques such as move-to-front transform

and run-length encoding, as it is easy to compress a

string that has runs of repeated characters, the above

mentioned transformation is incredibly useful for

compression. The transform is accomplished by

sorting all rotations of the text in lexicographic order,

then taking the last column. In order to perform the

BWT, the first thing we do is treat a string S, of

length N, as if it actually contains N different strings,

with each character in the original string being the
start of a specific string that is N bytes long. We also

treat the buffer as if the last character wraps around

back to the first.

In the following example, the text

"^BANANA|" is transformed into the output

"BNN^AA|A" through these steps (the red | character

indicates the 'EOF' pointer):

Figure 3. Illustration for BWT

The notable aspect about the BWT is primarily

not that it generates a more easily encoded output,

but that it is reversible, allowing the original

document to be restored from the last column data.

III. STAR TRANSFORMATION
The Star Encoding again, is one of the ways

to achieve lossless, reversible transformation [12].

This transformation does not compress the text, but

prepares it for compression. Star encoding works by

creating a large dictionary of frequently used words

supposed to be present in the input files. The

dictionary must be prepared beforehand and must be
known to both the compressor and decompressor.

Each word in the dictionary has a star-encoded

equivalent, in which as many letters as possible are

replaced by the "*" character. The paradigm showing

Star Encoding is as follows:

P. Jeyanthi, V. Anuratha / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.807-814

809 | P a g e

Figure 4. Paradigm incorporating Star Encoding

For example, a commonly used word such as "the"

might be replaced by the string "t**". The star-

encoding transform simply replaces every occurrence

of the word "the" in the input file with "t**". Thus

the code string for a word is the same length as the

word.

Consequently, the most common words have

the highest percentage of "*" characters in their
encodings. And thus if the process carried out

appropriately, the transformed file will have a vast

number of "*" characters. Accordingly, with many

runs of stars, the encoded text may be much more

compressible than the original text.

Thus the existing star encoding does not

provide any compression as such but provide the

input text a better compressible format for a later

stage compressor. The star encoding is very much

weak and vulnerable to attacks.

As an example, a section of text from
Project Guttenburg‟s version of Romeo and Juliet

looks like this in the original text:

But soft, what light through yonder window breaks?

It is the East, and Iuliet is the Sunne,

Arise faire Sun and kill the enuious Moone,

Who is already sicke and pale with griefe,

That thou her Maid art far more faire then she

Running this text through the star-encoder yields the

following text:

B** *of*, **a* **g** *****g* ***d*r ***do*

b*e***?

It *s *** E**t, **d ***i** *s *** *u**e,

A***e **i** *un **d k*** *** e****** M****,

*ho *s a****** **c*e **d **le ***h ****fe,

***t ***u *e* *ai* *r* f*r **r* **i** ***n s**

We can clearly see that the encoded data has

exactly the same number of characters, but is

dominated by stars [14].

IV. INTELLIGENT DICTIONARY BASED

ENCODING (IDBE)
Intelligent Dictionary Based Encoding, an

encoding strategy offers higher compression ratios

and rate of compression. It is observed that a better

compression is achieved by using IDBE as the

preprocessing stage for the BWT based compressor.

There is an immense lessening in the transmission

time of files [13], [14].

IDBE comprises of two stages,

Step1: Make an intelligent dictionary

Step2: Encode the input text data

For creation of the dictionary, words are
extracted from the input files and ASCII characters

33-250 are assigned as the code for the first 218

words. Likewise for the remaining words the code is

assigned as the permutation of two ASCII characters

in the range of 33-250. If needed, this assignment

moves on to permutation of three and four too. In the

course of encoding, the length of the token is

determined and it precedes the code. The length is

represented by ASCII characters 251-254 with 251

for a code of length 1; 252 for length 2 and so on.

The algorithm for encoding and dictionary making

[14] is summed up here.

Dictionary Making Algorithm

 Start constructing dictionary with multiple source

files as input

1. Extract all words from input files.

2. If a word is already in the table

increment the number of occurrence by 1,

 else

add it to the table and set the number

occurrence to 1.

3. Sort the table in descending order of their
frequency of occurrences.

4. Start assigning codes to words in the following

method:

i). Give the first 218 words the ASCII

characters 33 to 250 as the code.

ii). Now give the remaining words each one

permutation of two of the ASCII characters

(in the range 33-250), taken in order. If there

are any remaining words give them each one

permutation of three of the ASCII characters

and finally if required permutation of four

characters.
5. Create a new table having only words and their

codes. Store this table as the Dictionary in a file.

6. Stop.

Encoding Algorithm

 Start encoding input file

A. Read the dictionary and store all words and their

codes in a table

B . While input file is not empty

1. Read the characters from it and form tokens.

2. If the token is longer than 1 character, then
1. Search for the token in the table

2. If it is not found,

1. Write the token as such in to the output file.

 Else

1. Find the length of the code for the word.

2. The actual code consists of the length concatenated

with the code in the table, the length serves as a

P. Jeyanthi, V. Anuratha / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.807-814

810 | P a g e

marker while decoding and is represented by the

ASCII characters 251 to 254 with 251 representing a

code of length 1; 252 for length 2 and so on.

3. Write the actual code into the output file.

4. Read the next character and neglect that if it is a

space. If it is any other character, make it the first

character of the next token and go back to B, after
inserting a marker character (ASCII 255) to indicate

the absence of a space.

Endif

Else

1. Write the 1 character token

2. If the character is one of the ASCII characters 251-

255, write the character once more so as to show that

it is part of the text and not a marker

Endif

End (While)

C. Stop.

V. ENHANCED INTELLIGENT DICTIONARY

BASED ENCODING (EIDBE)

As in IIDBE, the algorithm Enhanced

Intelligent Dictionary Based Encoding is also a two

step process, with first making an intelligent

dictionary and encoding the input data. In

comparison with IDBE, EIDBE has been improvised
in many aspects. For instance, in IDBE only the first

218 words are assigned single ASCII character

representation and the marker character. Whereas in

EIDBE, words in the input text are categorized as

two letter, three letter and so on up to twenty two

letter words. And the first 198 words in each segment

have single ASCII character representation and a

marker character. The calculation reveals that from a

two letter word to a twenty two letter word, single

ASCII character representation could be achieved for

4158 words, which is phenomenal compared to IDBE
[15].

The dictionary is constructed by extracting

words from the input files. The words are then sorted

by length in ascending order, followed by sorting on

frequency of occurrence in descending order. For the

first 198, two letter words, the ASCII characters 33 –

231 are assigned s the code. Code assigning for the

rest of the tokens is same as in IDBE. The actual

code consists of the length concatenated with the

code in the table and the length serves as the end
marker for decoding and is represented by the ASCII

characters 232 – 253 with 232 for two letter words,

233 for three letter words, … and 252 for twenty two

letter words and 253 for words which are greater than

twenty two letter words [16]. These details are

demonstrated in the following algorithms:

Dictionary Creation Algorithm

Start Creating Dictionary with source files

as input

1. Extract words from the input files and check

whether it is already available in the table. If it is

already available, increment the number of

occurrences by one; otherwise add it to the table

and set the number of occurrence to one.

2. Sort the table in ascending order of the length of

the words.

3. Again sort the table by frequency of occurrences in

descending order according to the length of the
word.

4. Start assigning codes with the following method:

 Assign the first 52 (Two letter) words the

ASCII characters 65 – 90 and 97 –122 as the

code.

 Now assign each of the remaining words

permutation of two of the ASCII characters in

the range of 65 – 90 and 97 – 122 taken in

order.

 If any words remain without assigning ASCII

characters assign each of them permutation of

three of the ASCII characters and finally, if
required, permutation of four of the ASCII

characters.

5. Repeat the above procedure for three letter words,

four letter words and so on up to Twenty two letter

words because the maximum length of an English

word is 22 [16].

6. The created file which consists of only words and

their codes serves as the dictionary file.

STOP

Encoding Algorithm
Start encoding with input file

A. Read the Dictionary file

B. While input file is not empty

1. Read the characters from the input file and form

tokens.

2. If the token is longer than one character, then

i.) Search for the token in the table

ii) If it is found,

a. Find the length of the token

b. The actual code consists of the length concatenated

with the code in the table and the length serves as the

end marker for decoding and is represented by the
ASCII characters 232 – 253 with 232 for two letter

words, 233 for three letter words, … and 252 for

twenty two letter words and 253 for words which are

greater than twenty two letter words.

Else

a. If the character preceding the token is a space, a

marker character (ASCII 254) is inserted to indicate

the presence of a space and if it is not a space then a

marker character (ASCII 255) is added to indicate the

absence of a space.

iii) Write the actual code into the output file.
iv) Read the next character and

If it is a space followed by any alphanumeric

character, ignore the space.

If it is a space followed by any non-alphanumeric

character, a marker character (ASCII 254) is inserted

to represent the presence of a space and if it is not a

space but any other character, a marker character

P. Jeyanthi, V. Anuratha / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.807-814

811 | P a g e

(ASCII 255) to indicate the absence of a space and

the characters are written into the output file till

another space or an alphanumeric character is

encountered.

Go back to B.

Endif

Else
i) Write the One character token.

ii)Before writing it, check the character preceding the

one character token. If it a space, a maker character

(ASCII 254) is added to indicate the presence of the

space and if it is not a space, a marker character

(ASCII 255) is added to represent the absence of the

space.

iii)If the characters is one of the ASCII characters

(232 – 255), write the character once more so as to

represent that it is a part of the text and not a marker

character.

Endif
End (While)

C. Stop

VI. IMPROVED INTELLIGENT DICTIONARY

BASED ENCODING (IIDBE)
Improved Intelligent Dictionary Based

Encoding is again a better encoding strategy, offering
higher compression ratios, rate of compression and

maintaining confidentiality of the data sent over the

channel by making use of the dictionary for

encoding. Decoding is practically feasible too.

In this encoding method, two operations come in to

being for the first stage of preprocessing, as

transforming the text into some intermediate form

with Improved Intelligent Dictionary Based Encoding

(IIDBE) scheme and encoding of the transformed text

with a BWT stage. The preprocessed text is then

piped through a Move-To-Front encoder stage, then a
Run Length Encode stage, and finally an Entropy

encoder, usually Arithmetic coding.

The algorithm that has been developed is a

two stepped process, the first is making an intelligent

dictionary and the next is encoding the input data.

The dictionary is constructed by extracting words

from the input files. The words are then sorted by

length in ascending order, followed by sorting on

frequency of occurrence in descending order. For the

first 52, two letter words, the ASCII characters 65 –

90 and 97 – 122 are assigned as code. The remaining
words if any are coded as permutation of two ASCII

characters in the same range as mentioned before,

followed by three ASCII characters if needed and

finally four ASCII characters if still more words

remain. The same course of action is repeated for

three letter words, four letter words and so on up to

twenty two letter words, as the maximum length of

words in English is 22. In the actual code, the length

of the word is concatenated with the code in the table

and the length serves as the end marker for decoding

and is represented by the ASCII characters 232 – 253

with 232 for two letter words, 233 for three letter

words, … and 252 for twenty two letter words and

253 for words which are greater than twenty two

letter words [17]. Thus there is no major change in

the algorithm of IIDBE than EIDBE except the range

of ASCII characters. But it shows a remarkable

improvement in the compression rate than that of

EIDBE as shown in TABLE III.

VII. EXPERIMENTAL RESULTS
For purpose of comparison, the following

table shows the raw size of some of the files from

Calgary corpus, the compressed sizes using the BWT

compressor and the compressed sizes using PKZIP.

Table I.

Mandatory Comparison of BWT with PKZIP

File

Name
Raw Size

PKZIP

Size

PKZIP

Bits/Byte

BWT

Size

BWT

Bits/Byte

bib 111,261 35,821 2.58 29,567 2.13

book1 768,771 315,999 3.29 275,831 2.87

book2 610,856 209,061 2.74 186,592 2.44

geo 102,400 68,917 5.38 62,120 4.85

news 377,109 146,010 3.10 134,174 2.85

obj1 21,504 10,311 3.84 10,857 4.04

obj2 246,814 81,846 2.65 81,948 2.66

progp 49,379 11,248 1.82 11,404 1.85

trans 93,695 19,691 1.68 19,301 1.65

Total
2,381,789 898,904 3.0 811,794 2.8

From the table with a list of files, it is clear

that BWT achieves compression pretty well when

compared with the commercial product PKZIP, as the

average bits needed to represent a single byte of data

in BWT is 2.8, whereas in PKZIP, it is 3.0

In the following table the performance

issues such as Bits Per Character (BPC) and

conversion time are compared for the three cases i.e.,

simple BWT, BWT with Star encoding and BWT
with Intelligent Dictionary Based Encoding (IDBE).

P. Jeyanthi, V. Anuratha / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.807-814

812 | P a g e

Table II.

BPC comparison of simple BWT, BWT with *Encode and BWT with IDBE in Calgary corpuses

The results are shown graphically too and prove that

BWT with IDBE out performs all other techniques in

compression ratio and speed of compression

(conversion time).

Figure 4. BPC & Conversion time comparison of transform with BWT, BWT

with *Encoding and BWT with IDBE for Calgary corpus files.

Performance of IIDBE and EIDBE in comparison

with Simple BWT, BWT with Star encoding and

BWT with IDBE in Calgary Corpus is shown in

Table III.

Table III

BPC COMPARISON OF IIDBE AND EIDBE WITH SIMPLE BWT, BWT WITH STAR ENCODING, BWT WITH IDBE

IN CALGARY CORPUS

File Names
File size in

bytes

Simple

BWT

BWT

With*

Encode

BWT with

IDBE

BWT with

EIDBE

BWT with

IIDBE

Bib 1,11,261 2.11 1.93 1.69 1.76 1.76

book1 7,68,771 2.85 2.74 2.36 2.53 2.47

book2 6,10,856 2.43 2.33 2.02 2.18 2.15

P. Jeyanthi, V. Anuratha / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.807-814

813 | P a g e

0

0.5

1

1.5

2

2.5

3

3.5

4

bi
b

bo
ok

1

bo
ok

2
ne

w
s

pa
pe

r1

pa
pe

r2

pa
pe

r3

pa
pe

r4

pa
pe

r5

pa
pe

r6

pr
og

c

pr
og

l

tra
ns

File Name

B
P

C

BWT

BWT with *-encode

BWT with IDBE

BWT with EIDBE

BWT with IIDBE

news 3,77,109 2.83 2.65 2.37 2.52 2.49

paper1 53,161 2.65 1.59 2.26 2.19 2.17

Paper2 82,199 2.61 2.45 2.14 2.13 2.12

paper3 46,526 2.91 2.60 2.27 2.15 2.12

paper4 13,286 3.32 2.79 2.52 2.19 2.17

paper5 11,954 3.41 3.00 2.80 2.48 2.47

paper6 38,105 2.73 2.54 2.38 2.24 2.24

progc 39,611 2.67 2.54 2.44 2.32 2.33

progl 71,646 1.88 1.78 1.76 1.70 1.70

trans 93,695 1.63 1.53 1.46 1.70 1.68

Average

BPC
 2.62 2.34 2.19 2.16 2.14

It has been observed that, in most of the cases, a

better compression is achieved by using IIDBE as the
preprocessing stage for the BWT based compressor.

The improvement in average BPC results of IIDBE in

comparison with Simple BWT, BWT with
*-encoding, BWT with IDBE and BWT with EIDBE

is shown in Figure 2.

Figure 6. Chart showing the efficient comparison of IIDBE representing BPC comparison of Simple BWT,

BWT with *-Encode, BWT with IDBE and BWT with IIDBE.

VIII. CONCLUSION
In this paper we have analyzed the

reversible lossless text transformation algorithms

BWT, Star Transformation, Intelligent Dictionary

Based Encoding (IDBE), Improved Intelligent

Dictionary Based Encoding (IIDBE) and finally

Enhanced Intelligent Dictionary Based Encoding

(EIDBE). We also submitted the performance

evaluation of these transformations on the standard

set of files from Calgary corpus as achieved by

various authors. The final results as shown in Table

III points to a significant improvement in text data
compression. IIDBE shows an improvement of

18.32% over Simple BWT, 8.55% improvement

over BWT with *-encode, 2.28% improvement

over BWT with IDBE and about 1% over BWT

with EIDBE.

REFERENCES
[1] Burrows M and Wheeler D.J, “A Block –

sorting Lossless Data compression
Algorithm”, SRC Research report 124,

Digital Research Systems Research

Centre.

[2] Moffat A, “Implementing the PPM Data
compression scheme”, IEEE Transaction

on Communications, 38(11): 1917-1921,

1990.

[3] Ziv J and Lempel A, "A Universal

Algorithm for Sequential Data

Compression," IEEE Transactions on

Information Theory, pp. 3.

[4] Witten I H., Moffat A, Bell T, “Managing

Gigabyte, Compressing and Indexing

Documents and Images”, 2nd Edition,

Morgan Kaufmann Publishers, 1999.
[5] Arnavut. Z, “Move-to-Front and Inversion

Coding”, Proceedings of Data

Compression Conference, IEEE Computer

Society, Snowbird, Utah, March 2000, pp.

193- 202

[6] Cleary J G., Teahan W J., and Ian H.

Witten, “Unbounded Length Contexts for

PPM‟, Proceedings of Data Compression

Conference, IEEE Computer Society,

Snowbird Utah, March 1995, pp. 52-61

P. Jeyanthi, V. Anuratha / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.807-814

814 | P a g e

[7] Effros M, “PPM Performance with BWT

Complexity: A New Method for Lossless

Data Compression”, Proceedings of Data

Compression Conference, IEEE Computer

Society, Snowbird Utah, March 2000, pp.

203-212.

[8] Sadakane K, Okazaki T, and Imai H,
“Implementing the Context Tree

Weighting Method for Text

Compression”, Proceedings of Data

Compression Conference, IEEE Computer

Society, Snowbird Utah, March 2000, pp.

123-132

[9] Balkenhol. B, Kurtz. S, and Shtarkov

Y.M, “Modifications of the Burrows

Wheeler Data Compression Algorithm”,

Proceedings of Data Compression

Conference, IEEE Computer Society,

Snowbird Utah, March 1999,pp. 188-197.
[10] Seward J, “On the Performance of BWT

Sorting Algorithms”, Proceedings of Data

Compression Conference, IEEE Computer

Society, Snowbird Utah, March 2000, pp.

173-182.

[11] Rexlin. S. J , Robert. L , “Dictionary

Based Preprocessing Methods in Text

Compression – A Survey”, International

Journal of Wisdom Based Computing,

Vol. 1 (2), August 2011

[12] Franceschini R., Kruse H., Zhang N.,
Iqbal R., Mukherjee A., Lossless,

Reversible Transformations that Improve

Text Compression Ratios, Preprint of the

M5 Lab, University of Central Florida,

2000.

[13] Govindan. V. K, Shajee Mohan. B. S,

“IDBE - An Intelligent Dictionary Based

Encoding Algorithm for Text”, 2006

[14] Shajeemohan B.S, Govindan V.K,

„Compression scheme for faster and

secure data transmission over networks‟,

IEEE Proceedings of the International
conference on Mobile business, 2005.

[15] Senthil. S, Robert. L, “Text Preprocessing

Using Enhanced Intelligent Dictionary

Based Encoding (EIDBE)” Proceedings of

Third International Conference on

Electronics Computer Technology, April

2011,pp.451-455.

[16] Radu Radescu, “Transform methods used

in Lossless compression of text files”,

Romanian Journal of Information Science

and Technology”, Volume 12, Number 1,
2009, 101 – 115.

[17] Senthil. S, Robert. L, “IIDBE: A Lossless

Text Transform for Better Compression”,

2012

