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Abstract 
For coded SIMO-OFDM systems, pre-

DFT combining was previously shown to provide 

a good trade-off between error-rate performance 

and processing complexity. Max-sum SNR and 

max-min SNR are two reasonable ways for 

obtaining these combining weights. In this letter, 

we employ multi objective optimization to further 

reveal the suitability and limitation of these two 

criteria. Our results show that: 1) Neither 

maxsumSNR nor max-min SNR is universally 

good; 2) For better error-rate performance, the 

means for weight calculation should be adapted 

according to the capability of the error-correcting 

code used, and multi objective optimization can 

help in the determination. 

 

Index Terms— SIMO, OFDM, pre-DFT 

combining, convex optimization, multiobjective 

optimization. 

 

I. INTRODUCTION 
ORTHOGONAL frequency division 

multiplexing (OFDM) combined with multiple 

receive antennas, namely, single-input multiple-

output (SIMO) OFDM, has recently been 

investigated for use in wireless communication 

systems. It can provide high spectrum efficiency and 

high data rate for information transmission. On one 

hand, OFDM divides the entire channel into many 

parallel sub channels which increases the symbol 

duration and therefore reduces the inter-symbol 

interference (ISI) caused by multipath propagation. 

Besides, since the subcarriers are orthogonal to each 

other, OFDM can utilize the spectrum very 

efficiently. On the other hand, SIMO along with 

combining techniques takes advantage of receive 

spatial diversity and therefore further enhances the 

performance. 

 

It is known that subcarrier-based maximum 

ratio combining (MRC) performs the best for coded 

SIMO-OFDM systems; however, it requires high 

processing complexity. Pre-discrete Fourier 

transform (DFT) combining was then developed, in 

which only one DFT block is necessary at the 

receiver [1]. It was previously shown to provide a 

good trade-off between error-rate performance and 

processing complexity. In this letter, we employ 

multiobjective optimization to reveal the suitability  

 

and limitation of two previously-proposed criteria for 

obtaining the pre-DFT combining weights, i.e., 

maximization of the sum of subcarrier signal-to-noise 

ratio (SNR) values (called max-sum SNR hereafter) 

[1] and maximization of the minimum subcarrier 

SNR value (called max-min SNR hereafter) [2]. Our 

results show that neither max-sum SNR nor maxmin 

SNR is universally good. Furthermore, for better error 

rate performance, the means for weight calculation 

should be adapted according to the capability of the 

error-correcting code used, and multiobjective 

optimization can help in the determination. Monte 

Carlo simulations are finally provided to verify the 

correctness of these sayings.         Throughout the 

letter, we use boldface letters, boldface letters with 

over bar, lower-case letters, and upper-case letters to 

denote vectors, matrices, time-domain signals, and 

frequency domain signals, respectively. Besides, (⋅)T
 , 

(⋅)H
, trace(⋅), rank(⋅), and diag{⋅} are used to 

represent the matrix transpose, matrix Hermitian, 

matrix trace, matrix rank calculation, and diagonal 

matrix with its main diagonal being the included 

vector, respectively. 

 

II. PRE-DFT COMBINING IN SIMO-OFDM 

SYSTEMS 
We consider an SIMO-OFDM system with 

𝑀 receive antennas. Define an N 1 signal vector 

S(𝑘) = [S(𝑘𝑁) S(𝑘𝑁+1) ⋅ ⋅ ⋅ S(𝑘𝑁 + 𝑁 − 1)]
T
 as the 

𝑘th OFDM data block to be transmitted, where 𝑁 is 

the number of subcarriers. This data block is first 

modulated by the inverse DFT (IDFT). With matrix 

representation, we can write the output of the IDFT 

as s(𝑘) = [𝑠(𝑘𝑁) 𝑠(𝑘𝑁 +1) ⋅ ⋅ ⋅ 𝑠(𝑘𝑁 +𝑁 −1)]
T
 = F

H
S(k), where F  is an 𝑁 × 𝑁  DFT matrix with 

elements [ F ] 𝑝,𝑞 = (1/ N ) exp (−j2𝜋𝑝𝑞/𝑁) for 𝑝, 𝑞 

= 0, 1, ⋅ ⋅ ⋅ ,𝑁 − 1 and𝑗 = 1 . A cyclic prefix (CP) 

is inserted afterwards and its length (Lcp) is chosen to 

be longer than the maximum length of the multipath 

fading channel (𝐿). Also define an 𝑁 × 1 vector hm = 

[ℎm(0) ℎm(1) ⋅ ⋅ ⋅ ℎm(𝐿 − 1) 0 ⋅ ⋅ 0]
T
 , where ℎm(𝑙) 

represents the 𝑙th channel coefficient for the 𝑚th 

receive antenna, with 𝑙 = 0, 1, ⋅ ⋅ ⋅ , 𝐿 − 1 and 𝑚 = 0, 

1, ⋅ ⋅ ⋅ ,𝑀 − 1. Collecting all channel vectors from the 

𝑀 different receive antennas, we construct an 𝑁 × 𝑀 

channel matrix h  = [h0  h1 ⋅ ⋅ ⋅ h𝑀−1], and its 

frequency response as  
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H  = [H0 H1 ⋅ ⋅ ⋅ H𝑀−1] = F h   (1)  

with H𝑚 = F h𝑚 .In an ordinary OFDM 

signal reception process, after CP removal and DFT 

demodulation, the resultant 𝑁 × 1 signal vector from 

the 𝑚th receive antenna, denoted by R𝑚(𝑘), can be 

shown to be  

 

 R(𝑘) = diag{S(𝑘)}H𝑚 +N𝑚(𝑘)   (2) 

where N𝑚(𝑘) is an 𝑁 × 1 complex Gaussian 

noise vector with zero mean and equal variance for 

each element. For the considered SIMO scenario, we 

can collect the 𝑀 received signal vectors and form an 

𝑁 ×𝑀 received signal matrix as 

 

R (𝑘) = [ R0(𝑘) R1(𝑘)⋅⋅ ⋅ R 𝑀− 1(𝑘)]. ( 3) 

 

Let w = [𝑤0 𝑤1 ⋅ ⋅ ⋅ 𝑤𝑀−1] be an 𝑀 × 1 weight vector. 

 
Fig. 1  Block diagram of OFDM diversity receiver 

with pre-DFT combining 

 

With (1)-(3), the pre-DFT combining operation and 

the resultant 𝑁 × 1 signal vector can be expressed as 

 

Y (𝑘) = R (𝑘) w = diag{S(𝑘)} H w+ N (𝑘)w      (4) 

with N  (𝑘) = [N0(𝑘) N1(𝑘) ⋅ ⋅ N𝑀−1(𝑘)]. Fig. 1 is the 

block diagram of a simplified OFDM receiver 

performing pre- DFT combining. In [1], w was 

calculated based on max-sum SNR. For that case, the 

optimum w can be shown to be the solution of the 

following optimization problem: 

 

w
max  w

H
 H

H  
H w subject to w𝐻w = 1  (5) 

in which w
H
 H H  H w indicates the sum of the 

signal power in all 𝑁 subcarriers. As an alternative, 

pre-DFT combining based on max-min SNR was 

proposed in [2]. Define a 1 ×𝑀 vector n  as the 𝑛th 

row of the channel matrix H given in (1), with 𝑛 = 0, 

1, ⋅ ⋅ ⋅ , −1. For that approach, the optimization of w 

can be described as  

w
max

n
max wn

2
subject to w𝐻w =1    (6) 

 

in which wn
2
 indicates the signal power of the 

𝑛th subcarrier after pre-DFT combining. 

It is understood that while max-sum SNR tends to 

help the good, max-min SNR tends to help the bad. 

Both criteria are reasonable for obtaining the pre-

DFT combining weights. Nevertheless, two questions 

are naturally raised: 1) Is one of the two criteria 

strictly superior to the other? 2) Can we further 

improve the error-rate performance with pre-DFT 

combining? We try to answer these questions through 

the use of multiobjective optimization in the 

following. 

 

II. MULTIOBJECTIVE OPTIMIZATION FOR 

PRE-DFT COMBINING 
Although max-sum SNR and max-min SNR 

are both practical, they are normally in conflict with 

each other, i.e., an improvement in one leads to 

deterioration in the other, which will be shown later 

in this section. This motivates the use of 

multiobjective optimization for gaining further 

insight into the two problems for the case at hand can 

be stated as follows: 

w
max g(w) =










(w)g 

(w)g

2

1  , subject to w𝐻w  = 1     (7) 

 

with 𝑔1(w) = 
n

max wn
2
and 𝑔2(w) = (w

H
 H

H  
H

 w)/in which 𝑔2(w) is normalized for 

convenience during numerical calculation. With (7), 

we can generally look for some good trade-offs, 

rather than a single solution of either max-sum SNR 

or max-min SNR. For this problem, a solution is 

optimal if there exists no other solution that gives 

enhanced performance with regard to both 𝑔1(w) and 

𝑔2(w) - Pareto optimizers. The set of Pareto 

optimizers is called the Pareto front [3].However; 

there is no systematic manner to find the Pareto front 

in (7). Instead, we use a simple and popular way, i.e., 

the weighted-sum method, to approach to the solution 

set. This essentially converts the multiobjective 

optimization problem into a single objective problem. 

Mathematically speaking, the objective function in 

this circumstance is changed to be a linear 

combination of the two objectives as 

 

w
max  𝑔1(w) + (1 −  )𝑔2(w), subject to w𝐻w = 1 (8) 

where  ∈ [0, 1] is a parameter determining 

the relative importance between max-sum SNR and 

max-min SNR. Solving (8) yields the solution that 

gives the best compromise for a typical   Next, we 

show that (8) can be efficiently evaluated via convex 

optimization techniques. Without loss of generality, 

we can recast the optimization problem in (8) to be 

W
max  [ min  trace( n W) ]+ (1 −  ) [trace (QW)] 

subject to trace(W) = 1, rank(W) = 1, W 0 (9) 

with n  =
H

n n  and Q = H
H  

H  

In (9), W is an 𝑀 ×𝑀matrix to be 

determined and the inequality W   0 means that W 

is symmetric positive semi definite. Instead of 
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solving the above nondeterministic polynomial-time 

hard (NP-hard) problem directly, we seek an 

approximation of the solution. 

By dropping the nonconvex rank-one constraint, this 

weighted sum objective function can be relaxed to 

W
max  [ min  trace ( n W) ]+ (1 − ) [trace (QW)] 

subject to trace(W) = 1, W 0. (10) 

Let 𝑧1 and 𝑧2 be two scalars. The relaxation is 

equivalent to 

W
max  z1+ (1 −  ) z2 

subject to trace ( n W)  z1, trace (QW)  z2 

subject to trace (W) = 1, W 0. 

 

which becomes convex. It is not difficult to 

see that (11) can be categorized to be a semi definite 

programming problem. The optimal choice of W, i.e., 

Wopt, can be obtained systematically using the 

efficient interior point method [4], and then a 

randomization step is used to produce an 

approximated solution to (7). In general, the 

complexity from weight calculation can be ignored as 

compared with the complexity saving from the 

reduction of DFT components [1], [2]. 

  

 
 

Fig. 2. Pareto front for max-sum SNR and max-min 

SNR with SNR=15 dB, 𝑀 = 2, 𝑁 = 64, 𝐿cp = 16, 𝐿 = 

2, and   = [0: 0.1: 0.8 0.9: 0.05: 1]. 

 

An example of a typical Pareto front solved 

via (11) is illustrated in Fig. 2. To obtain the entire 

approximation set, the search is repeated with various 

values of 𝜆. We clearly see the trade-off between 

max-sum SNR and max-min SNR. Besides, the 

weighted-sum method along with the convex 

formulation can efficiently approach the Pareto front, 

as expected. 

 

IV. SIMULATIONS AND DISCUSSION 
A comparison of the bit-error-rate (BER) 

performance with different pre-DFT combining is 

made by Monte Carlo simulations carried out 

regarding a 1 × 2 coded OFDM system. Quadrature 

phase-shift keying (QPSK) is used for modulation. 

Besides, 𝑁 = 64, 𝐿cp = 16, and 𝐿 = 2(independently 

generated with the Rayleigh distribution) are set. 

Convolution codes with different error-correcting 

capabilities (different minimum free distance 𝑑free) 

are used for error protection. At the receiver, the 

Viterbi algorithm with hard decision is employed for 

decoding. Figs. 3 and 4 present the corresponding 

BER performance. From these figures, we have the 

following observations: For the case of higher error-

correcting capability (Fig. 3), max-sum SNR performs 

slightly better than max-min SNR. Note that 

maxsumSNR generally focuses on the good and 

ignores the bad. With the relatively large amount of 

error protection, the low sub carrier SNR values may 

be compensated. Together with the “boosted” high-

SNR subcarriers, max-sum SNR provides better BER 

performance in this case. On the contrary, for the 

case of lower error-correcting capability (Fig. 4), 

maxminSNR outperforms max-sum SNR, especially in 

the high SNR region. The small amount of error 

protection makes each subcarrier equally essential. 

Max-min SNR usually does a good job in balancing 

the subcarrier SNR values, and thus gives better BER 

performance. Moreover, it is interesting to note that 

in either Fig. 3 or Fig. 4, the weighted-sum method 

which successfully captures the advantages of both 

max-sum SNR and max-min SNR is superior to these 

two previously-proposed criteria. By varying 𝜆, there 

exist some cases in which a lower BER can be 

achieved. That is to say, multiobjective optimization 

can be employed to form some better pre-DFT 

combining weights over the pure max-sum SNR and 

max-minSNR. By means of exhaustive simulations, 

we find that the effect of max-min SNR is more 

substantial than that of maxsumSNR in most 

circumstances.  

  

Fig. 3. BER for 1/2-rate convolutional-coded SIMO-

OFDM with generator sequence ([247 371])8 and 

𝑑free = 10 [5]. 
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Fig. 4 BER for 3/4-rate convolutional-coded SIMO-

OFDM with generator sequence ([1 1 1 0],[3 0 0 1], 

[3 2 0 2])8 and 𝑑free = 3 [5]. 

 

Simulation result for code rate 1/3 with minimum 

distance 15 is also calculated in this calculation 𝜆 is 

taken very close to 1 is used which improves the 

BER value which is shown in Fig 5 

 

 
 

Fig. 5 BER for 1/3-rate convolutional-coded SIMO-

OFDM with generator sequence [117 127 155]8 
 And 𝑑free = 15[5] 

 

V. CONCLUSIONS 
This letter has discussed and compared the 

error-rate performance for coded SIMO-OFDM 

systems with different pre-DFT combining. Our 

results show that multiobjective optimization can be 

used to determine some better pre-DFT combining 

weights, which are generally superior to both 

maxsum SNR and max-min SNR for achieving a lower 

BER. 
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