
A.Durga Bhavani, P.Soundarya Mala / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.412-419

412 | P a g e

Optimized Elliptic Curve Cryptography

A.Durga Bhavani*, P.Soundarya Mala**
Dept of Electronics and Communication Engg,GIET College,Rajahmundry.

Abstract—

This paper details the design of a new

high-speed pipelined application-specific

instruction set processor (ASIP) for elliptic

curve cryptography (ECC) technology. Different

levels of pipelining were applied to the data path

to explore the resulting performances and find

an optimal pipeline depth. Three complex

instructions were used to reduce the latency by

reducing the overall number of instructions, and

a new combined algorithm was developed to

perform point doubling and point addition using

the application specific instructions In the present

work, by using pipeline techniques are optimized

the point multiplication speed by implementing on

modern Xilinx Virtex-4 and the same to be

compare with the Xilinx Virtex-E.

Key Terms—Complex instruction set, efficient

hardware implementation, elliptic curve

cryptography (ECC), pipelining.

I. INTRODUCTION
FIRST introduced in the 1980s, elliptic curve

cryptography (ECC) has become popular due to its

superior strength- per-bit compared to existing public

key algorithms. This superiority translates to

equivalent security levels with smaller keys,

bandwidth savings, and faster implementations,

making ECC very appealing. The IEEE proposed

standard P1363-2000 recognizes ECC-based key

agreement and digital signature algorithms and a list

of secure curves is given by the U.S. Government

National Institute of Standards and Technology

(NIST).

 Intuitively, there are numerous advantages of

using field- programmable gate-array (FPGA)

technology to implement in hardware the

computationally intensive operations needed for

ECC. Indeed these advantages are comprehensively

studied and listed by Wollinger, et al. In particular,

performance, cost efficiency, and the ability to easily

update the cryptographic algorithm in fielded devices

are very attractive for hardware implementations for

ECC.

 Numerous ECC hardware accelerators and

cryptographic processors have been presented in the

literature. More recently, these have included a

number of FPGA architectures, which present

acceleration techniques to improve the performance of

the ECC operations.

 The optimization goal is usually to reduce the

latency of a point multiplication in terms of the

number of required cycles. In particular, the works

which have duplicate arithmetic blocks to exploit the

parallelism in the underlying operations. Yet for most

of these implementations, efforts are concentrated on

algorithm optimization or improved arithmetic

architectures and rarely on a processor architecture

particularly suited for ECC point multiplication.

Some of the design techniques used in modern high

performance processors were incorporated into the

design of an application-specific instruction set

processor (ASIP) for ECC. Pipelining was applied to

the design, giving improved clock frequencies. Data

forwarding and instruction reordering were

incorporated to exploit the inherent parallelism of the

Lopez and Dahab point multiplication algorithm,

reducing pipeline stalls.

 In this paper, thorough treatment is given to

the design of an ASIP for ECC, yielding a new

combined algorithm to perform point doubling and

point addition based on the instruction set

developed, further reducing the required number of

instructions per iteration. The same data path is used,

but the performance is explored for different levels

of pipelining, and a superior choice of pipeline

depth is found. The resulting processor has high

clock frequencies and low latency, and it has only a

single instance of each of the arithmetic units. An

FPGA implementation over GF 2
163

is presented,

which is by far the fastest implementation reported in

the literature to date.

 In Section II, a background is given in terms of

elliptic curve operations, Galois fields arithmetic and

the state-of-the-art hardware implementations.

Section III develops the ASIP architecture,

beginning with the application-specific instructions

and a new combined algorithm to perform point

doubling and point addition (crux ECC operations)

based on the new algorithms. In Section IV, the

FPGA implementation of the processor is described,

and the performance is analyzed and compared to

the state-of-the-art in Section V. This paper is

concluded in Section VI.

II. BACKGROUND
A. ECC

 ECC is performed over one of two

underlying Galois fields: prime order fields or

characteristic two fields. Both fields are considered

to provide the same level of security, but arithmetic

in GF(2
m
) will be the focus of this paper because it

can be implemented in hardware more efficiently

using modulo-2 arithmetic. An elliptic curve over

A.Durga Bhavani, P.Soundarya Mala / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.412-419

413 | P a g e

the field is the set of solutions to the equation

y2+xy = x3+ax2+b (1)

where a,b € GF(2
m
),b≠0

Hence, when = we have the point-

doubling operation (DBL), and when ≠ we

have the point-adding operation (ADD). These

operations in turn constitute the crux of any ECC-

based algorithm, known as point multiplication or

scalar multiplication. Due to the computational

expense of inversion compared to multiplication,

several projective coordinate methods have been

proposed, which use fractional field arithmetic to

defer the in- version operation until the end of the

point multiplication; In this paper, the high-

performance, generic projective-coordinate algorithm

proposed by Lopez and Dahab is used, which is an

efficient implementation of Montgomery’s method for

computing kP. No precomputations or special

field/curve properties are required.

 In this, procedures to perform DBL and ADD are

derived from efficient formulas which use only the

coordinate of the points. In the projective coordinate

version of the formulas, the x-coordinate of is

represented by Xi/Zi, for i € {1,2,3};

The corresponding DBL and ADD computations are

shown respectively, and are used in the projective

coordinate point multiplication algorithm shown in

Algorithm 1

B. Arithmetic Over GF(2
163

) for ECC

 Addition and subtraction in the Galois

field GF(2
m
) are equivalent, performed by modulo-2

addition, i.e., a bit-XOR operation. As a result,

arithmetic in the field is implemented more

efficiently because it is carry free.

Inversion is the most computationally expensive

operation in the field, based either on the extended

Euclidean algorithm (EEA) or Fermat’s little

theorem. Many efficient EEA-based inversion and

division architectures exist in the literature, but they

are usually expensive in terms of area. In- version using

Fermat’s little theorem, as in the Itoh–Tsujii algorithm,

consists of multiplication and squaring only, so can

often be implemented without additional hardware

resource. It has been shown that similar performance

to an EEA-based inverter can be achieved using the

Itoh–Tsujii algortihm if the multiplier latency is

sufficiently low and repeated squaring can be

performed efficiently. Hence, multiplication is

considered to be the most resource-sensitive operation

in the field.

Algorithm 1: Lopez-Dahab Point Multiplication

Multipliers are usually implemented using

one of three approaches: bit-serial, bit-parallel, or

digit-serial. Bit-serial multi- pliers are small, but

they require m steps to perform a multiplication. Bit-

parallel multipliers are large but perform a

multiplication in a single step. Digit-serial

multipliers are most commonly used in cryptographic

hard- ware, as performance can be traded against

area. Recently, in a drive for increased speed, some

methods have been proposed, and implementations

presented , for ECC hardware based on bit-parallel

multipliers.

Squaring is a special case of multiplication, and it

is only a little more complex than reduction modulo

the irreducible polynomial. Refer to finite field

multiplier for efficient architectures to perform

polynomial basis squaring, which only require

combinational logic.

C. Previous Work

Several recent FPGA-based hardware

implementations of ECC have achieved high-

performance throughput. Various acceleration

techniques have been used, usually based on

parallelism or pre computation.

 The work introduced by Orlando and Paar[2] is

based on the Montgomery method for computing kp

developed by Lopez and Dahab and operates over a

single field. A point multiplication over GF(2
167

) is

performed in 210 micro seconds, using a Galois field

multiplier with an eleven-cycle latency. This provides

an excellent benchmark for all high-performance

architectures.

A.Durga Bhavani, P.Soundarya Mala / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.412-419

414 | P a g e

Acceleration techniques based on precomputation can

be particularly effective for a class of curves known

as anomalous binary curves (ABCs) or Koblitz

curves. The implementation from Lutz and Hasan

implements some of these techniques achieving a

point-multiplication time of 75 µs over, using a

Galois field multiplier with a four-cycle latency.

How- ever, efforts here will be concentrated on high-

performance architectures for generic curves, where

such acceleration techniques cannot be used. An

important result of , relevant regardless of the point-

multiplication algorithm used, is that efficiently

performing repeated squaring operations greatly

reduces the cost of multiplicative inversion, which is

required at the end of the point multiplication.

 An ECC processor capable of operating over

multiple Galois fields was presented by Gura, et al. ,

which performs a point multiplication over

GF(2
163

)in 143 µs, using a Galois field multiplier

with a three-cycle latency. Gura, et al. stated two

important conclusions: the efficient implementation

of inversion has a significant impact on overall

performance and, as the latency of multiplication is

improved, system tasks such as reading and writing

have a significant impact on performance. The work

introduced by Jarvinen, et al. uses two bit-parallel

multipliers to perform multiplications concurrently.

The multipliers have several registers in the critical

path in order to operate at high clock frequencies,

but the operations are not pipelined, resulting in long

latencies (between 8 and 20 cycles). Hence, while this

implementation offers high performance, it is not the

fastest reported in the literature but it is one of the

largest. Rodriguez, et al. introduced an FPGA

implementation that performs DBL and ADD in

parallel, containing multiple in- stances of circuits to

perform the arithmetic functions. It would appear that

the inversion required for coordinate conversion at

the end of the point multiplication is not performed,

and that the quoted point multiplication time does

not include the co- ordinate conversion, but the

stated point multiplication time is one of the fastest in

the literature. However, the complex structure of the

multiplier has a long critical path, and as a result the

overall performance is let down by quite a low clock

frequency (46.5 MHz).

 More recently, Cheung, et al. presented a

hardware design that uses a normal basis

representation. The customizable hardware offers a

trade between cost and performance by varying

the level of parallelism through the number of

multipliers and level of pipelining. To the authors’

knowledge, this is the fastest implementation in the

literature performing a point multiplication in

approximately 55 µs, although once again the low

clock frequency (43 MHz) limits the potential

performance.

III. PIPELINED ASIP FOR ECC
A.Application-Specific Instruction Set and

Algorithms

Complex instruction set computers (CISCs)

reduce the number of instructions, and consequently

the overall latency, by performing multiple tasks in a

single instruction. It was shown that complex

instructions could be used to reduce latency in the

design of an ASIP for ECC. Three new instructions

were introduced, which will now be described and

their use justified.

 Considering the projective-coordinate

formula for point addition, an obvious instruction to

combine operations is a multiply and accumulate

instruction (MULAD), which will save two

instruction executions. Also, rewriting the projective-

coordinate formula for point doubling , we have

so a multiply- and- square operation (MULSQ)

would be beneficial, saving three instruction

executions.

These two extra instructions reduce the number of

instructions executions required to perform the point-

adding and point- doubling algorithms from 14 to

9—a 35.7% reduction.

 The Itoh–Tsujii inversion algorithm is based on

Fermat’s little theorem and is used to compute the

inversion at the end of the point multiplication. The

algorithm uses addition chains to reduce the

required number of multiplications, but it contains

exponentiations that must be performed through

repeated squaring operations—as many as 64 repeated

squaring operations for the field GF(2
163

). It was

shown, that relatively low latencies can be achieved

using this algorithm if repeated squaring can be

performed efficiently. Hence, a third application-

specific instruction will be used to perform

repeated squaring (RESQR) in order to accelerate the

Itoh–Tsujii inversion algorithm.

 Using these instructions, a combined algorithm to

perform point doubling and point addition can be

developed, which has only nine arithmetic

instructions, shown in Algorithm 2.

B. Pipelined Data Path

A data path capable of performing the new

application specific instructions is required.

Any of the approaches to implementing

multiplication mentioned in the background section

could be used, but because this work develops high-

throughput hardware a bit-parallel multiplier is used.

The data path must be constructed such that the result

of a multiplication can be squared or added to the

previous result. Furthermore, feedback is required so

that the result can be repeatedly squared. This

functionality is implemented using the SQR/ADD

block, described in Section III-D.

To maintain high-throughput performance, high

clock frequencies are required and one

A.Durga Bhavani, P.Soundarya Mala / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.412-419

415 | P a g e

instruction/cycle or more is desirable. Therefore, the

data path must be pipelined. The pipelined data path

is shown in Fig. 1. The performance-critical

component is the multiplier, so to achieve high clock

frequencies, we must sub pipeline the

multiplier.

Fig. 1. Pipelined ASIP data path.

C. Subpipelined Bit-Parallel Multiplier

 Some recent hardware implementations of

elliptic-curve accelerators, in addition to some

proposed architectures, have used bit-parallel

multipliers. Numerous architectures for bit-parallel

multiplication exist in the literature. However, very

few actual implementations of bitParallel

multiplication have been presented for the large

fields used in public-key cryptography. Where they

have been implemented, poor performance has often

been reported either in terms of clock frequency or

latency. This is not surprising given the deep sub

micrometer fabrics used in modern FPGA devices.

The major component of delay is due to routing, and

the number of interconnections in a bit-parallel

multiplier implemented for ECC will be in the region

of many tens of thousands or more making routing

very complex. Therefore, to improve routing

complexity and to reduce the amount of logic in the

critical path, a bit-parallel multiplier that is amenable

to pipelining is desirable.

The well-known Mastrovito multiplier is such

an architecture; the reader is referred to the original

work for full details. The multiplication

C(x)=A(x)B(x) mod G(x) is expressed in matrix

notation as

The Z matrix is referred to as the

product matrix and the functions f i,j are linear

functions of the components of A(x) .The columns of

represent the consecutive states of the Galois type

LFSR with the initial state given by the multiplicand

A(x), i.e., the j
th

 column is given by x
j
 A(x) mod G(x).

Therefore, the product matrix can be realized by

cascading instances of the logic to perform a left shift

modulo G(x). The circuit to perform this modulo shift

is referred to as an alpha cell. The same notation will

be used here.

 The product matrix can be divided into a number

of smaller submatrices that calculate the partial

products, which give the final product when

summed together.

Fig. 2. Pipeline stage of subpipelined bit-parallel

multiplier.

More formally, the product matrix can be divided

into D submatrices, which will contain at most =[m-

1/D] columns,i.e,

 Hence, the multiplier can be easily pipelined into

D stages, each computing the sum of at most d+1

terms, which are the outputs of alpha cells and the

input from the previous multiplication pipeline

stage. As a result the logic in the critical path is

reduced and the routing is simplified. Note that the

number of logic gates in the critical path of each

stage will be similar to that of a digit serial multiplier

with equivalent , but the routing is simpler as no

feedback is required. The resulting architecture

A.Durga Bhavani, P.Soundarya Mala / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.412-419

416 | P a g e

of the i th pipeline stage 0≤i≤D-1, is shown in Fig. 2;

 When the alpha input is A(x) and the sum input is

A(x)b0, when i = D-1 the sum output is the

multiplication result and the alpha output is

unconnected.

D. SQR/ADD Block

The extra functionality required for the new

instructions MULAD, MULSQ, and RESQ is

provided by the SQR/ADD block, which is

appended to the multiplier output as shown in Fig.

1. A block diagram showing the functionality of the

SQR/ADD block is shown in Fig. 3; note that the

flip-flops shown in Fig. 3 are the pipeline flip-

flops placed after the SQR/ADD block in the data

path diagram shown in Fig. 1.

 Selection 0 on the MUX shown in Fig.3 sets the

data path to perform standard multiplication over

GF(2
m
). Selection 1 sets the data path to perform

MULSQ. Selection 2 sets the data path to perform

MULAD. Selection 3 sets the data path to perform

RESQ; note that RESQ can be performed after any

other operation, e.g., MULAD-RESQ is a valid

instruction sequence.

 Fig.3. SQR/ADD block.

 E. Data Forwarding

The optimal depth of a pipeline is a trade

between clock frequency and instruction throughput.

Ideally, one instruction per cycle (or more) will be

performed, while sufficient pipelining to achieve the

desired clock frequency is implemented. However,

as the depth of the pipeline is increased, data

dependencies can lead to pipeline stalls and even

pipeline flushes, resulting in less than the ideal one

instruction/cycle being performed.

 Data forwarding is a common technique in

processor design, used to avoid pipeline stalls that

occur due to data dependencies. Typically, data is

forwarded to either input of the arithmetic logic unit

(ALU) from all subsequent pipeline stages. The

scheme used here differs slightly because such

generality is not necessary: the order of the

instructions and the instances when forwarding is

required are known and do not change. Therefore, the

control signals may be explicitly defined for each

instruction, and, as can be seen in Fig. 3, the data

path can be simplified because data forwarding to

both ALU inputs from all sub- sequent stages is not

required.

IV. FPGA IMPLEMENTATION
 The processor was implemented over the

smallest field recommended by NIST [8] GF(2163)

using the irreducible polynomial given,

G(x)=x163+x7+x6+x3+1.Two FPGA devices were

used for implementation: the older Virtex-E de- vice

(XCV2600E-FG1156-8),for fair comparison with the

other architectures presented in the literature, and the

more modern Virtex-4 (XC4VLX200-FF1513-11) to

demonstrate the performance of the proposed ASIP

with modern technology. Each component was

implemented and optimized individually, particularly

the multiplier, to examine the optimal pipeline depth

before the complete processor was implemented.

Aggressive optimization for speed was performed,

including timing-driven packing and placement. No

detailed floor planning was performed, only a few

simple constraints were applied.

A. Register File

Xilinx FPGA devices support three main

types of storage element: flip-flops, block RAM and

distributed RAM. Block RAM is the dedicated

memory resource of FPGA devices, which has

different sizes and locations depending on the device

being used.

 TABLE I

DECOMPOSITION OF POINT

MULTIPLICATION TIME IN CYCLES

 Distributed RAM uses the basic logic elements of

the FPGA device, lookup tables (LUTs), to form

RAMs of the desired size, function and location,

making it far more flexible. On Virtex-E devices,

Block RAMs are 4096 bits each, which increase to

18 k bits if the Virtex-4 is used. So the use of block

RAM to store relatively small amounts of data is

inefficient. The processor presented in this paper

requires only 13 storage locations including all

temporary storage, so distributed RAM was used.

On Xilinx FPGA devices, 16-bits of storage can

be gained from a single LUT. However, as reading

from two ports and writing to a third port is

required independently and concurrently, a single

dual-port distributed RAM is not sufficient.

Therefore, the register file utilized in this design is

formed by cross-connecting two dual-port

distributed RAMs. This approach is still far more

efficient than using block RAMs or flip-flops.

B. Subpipelined Multiplier

 The multiplier dominates the processor,

both in terms of area (accounting for over 95% of

the total) and clock frequency, as the critical path of

A.Durga Bhavani, P.Soundarya Mala / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.412-419

417 | P a g e

the other components is considerably shorter than

that of the multiplier. The area of a bit parallel

multiplier is O(m
2
) and the critical path is O(log(m)).

However, when implemented on FPGA, these

measures have less significance. To implement a bit-

parallel multiplier without a pipelining scheme will

lead to low clock frequencies, due to the amount of

logic in the critical path and the complex routing.

The Mastrovito multiplier architecture was

chosen not only because it was suitable for

pipelining, but also because its regularity simplifies

placement and, consequently, routing. Given the

deep sub micrometer fabrics used by FPGAs, the

routing is the largest component of delay, and, as

shown in Section III-C, the Mastrovito multiplier can

be divided into very regular blocks to improve

routing. When pipelined, the implemented

architecture has a critical path similar to a digit-serial

multiplier, but the routing is simplified because no

feedback is required.

The multiplier was implemented with several

different depths of pipeline; the results are shown in

Table II. When timing- driven FPGA placement is

performed, the placer may be forced to heavily

replicate certain areas of the circuit to meet timing

goals, particularly if certain nets have high fan-outs.

This can be seen in the implementation results of

the multiplier, where the multiplier with three

pipeline stages requires more resources than its four-

stage equivalent because heavy replication was

performed to meet timing goals. In terms of area-time

performance, it is clear that the four-stage multiplier

offers superior performance, which is an important

result when the overall performance of the processor

is considered.

C. SQR/ADD Block

 By implementing the functionality as a single

Boolean function, improved logic optimization can

be achieved because the hierarchy will be flattened

leading to resource sharing and improved logic

minimization.

D. Control

Typically, a general-purpose processor with a

pipelined data path would use an instruction ROM for

control. However, for applications such as this one

where the mode of operation is fixed and the control

is relatively simple, a state machine is far more

efficient, particularly in terms of area, and thus is the

choice for this design.

A Moore state machine is most suitable for the

proposed architecture, as any extra area required is

negligible compared to the overall area of the

processor, and the improved clock frequency

compared to a Mealy state machine is desirable. The

key is stored in a special-purpose register,

independent of the data path, and loaded through a

separate channel. Thus, the state machine has no

dependency on the data path and the control signals

can be registered to achieve the desired delay

performance. The total resource usage for control is

only 93 slices. However, if extra flexibility is

required, an instruction ROM can be used with no

performance penalty in terms of speed, though more

area resources would be required.

V. PERFORMANCE ANALYSIS
Let be the depth of the pipeline, then the

number of cycles required to perform a point

multiplication (excluding data I/O and coordinate

conversion) is given by

 Latency cycles = 2L+3

 The latency in cycles of the point

multiplication is decomposed in Table I. To ascertain

the optimal pipeline depth for the processor, the bit-

parallel multiplier was implemented with different

pipeline depths. The results of these implementations

(see Table II) and the corresponding number of

cycles to perform a point multiplication (see Table

I) can be used to estimate the point multiplication

times for each pipeline depth, as the critical path of

the processor is in the multiplier.

Fig. 4 plots throughput (point multiplications per

second) against area (FPGA slices) for each of the

multiplier variations implemented. Note that the area

figure shown is the area of the multiplier not that of

the complete processor, but the multiplier accounts

for over 95% of the total area.

A.Durga Bhavani, P.Soundarya Mala / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.412-419

418 | P a g e

It is clear that the relationship between

pipeline depth and area throughput performance is

approximately linear (as we would expect from the

previous equation), but the seven-stage pipeline

offers superior performance. Therefore, this was the

architecture implemented on both the Virtex-E and

Virtex-4 devices, the results of which are detailed in

Table II and summarized in Table III for comparison

with the state of the art. It appears that none of the

architectures in the comparison were floor planned,

so for a fairer comparison the implementation of the

proposed architecture was not floor planned either. It

is important to note for FPGA implementations,

being target specific, a detailed comparison of

resource usage is not always straightforward, in

particular when it is not clear whether the quoted

figures are actual post place and route

implementation results as in our case or merely

synthesis estimates.

 The proposed architecture compares very

favorably with the state of the art, being smaller and

considerably faster than similar works. The

implementation of the proposed architecture is

several times faster than the first three, lower-resource

table entries, which are based on digit-serial

multiplication. It is interesting to note that the

proposed architecture achieved a higher clock

frequency than all three, demonstrating that the

simplified routing resulting from the pipelined

architecture does indeed improve the critical path.

Comparing against alternative high-speed

architectures, the implementation of the proposed

architecture performs a point multiplication in only

60.01% of the estimated performance time of the

fastest alternative. The area resource of is not stated

for the field, only the performance time, but the

resource usage (slices) of the proposed architecture

is significantly less than the other alternative high-

speed architectures. The improvements over the

implementation from Jarvinen, et al. are due once

more to the reduced area requirements but also due to

the reduced latency resulting from pipelining and the

complex instructions. The further seventh-stage

pipelining has increased the clock frequency of the

architecture without prohibitively increasing the

latency, which leads to the fastest point

multiplication time reported in the literature. Hence,

the use of an application specific instruction set in

conjunction with pipelining has better exploited

operation parallelism compared with duplicating

arithmetic circuits as proposed.

Comparing against our recently reported pipelined

ASIP architecture, a 10.12% improvement in point

multiplication time was attained, but the resource

usage was only increased by around 2%. The

improvement comes as a result of the new

combined algorithm to perform DBL and ADD

fewer instructions are required, which reduces the

latency and the increased pipeline depth, which

increases the clock frequency.

A.Durga Bhavani, P.Soundarya Mala / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.412-419

419 | P a g e

 VI. CONCLUSION
 A high-performance ECC has been

implemented using FPGA technology. A combined

algorithm to perform DBL and ADD was developed

based on the Lopez Dahab Point multiplication

algorithm .The data path was pipelined, allowing

operation parallelism to be perform fastly and taking

less time. Consequently, an implementation with a

four-stage pipeline achieved a point multiplication

on Xilinx Virtex-4 device, making it the fastest

implementation. This work has confirmed the

suitability of a pipelined data path and an efficient

Galois field multiplier (2^163) is developed and

implementations of ECC over GF(2^163) performs

the better security with less key size .

REFERENCES
[1] J. Lutz and A. Hasan, ―High performance

FPGA based elliptic curve cryptographic

co-processor,‖ in Proc. Int. Conf. Inf.

Technol.: Coding Comput. (ITCC), 2004,

p. 486.

[2] F. Rodriguez-Henriquez, N. A. Saqib, and

A. Diaz-Perez, ―A fast parallel

implementation of elliptic curve point

multiplication over GF(2m),‖

Microprocessors Microsyst., vol. 28, pp.

329–339, 2004.

[3] N. Mentens, S. B. Ors, and B. Preneel, ―An

FPGA implementation of an elliptic curve

processor GF(2/sup m/),‖ presented at the

14th ACM Great Lakes Symp. VLSI,

Boston, MA, 2004.

[4] J. Lopez and R. Dahab, ―Fast

multiplication on elliptic curves over

GF(2/sup m/) without precomputation,‖

presented at the Workshop on Cryptographic

Hardware Embedded Syst. (CHES),

Worcester, MA,1999.

[5] G. Seroussi and N. P. Smart, Elliptic Curves

in Cryptography. Cam- bridge, U.K.:

Cambridge Univ. Press, 1999.

[6] C. H. Kim and C. P. Hong, ―High-speed

division architecture for GF(2m),‖ Electron.

Lett., vol. 38, pp. 835–836, 2002.

 [7] W. Chelton and M. Benaissa, ―High-speed

pipelined ECC processor over GF(2m),‖

presented at the IEEE Workshop Signal

Process. Syst.(SiPS), Banff, Canada, 2006.

[8] G. Seroussi and N. P. Smart, Elliptic Curves in

Cryptography. Cam- bridge, U.K.:

Cambridge Univ. Press, 1999.

[9] P. L. Montgomery, ―Speeding the Pollard and

elliptic curve methods of factorization,‖

1987.

[10] Z. Yan and D. V. Sarwate, ―New systolic

architectures for inversion and division in

GF(2m),‖ IEEE Trans. Comput., vol. 52, no.

11, pp.1514–1519, Nov. 2003.

 [11] C.H.Kim and C. P. Hong, ―High-speed

division architecture for GF(2m),‖ Electron.

Lett., vol. 38, pp. 835–836, 2002.

[12] T. Itoh and S. Tsujii, ―A fast algorithm for

computing multiplicative inverses in

GF(2/sup m/) using normal bases,‖ Inf.

Computation, vol.78, pp. 171–177, 1988.

[13]P.A.Scott,S.E. Tavares, and L. E. Peppard,

―A fast VLSI multi- plier for GF(2/sup m/),‖

IEEE J. Sel. Areas Commun., vol. 4, no. 1.

 [14] H. Wu, ―Bit-parallel finite field multiplier

and squarer using polyno- mial basis,‖ IEEE

Trans. Comput., vol. 51, no. 7, pp. 750–758,

Jul.2002.

 [15] A. Reyhani-Masoleh and M. A. Hasan,

―Low complexity bit parallel architectures

for polynomial basis multiplication over

GF(2/sup m/),‖IEEE Trans. Comput., vol. 53,

no. 8, pp. 945–959, Aug. 2004.

 [16] L. Song and K. K. Parhi, ―Low-energy

digit-serial/parallel finite field multipliers,‖ J.

VLSI Signal Process. Syst., vol. 19, pp. 149–

166, 1998.

[17] M. C. Mekhallalati, A. S. Ashur, and

M. K. Ibrahim, ―Novel radix finitefield

multiplier for GF(2/sup m/),‖ J. VLSI Signal

Process., vol. 15,pp.233–245, 1997.

[18] P. K. Mishra, ―Pipelined computation of

scalar multiplication in elliptic curve

cryptosystems,‖ presented at the CHES,

Cambridge, MA, 2004.

