
C.Srinivas, Samreen Khan / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.120-125

120 | P a g e

Data Caching Placement based on information density in

wireless ad hoc network

C.Srinivas, Samreen Khan

Abstract
 Data caching strategy for ad hoc networks whose

nodes exchange information items in a peer-to-peer

fashion. Data caching is a fully distributed scheme where

each node, upon receiving requested information,

determines the cache drop time of the information or

which content to replace to make room for the newly

arrived information. These decisions are made

depending on the perceived ―presence‖ of the content in

the nodes proximity, whose estimation does not cause

any additional overhead to the information sharing

system.

We devise a strategy where nodes, independent of each

other, decide whether to cache some content and for how

long. In the case of small-sized caches, we aim to design

a content replacement strategy that allows nodes to

successfully store newly received information while

maintaining the good performance of the content

distribution system. Under both conditions, each node

takes decisions according to its perception of what

nearby users may store in their caches and with the aim

of differentiating its own cache content from the other

nodes’.

 The result is the creation of content diversity within

the nodes neighbourhood so that a requesting user likely

finds the desired information nearby. We simulate our

caching algorithms in different ad hoc network scenarios

and compare them with other caching schemes, showing

that our solution succeeds in creating the desired content

diversity, thus leading to a resource-efficient information

access.

Key terms: Data Caching, Distributed Caching

Algorithm, Ad hoc network

I. INTRODUCTION
Ad hoc networks are multi hop wireless

networks of small computing devices with wireless

interfaces. The computing devices could be conventional

computers (for example, PDA, laptop, or PC) or

backbone routing platforms or even embedded

processors such as sensor nodes. The problem of optimal

placement of caches to reduce overall cost of accessing

data is motivated by the following two defining

characteristics of ad hoc networks. First, the ad hoc

networks are multi hop networks without a central base

station. Thus, remote access of information typically

occurs via multi hop routing, which can greatly benefit

from caching to reduce access latency. Second, the

network is generally resource constrained in terms of

channel bandwidth or battery power in the nodes.

Caching helps in reducing communication, this results in

savings in bandwidth, as well as battery energy. The

problem of cache placement is particularly challenging

when each network node has a limited memory to cache

data items.

In this paper, our focus is on developing

efficient caching techniques in ad hoc networks with

memory limitations. Research into data storage, access,

and dissemination techniques in ad hoc networks is not

new. In particular, these mechanisms have been

investigated in connection with sensor networking peer-

to-peer networks mesh networks world wide Web and

even more general ad hoc networks. However, the

presented approaches have so far been somewhat ―ad

hoc‖ and empirically based, without any strong

analytical foundation. In contrast, the theory literature

abounds in analytical studies into the optimality

properties of caching and replica allocation problems.

However, distributed implementations of these

techniques and their performances in complex network

settings have not been investigated. It is even unclear

whether these techniques are amenable to efficient

distributed implementations.

Our goal in this paper is to develop an approach

that is both analytically tractable with a provable

performance bound in a centralized setting and is also

amenable to a natural distributed implementation. In our

network model, there are multiple data items; each data

item has a server, and a set of clients that wish to access

the data item at a given frequency. Each node carefully

chooses data items to cache in its limited memory to

minimize the overall access cost. Essentially, in this

article, we develop efficient strategies to select data

items to cache at each node. In particular, we develop

two algorithms—a centralized approximation algorithm,

which delivers a 4-approximation (2-approximation for

uniform size data items) solution, and a localized

distributed algorithm, which is based on the

approximation algorithm and can handle mobility of

nodes and dynamic traffic conditions. Using simulations,

we show that the distributed algorithm performs very

close to the approximation algorithm. Finally, we show

through extensive experiments on ns2 that our proposed

distributed algorithm performs much better than a prior

approach over a broad range of parameter values. Ours is

the first work to present a distributed implementation

based on an approximation algorithm for the general

C.Srinivas, Samreen Khan / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.120-125

121 | P a g e

problem of cache placement of multiple data items under

memory constraint.

Data caching strategy for ad hoc networks

whose nodes exchange information items in a peer-to-

peer fashion. Data caching is a fully distributed scheme

where each node, upon receiving requested information,

determines the cache drop time of the information or

which content to replace to make room for the newly

arrived information. These decisions are made

depending on the perceived ―presence‖ of the content in

the nodes proximity, whose estimation does not cause

any additional overhead to the information sharing

system.

We devise a strategy where nodes, independent

of each other, decide whether to cache some content and

for how long. In the case of small-sized caches, we aim

to design a content replacement strategy that allows

nodes to successfully store newly received information

while maintaining the good performance of the content

distribution system. Under both conditions, each node

takes decisions according to its perception of what

nearby users may store in their caches and with the aim

of differentiating its own cache content from the other

nodes’. The result is the creation of content diversity

within the nodes neighbourhood so that a requesting user

likely finds the desired information nearby. We simulate

our caching algorithms in different ad hoc network

scenarios and compare them with other caching schemes,

showing that our solution succeeds in creating the

desired content diversity, thus leading to a resource-

efficient information access.

II. SYSTEM OUTLINE OVERVIEW:
Hamlet is fully distributed caching wireless ad

hoc networks whose nodes exchange information item in

a peer to peer fashion. In particular we address a mobile

ad hoc network whose nodes might be resource-

constrained devices, pedestrian users, or vehicles on city

roads. Each node runs an application to request and

possibly cache desired information items. Nodes in the

network retrieve information items from other users that

temporarily cache (part of) the requested items or from

one or more gate way nodes, which can store content or

quickly fetch it from the internet .

 We propose, called Hamlet, aims at creating content

diversity within the node neighbourhood so that users

likely find a copy of the different information items

nearby (Regardless of the content popularity level) and

avoid flooding the network with query messages.

Although a similar concept has been put forward in the

novelty in our proposal resides in the probabilistic

estimate, run by each node, of the information presence

(i.e., of the cached content) in the node proximity. The

estimate is performed in a cross-layer fashion by

overhearing content query and information reply

messages due to the broadcast nature of the wireless

channel. By leveraging such a local estimate, nodes

autonomously decide what information to keep and for

how long, resulting in a distributed scheme that does not

require additional control messages.

The Hamlet approach applies to the following cases.
• Information presence estimation. In this case we

define the reach range of a generic node that can receive

a query generated by node n itself. As an example, in an

ideal setting in which all nodes have the same radio

range, the reach range is given by the product of TTL

and the node radio range. Next we denote by f the

frequency at which every node estimate the presence of

each information item with in the reach range , and we

define as 1/f the duration of each estimation step (also

called time step hereafter).

 The generic node n uses the information captured

with in its reach range, during the estimation step j, to

compute the following quantities:1) a provider counter

by using application-layer data and 2) a transit counter

by using data that are collected through channel

overhearing in a cross-layer fashion. These counters are

defined as follows:

• Provider counter dic(n, j). This quantity accounts for

the presence of new copies of information i’s chunks c,

delivered by n to querying nodes within its range during

step j. Node n updates this quantity every time it acts as

a provider node.(e.g., like node P in the upper plot of

figure 2)

• Large-sized caches. In this case, nodes can potentially

store a large portion (i.e., up to 50%) of the available

information items. Reduced memory usage is a desirable

(if not required) condition, because the same memory

may be shared by different services and applications that

run at nodes. In such a scenario, a caching decision

consists of computing for how long a given content

should be stored by a node that has previously requested

it, with the goal of minimizing the memory usage

without affecting the overall information retrieval

performance;

• Small-sized caches. In this case, nodes have a dedicated

but limited amount of memory where to store a small

percentage (i.e., up to 10%) of the data that they retrieve.

The caching decision translates into a cache replacement

strategy that selects the information items to be dropped

among the information items just received and the

information items that already fill up the dedicated

C.Srinivas, Samreen Khan / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.120-125

122 | P a g e

memory. We evaluate the performance of Hamlet in

different mobile network scenarios, where nodes

communicate through ad hoc connectivity. The results

show that our solution ensures a high query resolution

ratio while maintaining the traffic load very low, even

for scarcely popular content, and consistently along

different network connectivity and mobility scenarios.

III. System Analysis

 In this we are going to deal with the caching

placement problems and algorithm. Those are as follows:

1. SELF-ORGANIZING

2. SELF-ADDRESSING (MANET)

3. INTEGRATED CACHE-ROUTING

4. LOCALIZED CACHING POLICY

5. DISTRIBUTED CACHING ALGORITHM

 1. SELF-ORGANIZING

 Multiple Data’s deals with the three algorithms

for cache placement of multiple data items in ad hoc

networks. In the first approach, each node caches the

items most frequently accessed by itself; the second

approach eliminates replications among neighboring

nodes introduced by the first approach; the third

approach require one or more ―central‖ nodes to gather

neighbourhood information and determine caching

placements. The first two approaches are largely

localized, and hence, would fare very badly when the

percentage of client nodes in the network is low, or the

access frequencies are uniform. In the third approach, it

is hard to find stable groups in ad hoc networks because

of frequent failures and movements.

2. SELF-ADDRESSING (MANET):

A multi-hop ad hoc network can be represented

as an undirected graph G(V, E) where the set of nodes

vertices V the nodes in the network and E are the set of

weighted edges in the graph. Two network nodes that

can communicate directly with each other are connected

by an edge in the graph. The edge weight may represent

a link metric such as loss rate, delay, or transmission

power. For the cache placement problem addressed in

this article, there are multiple data items and each data

item is served by its server (a network node may act as a

server for more than one data items). Each network node

has limited memory and can cache multiple data items

subject to its memory capacity limitation. The objective

of our cache placement problem is to minimize the

overall access cost. Below, we give a formal definition

of the cache placement problem addressed in this system.

Problem Formulation. Given a general ad hoc

network graph G(V;E) with p data items D1,D2………,Dp,

where a data item Dj is served by a server Sj . A network

node may act as a server for multiple data items. For

clarity of presentation, we assume uniform-size

(occupying unit memory) data items for now. Our

techniques easily generalize to non-uniform size data

items, as discussed later. Each node i has a memory

capacity of mi units. We use aij to denote the access

frequency with which a node i requests the data item Dj ,

and dil to denote the weighted distance between two

network nodes i and l. The cache placement problem is

to select a set of sets M = {M1, M2. . . ,Mp}, where Mj is a

set of networknodes that store a copy of Dj , to minimize

the total access cost

under the memory capacity constraint that

which means each network node i appears in at most mi

sets of M. The cache placement problem is known to be

NP-hard [3].

EXAMPLE 1: Figure 1 illustrates the above described

cache placement problem in a small ad hoc network. In

Figure 2, each graph edge has a unit weight. All the

nodes have the same memory capacity of 2 pages, and

the size of each data item is 1 memory page. Each of the

nodes 1, 2, 3, 4, and 12 have one distinct data item to be

served (as shown in the parenthesis with their node

numbers). Each of the client nodes (9, 10, 11, 13, and 14)

accesses each of the data items D1;D2, and D3 with unit

access frequency. Figure 2 shows that the nodes 5, 6, 7,

8 have cached one or more data items, and also shows

the cache contents in those nodes. As indicated by the

bold edges, the clients use the nearest cache node instead

of the server to access a data item. The set of cache

nodes of each data item are: M1 = {7, 8},M2 = {7, 8}, M3

= {5, 6}. One can observe that total access cost is 20

units for the given cache placement.

Fig. 2. Illustrating cache placement problem under

memoryconstraint

C.Srinivas, Samreen Khan / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.120-125

123 | P a g e

3. Integrated Cache Routing

Integrated cache routing is based on three step

procedure those are as follows:

 Nearest-caching tables can be used in

conjunction with any underlying routing

protocol to reach the nearest cache node, as

long as the distances to other nodes are

maintained by the routing protocol.

 However, note that maintaining cache-routing

tables instead of nearest-cache tables and

routing tables doesn’t offer any clear advantage

in terms of number of messages transmissions.

 We could maintain the integrated cache-routing

tables in the similar vein as routing tables are maintained

in mobile ad hoc networks. Alternatively, we could have

the servers periodically broadcast the latest cache lists.

In our simulations, we adopted the latter strategy, since it

precludes the need to broadcast Add Cache and Delete

Cache messages to some extent.

 4. LOCALIZED CACHING POLICY

 The caching policy of DGA is as follows. Each

node computes benefit of data items based on

its ―local traffic‖ observed for a sufficiently

long time. The local traffic of a node i includes

its own local data requests, non-local data

requests to data items cached at i, and the traffic

that the node i is forwarding to other nodes in

the network.

 A node decides to cache the most beneficial (in

terms of local benefit per unit size of data item)

data items that can fit in its local memory.

When the local cache memory of a node is full,

the following cache replacement policy is used.

 In particular, a data item is newly cached only if

its local benefit is higher than the benefit

threshold, and a data item replaces a set of

cached data items only if the difference in their

local benefits is greater than the benefit

threshold.

6. DISTRIBUTED GREEEDY ALGORITHM

(DGA)

 Distributed Greedy Algorithm (DGA) is

also known as Distributed Caching Algorithm (DCA).

 The above components of nearest-cache

table and cache replacement policy are combined to

yield our Distributed Greedy Algorithm (DGA) for

cache placement problem. In addition, the server uses the

cache list to periodically update the

caches in response to changes to the data at the server.

The departure of DGA from CGA is primarily in its

inability to gather information about all traffic (access

frequencies).

 In addition, the inaccuracies and staleness of the

nearest cache table entries (due to message losses or

arbitrary communication delays) may result in

approximate local benefit values. Finally, in DGA, the

placement of caches happens simultaneously at all nodes

in a distributed manner, which is in contrast to the

sequential manner in which the caches are selected by

the CGA. However, DGA is able to cope with

dynamically changing access frequencies and cache

placements. As noted before, any changes in cache

placements trigger updates in the nearest-cache table,

which in turn affect the local benefit values. Below is a

summarized description of the DGA.

Algorithm 1: Distributed Greedy Algorithm (DGA)

Setting
A network graph G(V;E) with p data items.

Each node i has a memory capacity of mi pages. Let

be the benefit threshold.

Program of Node i

BEGIN

When a data item Dj passes by

if local memory has available space and (Bij >

)

then cache Dj

else if there is a set D of cached data items such

that(local benefit of D < Bij) and (|D| |Dj |),

then replace D with Dj

When a data item Dj is added to local cache

Notify the server of Dj

Broadcast an AddCache message with (i ,Dj)

When a data item Dj is deleted from local cache

Get the cache list Cj from the server of Dj

Broadcast a DeleteCache message with

(i’,Dj ,Cj)

On receiving an AddCache message

 (i’,Dj)

if i’ is nearer than current nearest-

 cache for Dj

then update nearest-cache table entry

 and broadcast the AddCache

 message to neighbors

else send the message to the nearest-

 cache of i

On receiving a DeleteCache message

 (i0, Dj, Cj)

if i’ is the current nearest-cache for Dj

then update the nearest-case of Dj

 using Cj , and broadcast the

 DeleteCache message

else send the message to the nearest-

 cache of i

For mobile networks, instead of

 AddCache and DeleteCache

 messages, for each data item, its

 server periodically broadcasts (to

 the entire network) the latest

 cache list.

END.

C.Srinivas, Samreen Khan / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.120-125

124 | P a g e

Performance Analysis. Based on the above observation,

if we assume that local benefit is reflective of the

accurate benefit (i.e., if the local traffic seen by a node i

is the only traffic that is affected by caching a data item

at node i), then DGA also yields a solution whose benefit

is one fourth of the optimal benefit.

Data Expiry and Cache Updates. We incorporate the

concepts of data expiry and cache updates in our overall

framework as follows. For data expiry, we use the

concept of Time-to-Live (TTL) [7], which is the time till

which the given copy of the data item is considered

valid/fresh. The data item or its copy is considered

expired at the

end of the TTL time value. We consider two data expiry

models, viz. TTL-per-request and TTL-per-item. In

the TTL-per-request data expiry model [7], the server

responds to any data item request with the requested

data item and an appropriately generated TTL value.

Thus, each copy of the data item in the network is

associated with an independent TTL value. In the TTL-

per-item data expiry model, the server associates a

TTL value with each data item (rather than each

request), and all requests for the same data item are

associated with the same TTL (until the data item

expires). Thus, in the TTL-per-item data expiry model,

all the fresh copies of a data item in the network are

associated with the same TTL value. On expiry of the

data item, the server generates a new TTL value for

the data item. For updating the cached data items, we

consider two mechanisms. For the case of TTL-per-

request data expiry model, we use the cache deletion

update model, where each cache node independently

deletes its copy of the expired data item. Such

deletions are handled in the similar way as describe

before, i.e., by broadcasting a DeleteCache request. In

the case of TTL-per-item data expiry model, all the

copies of a particular data item expire simultaneously.

Thus, we use the server multicast cache update model,

wherein the server multicasts the fresh copy of the

data item to all the cache nodes, on expiration of the

data item (at the server). If the cache list is not

maintained at the server, then the above update is

implemented using a network wide broadcast

CONCLUSION:
 Data caching strategy for ad hoc networks

whose nodes exchange information items in a

peer-to-peer fashion. Data caching is a fully

distributed scheme where each node, upon

receiving requested information, determines the

cache drop time of the information or which

content to replace for the newly arrived

information.

 We have developed a paradigm of data caching

techniques to support effective data access in ad

hoc networks. In particular, we have considered

memory capacity constraint of the network

nodes.

 We have developed efficient data caching

algorithms to determine near optimal cache

placements to maximize reduction in overall

access cost. Reduction in access cost leads to

communication cost savings and hence, better

bandwidth usage and energy savings.

 However, our simulations over a wide range of

network and application parameters show that

the performance of the caching algorithms.

 Presents a distributed implementation based on

an approximation algorithm for the problem of

cache placement of multiple data items under

memory constraint.

 The result is the creation of content diversity

within the nodes neighborhood so that a

requesting user likely finds the desired

information nearby.

 We simulate our caching algorithms in different

ad hoc network scenarios and compare them

with other caching schemes, showing that our

solution succeeds in creating the desired content

diversity, thus leading to a resource-efficient

information access.

LIMITATIONS & FUTURE

ENHANCEMENTS :
Hamlet is caching self contained and is designed to self

adapt to network environments with different mobility

and connectivity features.

We assume a content distribution system where the

following assumptions hold:

1) A number I of information items is available to the

users, with each item divided into a number C of chunks;

2) User nodes can overhear queries for content and

relative responses within their radio proximity by

exploiting the broadcast nature of the wireless medium;

and

3) User nodes can estimate their distance in hops from

the query source and the responding node due to a hop-

count field in the messages. Although Hamlet can work

with any system that satisfies the aforementioned three

generic assumptions, for concreteness, we detail the

features of the specific content retrieval system that we

will consider in the remainder of this paper.

REFERENCE & BIBLIOGRAPHY:

Good Teachers are worth more than thousand

books, we have them in Our Department.

[1] Caching Strategies Based on Information Density

Estimation in Wireless Ad Hoc NetworksMarco

Fiore, Member, IEEE, Claudio Casetti, Member,

IEEE, and Carla-Fabiana Chiasserini, Senior

C.Srinivas, Samreen Khan / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.120-125

125 | P a g e

Member, IEEE IEEE TRANSACTIONS ON

VEHICULAR TECHNOLOGY, VOL. 60, NO. 5,

JUNE 2011 pg.no.1294 to pg.no.2028

[2] B.-J. Ko and D. Rubenstein, ―Distributed self-

stabilizing placement of replicated resources in

emerging networks,‖ IEEE/ACM Trans. Netw.,

vol. 13, no. 3, pp. 476–487, Jun. 2005.

[3] ―Benefit-based Data Caching in Ad Hoc

Networks ‖ Bin Tang, Member, IEEE, Himanshu

Gupta, Member, IEEE, and Samir R. Das,

Member, IEEE

[4] G. Cao, L. Yin, and C. R. Das, ―Cooperative

cache-based data access in ad hoc networks,‖

Computer, vol. 37, no. 2, pp. 32–39, Feb. 2004.

[5] C.-Y. Chow, H. V. Leong, and A. T. S. Chan,

―GroCoca: Group-based peer-to-peer cooperative

caching in mobile environment,‖ IEEE J. Sel.

Areas Commun., vol. 25, no. 1, pp. 179–191, Jan.

2007.

[6] T. Hara, ―Cooperative caching by mobile clients

in push-based information systems,‖ in Proc.

CIKM, 2002, pp. 186–193.

[7] L. Yin and G. Cao, ―Supporting cooperative

caching in ad hoc networks,‖ IEEE Trans. Mobile

Comput., vol. 5, no. 1, pp. 77–89, Jan. 2006.

[8] N. Dimokas, D. Katsaros, and Y. Manolopoulos,

―Cooperative caching in wireless multimedia

sensor networks,‖ ACM Mobile Netw. Appl., vol.

13, no. 3/4, pp. 337–356, Aug. 2008.

[9] Y. Du, S. K. S. Gupta, and G. Varsamopoulos,

―Improving on-demand data access efficiency in

MANETs with cooperative caching,‖ Ad Hoc

Netw., vol. 7, no. 3, pp. 579–598, May 2009.

[10] W. Li, E. Chan, and D. Chen, ―Energy-efficient

cache replacement policies for cooperative

caching in mobile ad hoc network,‖ in Proc. IEEE

WCNC, Kowloon, Hong Kong, Mar. 2007, pp.

3347–3352.

[11] M. K. Denko and J. Tian, ―Cross-layer design for

cooperative caching in mobile ad hoc networks,‖

in Proc. IEEE CCNC, Las Vegas, NV, Jan. 2008,

pp. 375–380.

[12] H. Chen, Y. Xiao, and X. Shen, ―Update-based

cache replacement policies in wireless data

access,‖ in Proc. BroadNets, Boston, MA, Oct.

2005, pp. 797–804.

[14] J. Xu, Q. Hu, W.-C. Lee, and D. L. Lee,

―Performance evaluation of an optimal cache

replacement policy for wireless data

dissemination,‖ IEEE Trans. Knowl. Data Eng.,

vol. 16, no. 1, pp. 125–139, Jan. 2004.

[14] J. Cao, Y. Zhang, G. Cao, and L. Xie, ―Data

consistency for cooperative caching in mobile

environments,‖ Computer, vol. 40, no. 4, pp. 60–

66, Apr. 2007.

[15] N. Dimokas, D. Katsaros, and Y. Manolopoulos,

―Cache consistency in wireless multimedia sensor

networks,‖ Ad Hoc Netw., vol. 8, no. 2, pp. 214–

240, Mar. 2010.

[16] M. Fiore, F. Mininni, C. Casetti, and C.-F.

Chiasserini, ―To cache or not to cache?‖ in Proc.

IEEE INFOCOM, Rio de Janeiro, Brazil, Apr.

2009, pp. 235–243.

REFERENCES MADE FROM:

1. Professional Java Network Programming

2. Java Complete Reference

4. Data Communications and Networking, by Behrouz A

Forouzan.

5. Computer Networking: A Top-Down Approach, by

James F. Kurose.

6. Operating System Concepts, by Abraham Silberschatz.

C.Srinivas M.Tech Associate Professor , HOD

IT Department, Sree Visvesvraya Institute of technology

and Sciences affiliated to JNTUH, approved by AICTE

New Delhi, Mahabubnagar. His research includes

Information security , Networking

Samreen Khan pursuing M.Tech CSE

final year in Sree Visvesvaraya

Institute of Technology and Science

affiliated to JNTUH, approved by

AICTE New Delhi. Chowderpally

Mahabubnagar.

Research area includes Java

computer network, information security .

