
Lekha V. Bhandari, Mahip M. Bartere, Sneha U. Bohra / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1996-1998

1996 | P a g e

Demand Partitioned Virtual Memory

Lekha V. Bhandari*, Mahip M. Bartere**, Sneha U. Bohra***
*(M.E (Scholar) G.H.Raisoni College of Engineering and Management, Amravati.

Department of Computer Science & Engineering)

** (M.E (CSE) G.H.Raisoni College of Engineering and Management, Amravati.
Department Computer Science & Engineering)

*** (M.E (Scholar) G.H.Raisoni College of Engineering and Management, Amravati.

Department Computer Science & Engineering)

ABSTRACT
Partitioning a memory into many blocks

and catching a certain amount of data in main

memory from disk where blocks allocated for

process are sufficient to execute process is very

useful mechanism provide multiprogramming and

cpu utilization. However creating appropriate

allocation and replacement algorithm are

daunting tasks. This paper proposed an on

demand memory partition mechanism for

scalable and efficient memory management .This

paper propose that process start with different

size. The allocation algorithm then gradually

divides a process into many blocks as main

memory receives more requests from process from

memory. It catches them in new blocks from

available once (free blocks). Consequently:

memory partition done on demand where user's

task determines the appropriate size of memory.

I. INTRODUCTION
Most operating system such as OS/360

running on IBM hardware used the fixed partition

memory management method .In this scheme main

memory was divided into various sections called

partitions. This partition could be of different sizes,

but once decided at time of system generation, they

could not be changed. To change partitions, the
operations have to stop and operating system has to

be load and create different partition specification.

In short, evolutions of this scheme is wastage of

memory, access time is not very high. Time

complexity is very low becauseallocation /

deallocation routines are simple, as partition is fixed

[Silberschatz Abraham et. al.].

New embedded devices are heavily relay on

demand memory due to unpredictability of the input

data on number of application running concurrently

defined by user. In relation with this context, required

such design methodologies that can handle preciously
the complex demand memory behavior. Demand

Partitioned Virtual

Memory is solution on this problem and it can

implement with demand segmentation or demand

paging with linked list allocation. This paper

proposed use of link list for allocation so to link

between two differently located block, to read a

process. It also minimizes wastage of memory due to

fragmentation.

II. RELATED WORK
Red Brick Warehouse starts to allocate some

of memory to a server, allocated additional memory
on demand. The actual varies by server and depends

on the row length of its intermediate result set.

Unless a server demands more memory, it never

exceeds its initial size. When a server does demand

more memory than allowed, it spills blocks of

intermediate result set to disk.

Davide Atienza et. al. had worked on new

portable consumer embedded devices that execute

multimedia and wireless applications that demand

extensive memory. New portable device heavily rely
on Demand Memory (DM) due to unpredictability of

the input data and system behavior. They proposed

new methodology that allows designing custom DM

management mechanism with a reduced memory for

such kind of dynamic applications. The experimental

results show 60% of effective memory utilization.

III. DEMAND PARTITION
This paper proposes to use linked list

allocation with new free space management police

for demand partition. It also proposed to use the

Indexed allocation to support direct accessing.

Benefits of demand partitioned virtual memory are

i) Minimizing memory Wastage

ii) Sharing and control

iii) All processes get address space

iv) Monitoring RAM and VM

v) Efficient free space management

IV. CACHE REPLACEMENT POLIC
This paper proposed to use genetic algorithm

based page replacement policy. Structure of GA-

based page is shown in figure 1. Several attributes of

a cache page are selected to include in the structure.

These strings provide direct and indirect

measurement that can be used for fitness value

calculation.

Lekha V. Bhandari, Mahip M. Bartere, Sneha U. Bohra / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1996-1998

1997 | P a g e

Hit Count Access

Count

Last Access

Time

Time in

Cache

Figure 1: Structure of Page

The Hit Count is the number of times a

cache page is referenced without being loaded from

secondary memory, i.e. no page fault. Hit count and

page fault are antagonistic attributes, i.e. a higher hit

count means less page faults. It is desirable to have a

page replacement policy with as lesser page faults, or

high hit count.

The Access Count is the number of time a

cache page is referenced regardless to page fault. A

high count means the page is referenced often and it
should stay in cache so that the next reference to this

page can be a page hit.

The Last Access Time is the time when the

page is last referenced. It is a timestamp value in

millisecond since Epoch time. The larger the value,

the more recent the timestamp is. LRU policy uses

this value to choose a page that has the smallest value

for replacement.

The Time in Cache is the duration that the

page has been loaded into cache. A high value can be
interpreted either good or bad depending on the page

replacement policy is used: A page with high Time in

Cache value in FIFO algorithm means the page

should be replaced, but can be kept in LRU algorithm

if the Last Access Time is also high. This exercise

interprets this value using the latter idea because of

the combination with hit count.

These attributes are real-coded because of

speed consideration. Time values tend to be large

numbers because they are expressed in milliseconds.
Coding them in real-values avoids extraneous

mathematical conversion which takes up computation

cycles. In a real OS, program execution halts at page

fault to load the new page. The first step to load a

new page is to select a page for removal. Therefore,

selecting a page speedily is not only desirable, but

necessary for quick resumption of program

execution.

V. FITNESS FUNCTION
With the above attributes identified as strings

to form the structure, we can define the fitness

function. Our fitness function is a summation of the

above attributes with minor tweaks because they are

unsuitable to be used directly to calculate the fitness

value. For reasons that will be explained in the next

section, only selection and mutation operators are

used. No crossover operation is performed. Since the

actual values of hit count and access count are used

for statistics, and hence evaluation, they cannot be

mutated (modified) directly. To mutate these values

without affecting the statistics, new counters, Hit

CountGA and Access Count GA, only used by the

fitness function are introduced for hit count and

access count respectively. These new counters will be

incremented at the same time when the real hit count

and real access count are incremented. They will also
be modified during mutation.

Besides the real counters, the time values are

also unsuitable to apply directly to the fitness

function because of their large number relative to the

hit count and access count. Doing so will make the

contribution from the counters insignificant. To

alleviate this problem, two steps were taken. First,

only the time difference from the cache load is used

instead of the timestamp. Second, the time values are

calculated in seconds as opposed to milliseconds.

 Thus, we have the fitness function in
equation (1):

Fitness = Hit Count GA + Access Count GA +

Age at Last Access + Time in Cache (1)

Age at Last Access = Timestamp at Last

Access – Timestamp at Page Allocation (2)

Time in Cache = Current timestamp –

Timestamp at Page Load (3)

Equation (2) defines Age at Last Access as

the difference between the timestamp value at last

page access and the timestamp value when the page
is allocated. A page is allocated when it is instantiated

in the secondary memory, regardless whether it is

loaded into the cache.

Equation (3) defines Time in Cache as the

difference between the current timestamp and the

timestamp when the page is loaded in cache. Note

that if a page is swapped out of the cache and loaded

back in, the timestamp at page load will be reset to

the new timestamp value when the page is loaded

back in.A page candidate with a higher fitness value

in equation (1) means that it is more suitable to stay
in cache. The logic goes like this. A page with high

hit count is a direct proof that residence of this page

in cache is beneficial for the program execution. A

page with high access count means that this page is

referenced frequently and hence should stay in cache.

A page with older age at last access means that the

page usage is spread throughout the program and

hence should stay because it is more likely to be used

again. A page with longer time in cache means that

the page has spent more time in cache, possibly has

survived more page selection, hence should stay in
cache.

VI. CONCLUSION
Dynamic memory allocation using linked

list allocation for sequential access performs well in

comparison of fixed static allocation where memory

wastage is more (in dynamic memory allocation

Lekha V. Bhandari, Mahip M. Bartere, Sneha U. Bohra / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1996-1998

1998 | P a g e

memory used by pointer is just 0.78%of its total

size.).When it used with efficient page replacement

policy it gives best results.

GA-based page replacement policy performs

almost as well as the LRU policy under various page

sizes and cache sizes. GA has shown in many areas to
produce human-competitive results [3]. It is a very

promising result to see that a simple GA-based cache

replacement policy model can perform so closely to

other well-studied computer algorithms. With a more

well-tuned fitness function, perhaps GA can perform

even better than LRU algorithm.

REFERENCES
[1] Silberschatz Abraham and Gane

Greg,Galvin Petter Baer, “operating system

concept”, Published Addison-Wesley

Reading, 7 Edition, May 2006.

[2] Davide Atienza and S. Mamagkakis, F.

Catthoor, J.M. Mendias,”Dynamic Memory

Management Design Methodology for

Reduced Memory Footprint in Multimedia

and Wireless Network Applications”,
Publisher IEEE Computer Society Press,

Washington DC, USA.

[3] D. E. Goldberg, “Real-coded Genetic

Algorithms, Virtual Alphabets, and

Blocking” Complex Systems, May 1991

139-167.

[4] Red Brick Warehouse available at

http://www.ibm.com/software/data/informix/

redbrick/

[5] http://www.ehow.com

[6] http://www.drdobbs.com/article

