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1. Introduction: 
Due to wide application in many fields 

such as science, economics, neural network, 

ecology, the theory of nonlinear difference 

equations has been widely studied since 1970; see, 

for example, [1, 3, 15, 16]. At the same time, 

boundary value problems and initial value problems 

of difference equations have received much 

attentions from many authors; see 

[2,4,7,9,10,13,19]. 
In this paper, we consider an initial value 

problem for a nonlinear difference equation with 

nonlocal initial conditions. More precisely we 

consider the IVP 
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where },...,2,1,0{ N  Jt  , A, f : J × E → E are 

two continuous functions, g : C(J, E)→E, y0  E 

and E is a real Banach space with the norm || . ||. The 

existence of solutions for IVP (1.1)-(1.2) is obtained 

by using the classical fixed point theorem for 

compact map due to Smart [18]. 

 Such problems with classical initial 
conditions have been studied by Anichini [5], 

Anichini and Conti [6], Conti [11], Conti and 

Iannacci [12], Kartsatos [14], Mario and Pietramala 

[17]. 

The nonlocal conditions, which are 

generalization of the classical initial conditions was 

motivated by physical problems. The pioneering 

work on nonlocal conditions is due to Byszewski 

[8]. 

 

 

 

2. Preliminary Notes and Hypothesis 
Let E be a real Banach space and                 

J = {0,1, 2,..., N}, C(J, E) denote the Banach space 
of functions y : J→E equipped with the norm  

 

                    ||y||∞ = sup{||y(t)|| : t   J} 

 

and B(E) denotes the Banach space of bounded 

linear operators from E into E with norm 

 

              || T ||B(E) = sup{|| T (y) || : || y || = 1}. 

   

Let us list the following hypothesis: 

 
(H1) A : J × E → B(E), (t, v) : → A(t, v) is a 

continuous function with respect to v such that          

for r > 0 there exists r1 > 0 such that       

                                                                                                                                                       

||v|| ≤ r → ||A(t, v)|| B(E) ≤  r1 

 

       for all t   J and v  E. 

 

(H2) f : J × E ! E, (t; v) :! f(t; 
v) is a continuous function with 
respect to v. 
 

 (H3) A function g : C (J, E) × E is continuous and 
there exists a constant L > 0 such that                        

|| g(y) || ≤ L for each y E. 

 

(H4) There exists constant K such that  

          || f (t, u) || ≤ K for all t   J, u  E . 

 

For each u C(J, E), define a function                   

Uu : J × J → B(E) such that 
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  (2.1) 

where I stands for an identity operator on E and 

Au(t) = A(t, u(t)). 

From (2.1), one has 

 

              Eu t,  sIstU u  ,),(                (2.2) 

and 
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In the list of hypothesis, assume  

 

(H5) M = sup{||Uy(t, s)||B(E) : (t, s)   J × J ,                     

y   B(E)}. 

Remark 2.1 From (H1), it follows that for                 

u  C(J, E), Au   C(J,  B(E)). 
 

Remark 2.2 Suppose {un} is a sequence in C(J, E) 

converging to u*   C(J, E). Then (H1) implies      

Aun → Au*  i.e. A(t, un(t)) → A(t, u*(t)) for all t   J. 

 

Now we prove the following lemma. 

Lemma 2.1 If (H1) holds then for each u   C(J, E); 

Uu : J × J → B(E) defined by (2.1) is continuous 

with respect to u. 

Proof: From (2.1) by putting t = s+1 and using   

Uu(s, s) = I, we get  

 
Uu(s+1, s) = I + A(s, u(s))Uu(s, s) 

                  = I +A(s, u(s)). 

For t = s+2, 

        Uu(s+2, s) = I+A(s, u(s))Uu(s, s)+ 

                              A(s+1, u(s+1))Uu(s+1, s) 

                         = (I + A(s, u(s)))(I + A(s+1, u(s+1))). 

Continuing the process, we obtain 
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Now, suppose {un} is a sequence in C(J, E) 

converging to u*    C(J, E). From (2.4), one has 
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and 
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The conclusion follows from (H1) and Remark 2.2. 
 

Theorem 2.1: A function y   C(J, E) given by  

                            

))1(,1(),(

)(0) ,(- 0) ,( = (t)

1

0








sysfstU                               

ygtUytUy

t

s

y

yy

         (2.5) 

is a solution of IVP (1.1)-(1.2). 

Proof: It follows from (2.2) and (2.5) that  
 

y(0) = Uy(0, 0)y0-Uy(0, 0)g(y) 

i.e.  y(0) + g(y) = y0. 

From (2.3), we have  

∆ Uy(t, 0) = A(t, y(t))Uy(t, 0) 

 

and 

 

∆ Uy(t, s) = A(t, y(t))Uy(t, s). 

Put 

))1(,1(),(= )(
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Thus equation (2.5) reduces to  

 
y(t) = Uy(t, 0)y0 - Uy(t, 0)g(y) + z(t). 

 

Therefore, 

 

∆ y(t) = ∆ Uy(t, 0)y0 - ∆ Uy(t, 0)g(y) + ∆ z(t) 

          = A(t, y(t))y(t) + f(t, y(t)). 

This completes the proof. 

A function y(t) given by (2.5) is called mild 

solution of IVP (1.1)-(1.2). 

3. Existence Theorems: 

In this section we establish the existence of solution 
of IVP (1.1)-(1.2).  

The following Lemma is crucial in the proof of main 

theorem. 

Lemma 3.1: (18) Let X be a Banach space and let    

T : X → X be a continuous compact map. If the set  

Ω = {y   X : λy = T(y), for some λ >1} 

is bounded, then T has a fixed point. 

Theorem 3.1 : Assume that hypothesises (H1)-(H5) 

are satisfied. Then the problem (1.1)-(1.2) has at 

least one mild solution on J. 

Proof: We transform the problem (1.1)-(1.2) into a 

fixed point problem. Consider the mapping              
T : C(J, E) → C(J, E) defined by  

                   

))1(,1(),(

)(0) ,(- 0) ,( = ))((

1
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.      (3. 1) 

It is clear that the fixed points of T are mild 

solutions of (1.1)-(1.2). 

We shall show that T is a continuous 
compact mapping. The continuity of T follows from 

Lemma 2.1 and hypothesises (H2), (H3). Now we 

prove that T maps bounded sets into relatively 

compact sets. i.e. T is a compact mapping. Let 

Br = {y   C(J, E) : ||y|| ≤  r}. 

Then for each t   J and y   Br, we have  
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By (H3)-(H5) we have 
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        ≤  M (||y0|| + L + KN). 

 

Therefore T is bounded on Br. Now for t1, t2   J 

and t1 < t2, using (2.3) we obtain  

 
Uy(t2, s) - Uy(t1, s) = Uy(t2, s)-Uy(t2-1, s) + Uy(t2-1, s)-      

                                      …….+Uy(t1+1, s)-Uy(t1, s) 

                            ),())(,( =
12

1
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tw






(3.2)   

By (H1), (H3) - (H5) and (3.2) we have   

 

||Ty(t2)-Ty(t1)|| ≤ ||Uy(t2, 0) - Uy(t1, 0)||(||y0||+L)+ 
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             ≤r1M(||y0||+L)(t2-t1)+r1MKN(t2-t1)+MK(t2-t1) 

              

              = M[r1(||y0||+L)+K(r1N+1)](t2-t1) 

              

                ≤ K1(t2-t1), 

for some K1. Hence T(Br) is an equicontinuous 

family of functions. Therefore by the Ascoli-Arzela 

theorem, T(Br) is relatively compact. 

Now we prove that the set 
Ω = {y C(J, E) : λy = T(y), for some λ >1} 

is bounded. Let y   Ω , then  λy = T(y) for some λ > 

1. Therefore, 
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By (H3)-(H5), for each t    J, we have 
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            ≤ M(||y0|| + L + KN). 

Therefore, ||y|| = sup{||y(t)|| : t  J} ≤ K2 for some K2 

> 0. This shows that Ω is bounded. Set X = C(J, E). 

As a consequence of Lemma 3.1, we deduce that T 

has a fixed point which is a mild solution of (1.1)-

(1.2).  
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