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ABSTRACT 
In the present paper we will find some 

results concerning fixed point and common 

fixed point theorems in Hilbert spaces for 

rational expression, which will satisfy the well 

known results. 
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INTRODUCTION 
PaSndhare and Waghmode [3] proved the 

following result in Hilbert space The study of 

properties and application of fixed point of various 

type of contractive mapping in Hilbert spaces  were 

obtained among others by Browder, F.E.,and 

Petryshyn [1], Hicks,T.L. and Huffman,Ed.W’[2], 

Huffman[3],Koparde and Waghmode[4], Smita 

Nair and Shalu Shrivastava[5,6].In this paper we 

present a common fixed point theorem involingself 

mapping.  

The study of properties and applications of 

fixed point of various type of contractive mapping 

in also Banach spaces were obtained among others 

by Browder, F.E.[7], Browder, F.E.,and Petryshyn, 

W.V.[8]. 

Theorem A Let C be a close subset of  

Hilbert spaceX and let T be a self         

  mapping on C satisfying. 
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  For all x,yєC, x y,0 < b, 0 <1 

and 2a+b<1. 

  Then T has a unique fixed point. 

 In the present paper , we first extend 

Theorem A as follows: 

Theorem3.1Let C be a closed subset of Hilbert 

space X and T be a mapping on   

 X into it self satisfying  
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  For all x,y in X where α,β,γ and δ 

are non-negative real with   

 α+β+γ+4δ<1.Then T has a unique fixed 

point in X. 

Proof : Let x0єC and arbitrary we define a 

sequence {xn} as follows: 

  x1=Tx0, x2=Tx1= 𝑇2x0….xn=Txn-

1=𝑇
𝑛x0, xn+1=Txn=𝑇

𝑛+1x0 

  If for some n,xn+1=xn,then it 

immediately follows xn is a fixed   

     point of  T, i.e.Txn=xn 

  We suppose that xn+1≠xn for 

every n=0,1,2…..,Then appling (3.1.1),  

  We have for all n≥1 
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 Proceeding in this way, we obtain 

   10 xxk n 
 

 n=1,2,…….. 

  
Where  α+β+γ+2η<1,  

 because  k < 1 
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 Hence for any positive integer p, 
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in  0<k<1 

  
Thus   

0  pnn xx
        as 

n
. 

Therefore {xn} is a Cauchy sequence in 

C. Since C is a closed subset of a Hilbert space X 

,there exists an element u Є C which is the limit of 

{xn}. 
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Now, further we have, 
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Letting   n→∞, so  that  xn-1,xn→u, we get 

2
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This  implies   u= Tu,     since     β<1  

If  follows that u is a fixed point of T. We now show that u is unique , 

For that let v є C another common fixed point T such that   uv  , then 
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 This implies
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Remark: On taking α=β=a, γ=b, and δ=0, η=0 in theorem 1, we get 

theorem A. 
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