P.M.Sitharselvam , T.Priya, T.Ramachandran/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue4, July-August 2012, pp.1286-1289 Anti Q-Fuzzy KU - Ideals In KU- Algebras And Its Lower Level Cuts

¹P.M.Sitharselvam , ²T.Priya, ³T.Ramachandran

 ^{1,2}Department of Mathematics, PSNA College of Engineering and Technology, Dindigul-624 622, Tamilnadu, India.
 ³Department of Mathematics, Government Arts College(Autonomous), Karur– 639 005, Tamilnadu, India

Abstract

In this paper, we introduce the concept of Anti Q-fuzzy KU-ideals of KU-algebras, lower level cuts of a fuzzy set and prove some results. We show that a Q-fuzzy set of a KU-algebra is a KU-ideal if and only if the complement of this Q-fuzzy set is an anti Q-fuzzy KU-ideal. Also we discussed few results of Anti Q-fuzzy subalgebras of KU-algebra.

Keywords:- KU-algebra, fuzzy KU- ideal, Anti Q-fuzzy KU-ideal, Q-fuzzy subalgebra, Anti Q-fuzzy subalgebra, lower level cuts.

AMS Subject Classification (2000): 20N25, 03E72, 03F055, 06F35, 03G25.

1.Introduction

Y.Imai and K.Iseki introduced two classes of abstract algebras : BCK-algebras and BCI algebras [6,7]. It is known that the class of BCKalgebras is a proper subclass of the class of BCIalgebras. Q.P.Hu and X .Li introduced a wide class of abstract BCH-algebras[4,5]. They have shown that it is the class of BCI-algebras. J.Neggers, S.S.Ahn and H.S.Kim introduced Q-algebras which is generalization of BCK / BCI algebras and obtained several results[10].W.A.Dudek and Y.B.Jun studied fuzzy ideals and several fuzzy structures in BCCalgebras are considered [2,3]. C.Prabpayak and U.Leerawat introduced a new algebraic structure which is called KU-algebras and investigated some properties[11].Samy M.Mostafa and Mokthar A. Abdel Naby introduced fuzzy KU-ideals in KUalgebras[14].R.Biswas introduced the concept of Anti fuzzy subgroups of groups[1]. Modifying his idea, in this paper we apply the idea of KU-algebras. We introduce the notion of Anti Q-fuzzy KU-ideals of KU-algebras and Anti Q-fuzzy subalgebras of KUalgebras.

2. Preliminaries

In this section we site the fundamental definitions that will be used in the sequel.

Definition 2.1[11]

A non empty set X with a constant 0 and a binary operation * is called a KU-algebra if it satisfies the following axioms.

1. (x * y) *[(y * z) * (x * z)] = 0

2. 0 * x = x

3. x * 0 = 0

4. x * y = 0 = y * x implies x = y, for all $x, y, z \in X$.

In X we can define a binary operation \leq by $x \leq y$ if and only if y * x = 0. Then (X,*,0) is a KU-algebra if and only if it satisfies that i. $(y * z) * (x * z) \leq (x * y)$

ii. $0 \le x$

iii. $x \le y$, $y \le x$ implies x = y. iv. $x \le y$ if and only if y * x = 0, for all x, y, $z \in X$.

In a KU-algebra, the following identities are true[14]: 1. z * z = 0.

2. z * (x * z) = 03. $x \le y \implies y * z \le x * z$ 4. z * (y * x) = y * (z * x)5. y * [(y * x) * x] = 0, for all x, y, $z \in X$. Example 2.1

Let $X = \{0, a, b, c, d\}$ be a set with a binary operation * defined by the following table

*	0	a	b	с	d
0	0	a	b	с	d
a	0	0	b	с	d
b	0	a	0	С	с
с	0	0	b	0	b
d	0	0	0	0	0

Then Clearly (X, *, 0) is a KU-algebra.

Definition 2.2 [11]

Let (X, *, 0) be a KU-algebra. A non empty subset I of X is called KU- ideal of X if it satisfies the following conditions

```
(1) \qquad 0 \in \mathbf{I}
```

(2) $x^*(y^*z) \in I \text{ and } y \in I \Rightarrow x^*z \in I$ for all $x, y, z \in X$.

Remark: From Example 2.1, It is clear that $I_1 = \{0,a\}$ and $I_2 = \{0,a,b\}$ are KU-ideals of X.

Definition 2.3 [16]

Let X be a non-empty set. A fuzzy subset μ of the set X is a mapping $\mu : X \rightarrow [0, 1]$.

Definition 2.4 [8,9]

Let Q and G be any two sets. A mapping β : G x Q \rightarrow [0, 1] is called a Q –fuzzy set in G.

P.M.Sitharselvam, T.Priya, T.Ramachandran/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue4, July-Augus

Definition 2.5

A Q- fuzzy set μ in X is called a Q-fuzzy KU- ideal of X if

(i) $\mu(0,q) \ge \mu(x,q)$

(ii) $\mu(x^* z, q) \ge \min\{\mu(x^*(y^* z), q), \mu(y, q)\},\$ for all $x, y, z \in X$ and $q \in Q$.

Definition 2.6 [9]

If μ be a Q-fuzzy set in set X then the complement denoted by μ^{c} is the Q-fuzzy subset of X given by $\mu^{c}(x,q) = 1 - \mu(x,q)$, for all $x, y \in X$ and $q \in Q$.

3.ANTI Q-FUZZY KU-IDEALS Definition 3.1

A Q-fuzzy set µ of a KU-algebra X is called an anti Q-fuzzy KU-ideal of X, if

(i) $\mu(0,q) \leq \mu(x,q)$

(ii) $\mu(x * z,q) \le \max \{ \mu((x * (y * z)), q), \mu(y, q) \},\$ for all $x, y, z \in X$ and $q \in Q$.

Example 3.1

Let $X = \{0, 1, 2, 3, 4\}$ be a set with a binary operation * defined by the following table

*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	2	4
2	0	0	0	1	4
3	0	0	0	0	4
4	0	0	0	1	0

Then Clearly (X, *, 0) is a KU-algebra.

Let $t_0, t_1, t_2 \in [0, 1]$ be such that $t_0 < t_1 < t_2$. Define a Q- **Proof:** fuzzy set μ : X x Q \rightarrow [0, 1] by $\mu(0,q) = t_0, \mu(1,q) = t$ $\mu(2,q), \mu(3,q) = t_2 = \mu(4,q)$, by routine calculations μ an anti Q-fuzzy KU- ideal of X where $q \in Q$.

Theorem 3.1

Every Anti Q-fuzzy KU- ideal µ of a KUalgebra X is order preserving.

Proof

Let µ be an anti Q-fuzzy KU- ideal of a KUalgebra X and let x, $y \in X$ and $q \in Q$.

Then $\mu(x,q) = \mu (0 * x, q)$

$$\leq \max \{ \mu (0 * (y * x), q), \mu (y,q) \} \\ = \max \{ \mu (0 * 0, q), \mu (y,q) \}$$

 $= \mu (y,q)$

 $\mu(\mathbf{x},\mathbf{q}) \leq \mu(\mathbf{y},\mathbf{q}).$

Theorem 3.2

μ is a Q-fuzzy KU-ideal of a KU-algebra X if and only if μ^{c} is an anti Q-fuzzy KU-ideal of X. **Proof**:

Let μ be a Q-fuzzy KU- ideal of X and let x , y , z \in X and $q \in Q$.

$$\begin{array}{ll} (i) & \mu^c(0,q) = 1 \, - \, \mu(0,q) \\ & \leq 1 \, - \, \mu \, (\, x,q) \\ & = \, \mu^c \, (\, x,q) \\ \end{array} \\ That \mbox{ is } \mu^c(0,q) \leq \, \mu^c \, (\, x,q) \; . \end{array}$$

(ii) μ^{c} (x * z, q) = 1 - μ (x * z, q)

$$\leq 1 - \min \{ \mu (x * (y * z), q), \mu (y, q) \}$$

$$= 1 - \min\{1 - \mu^{c}(x * (y * z), q), 1 - \mu^{c}(y,q)\}$$

= max {
$$\mu^{c}$$
 (x * (y * z) , q) , μ^{c} (y , q) }

That is,

 $\mu^{c}(x * z, q) \le \max \{ \mu^{c}(x * (y * z), q), \mu^{c}(y, q) \}.$ Thus μ^{c} is an anti Q-fuzzy KU-ideal of X. The converse also can be proved similarly.

Theorem 3.3

Let µ be an anti O-fuzzy KU-ideal of KU – algebra X. If the inequality $x * y \le z$, then $\mu(y,q) \leq \max{\{\mu(x,q),\mu(y,q)\}}$ for all $x,y,z \in X$ and $q \in Q$.

Proof:

Assume that the inequality $x * y \le z$ for all $x, y, z \in X$ and $q \in Q$. Then $z^*(x^*y) = 0$.

Now, $\mu(y,q) = \mu(0 * y,q)$

 $\leq \max \{ \mu (0 * (x * y), q), \mu (x,q) \}$

- = max { μ (x * y,q), μ (x,q)}
- $\leq \max\{\max\{\mu(x * (z * y), q), \mu(z, q)\}, \mu(x,q)\}$
- $= \max\{\max\{\mu (z * (x * y), q), \mu(z, q)\}, \mu(x,q)\}$
- = max { max { μ (0, q), μ (z, q)}, μ (x,q)}
- $= \max \{ \mu(z,q) \}, \mu(x,q) \}$

 $\therefore \mu(\mathbf{y},\mathbf{q}) \leq \max \{\mu(\mathbf{x},\mathbf{q}),\mu(\mathbf{y},\mathbf{q})\}.$

Theorem 3.4

If µ is an anti Q-fuzzy KU-ideal of KUalgebra X, then for all $x, y \in X$ and $q \in Q$, μ (x * (x * y), q) $\leq \mu$ (y, q)

Let x, y ∈ X and q ∈ Q.
is
$$\mu$$
 (x*(x*y),q) ≤ max{ μ (x* (y*(x * y)), q), μ (y, q) }
= max { μ (x * (x * (y * y)), q), μ (y, q) }
= max { μ (x * (x * 0), q), μ (y, q) }
= max { μ (x * 0, q), μ (y, q) }
= max { μ (0, q), μ (y, q) }
= μ (y,q)
 $\therefore \mu$ (x * (x * y), q) ≤ μ (y, q)

4.LOWER LEVEL CUTS IN ANTI Q-**FUZZY KU-IDEALS OF KU-ALGEBRA**

Definition 4.1 [12]

Let μ be a Q-fuzzy set of X. For a fixed t \in [0, 1], the set $\mu^t = \{x \in X \mid \mu(x,q) \le t \text{ for all } q \in Q\}$ is called the lower level subset of u. Clearly $\mu^t \cup \mu_t = X$ for $t \in [0,1]$ if $t_1 < t_2$, then $\mu^{t_1} \subset \mu^{t_2}$.

Theorem 4.1

If µ is an anti Q-fuzzy KU-ideal of KUalgebra X,then μ^t is an KU-ideal of X for every $t \in [0,1]$.

Proof

Let µ be an anti Q-fuzzy KU-ideal of KUalgebra X.

(i) Let $x \in \mu^t \implies \mu(x, q) \le t$.

 $\mu(0,q) = \mu (y * 0, q)$

P.M.Sitharselvam, T.Priya, T.Ramachandran/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue4, July-August 2012, pp.1286-1289

 $\leq \max \{ \mu (y * (x * 0),q), \mu(x,q) \}$ $= \max \{ \mu (y * 0),q), \mu(x,q) \}$ $= \max \{ \mu (0),q), \mu(x,q) \}$ $= \mu(x,q) \leq t.$

$$\Rightarrow 0 \in \mu^{t}$$
.

(ii) Let $x * (y * z) \in \mu^t$ and $y \in \mu^t$, for all $x,y,z \in X$ and $q \in Q$.

 $\Rightarrow \mu (x * (y * z), q) \le t \text{ and } \mu (y, q) \le t.$

 $\mu ((x * z),q) \le \max \{ \mu ((x * (y * z)), q), \mu(y, q) \} \\ \le \max \{t,t\} = t.$

 \Rightarrow x * z $\in \mu^{t}$.

Hence μ^t is an KU- ideal of X for every $t \in [0,1]$.

Theorem 4.2

Let μ be a Q-fuzzy set of KU- algebra X.If for each $t \in [0,1]$, the lower level cut μ^t is an KUideal of X, then μ is an anti Q- fuzzy KU-ideal of X.

Proof

Let μ^t be an KU-ideal of X.

If $\mu(0,q) > \mu(x,q)$ for some $x \in X$ and $q \in Q$. Then $\mu(0,q) > t_0 > \mu(x,q)$ by taking $t_0 = \frac{1}{2} \{ \mu(0,q) + \mu(x,q) \}$. Hence $0 \notin \mu^{t0}$ and $x \in \mu^{t0}$, which is a contradiction.

Therefore, $\mu(0,q) \le \mu(x,q)$. Let x,y,z \in X and q \in Q be

 $\mu((x^*z), q) > \max\{\mu(x^*(y^*z), q), \mu(y,q)\}$

Taking $t_1 = \frac{1}{2} \{ \mu((x * z), q) + \max \{ \mu (x * (y * z), q), \mu (y,q) \} \}$ and $\mu((x * z), q) > t_1 > \max \{ \mu (x * (y * z), q), \mu (y,q) \}$.

It follows that $(x * (y * z)), y \in \mu^{t1}$ and $x * z \notin \mu^{t1}$. This is a contradiction.

Hence $\mu((x * z), q) \le \max\{\mu(x * (y * z), q), \mu(y,q)\}$ Therefore μ is an anti Q-fuzzy KU-ideal of X.

Definition 4.2 [13]

Let X be an KU- algebra and $a,b \in X.We$ can define a set A(a,b) by A(a,b) ={ $x \in X / a^* (b^* x) = 0$ }. It is easy to see that $0,a,b \in A(a,b)$ for all $a,b \in X$.

Theorem 4.3

Let μ be a Q-fuzzy set in KU-algebra X.Then μ is an anti Q- fuzzy KU- ideal of X iff μ satisfies the following condition.

 $(\forall a, b \in X), (\forall t \in [0,1])$

$$(a, b) \in \mu^t \Rightarrow A(a, b) \subseteq \mu^t$$

Proof:

Assume that μ is an anti Q-fuzzy KU- ideal of X.

Let $a, b \in \mu^t$. Then $\mu(a,q) \le t$ and $\mu(b,q) \le t$. Let $x \in A(a,b)$. Then a * (b * x) = 0. Now, $\mu(x,q) = \mu(0 * x, q)$ $\le \max \{ \mu(0 * (b * x), q), \mu(b,q) \}$ $= \max \{ \mu((b * x), q), \mu(b,q) \}$ $\le \max \{ \max \{ \mu(b * (a * x), q), \mu(a,q) \}, \mu(b,q) \}$ $= \max \{ \max \{ \mu(a * (b * x), q), \mu(a,q) \}, \mu(b,q) \}$

= max { max {
$$\mu$$
 (0,q) , μ (a,q) } , μ (b,q) }

$$= \max \{ \mu (a,q) \}, \mu(b,q) \} \le \max \{ t, t \} = t$$

⇒
$$\mu(x,q) \le t$$
.
⇒ $x \in \mu^t$.
Therefore A(a,b) ⊆ μ^t .
Conversely suppose that A(a,b) ⊆ μ^t .
Obviously $0 \in A(a,b) \subseteq \mu^t$ for all $a,b \in X$.
Let $x,y,z \in X$ be such that $x * (y * z) \in \mu^t$ and $y \in \mu^t$.
Since $(x * (y * z)) * (y * (x * z)) = (x * (y * z)) *$
 $(x * (y * z)) = 0$.
We have $x * z \in A (x * (y * z), y) \subseteq \mu^t$.
∴ μ^t is an KU- ideal of X.
Hence,by theorem 4.2, μ is an anti Q-fuzzy KU-ideal of X.

Theorem 4.4

Let μ be a Q-fuzzy set in KU-algebra X.If μ is an anti Q-fuzzy KU-ideal of X then

$$(\forall t \in [0,1]) \mu^t \neq \emptyset \Rightarrow \mu^t = \bigcup_{a,b \in \mu^t} A(a,b).$$

Proof:

Let $t \in [0,1]$ be such that $\mu^t \neq \emptyset$. Since $0 \in \mu^t$, we have $\mu^t \subseteq \bigcup_{a \in \mu^t} A(a,0) \subseteq \bigcup_{a,b \in \mu^t} A(a,b)$. Now, let $x \in \bigcup_{a,b \in \mu^t} A(a,b)$. Then there exists $(u,v) \in \mu^t$ such that $x \in A(u,v) \subseteq \mu^t$

by theorem 4.3. Thus $\bigcup_{a,b \in \mu^t} A(a,b) \subseteq \mu^t$. $\therefore \mu^t = \bigcup_{a,b \in \mu^t} A(a,b).$

5.Anti Q- Fuzzy Sub algebra of KU algebra Definition 5.1 [11]

A nonempty subset S of a KU-algebra X is said to be KU-subalgebra of X, if x, $y \in S$ implies $x * y \in S$.

Definition 5.2

A Q-fuzzy set μ in a KU-algebra X is called a Q-fuzzy Subalgebra of X if $\mu(x * y, q) \ge \min{\{\mu(x * q), \mu(y, q)\}}$, for all $x, y \in X$ and $q \in Q$.

Definition 5.3 [15]

A Q-fuzzy set μ in a KU-algebra X is called an Anti Q-fuzzy sub algebra of X if $\mu(x * y, q) \le \max\{\mu(x, q), \mu(y, q)\}$, for all $x, y \in X$ and $q \in Q$. **Example 5.1**

From example 3.1, Let $t_0, t_1, t_2 \in [0, 1]$ be such that $t_0 < t_1 < t_2$. Define a Q-fuzzy set $\mu : X \times Q$ $\rightarrow [0, 1]$ by $\mu(0,q) = t_0$, $\mu(1,q) = t_1 = \mu(2,q)$, $\mu(3,q) = t_2 = \mu(4,q)$, By routine calculations μ is an anti Q-fuzzy subalgebra of X where $q \in Q$.

Theorem 5.1

 $\label{eq:general} \begin{array}{ll} If \ \mu \mbox{ is an anti } Q\mbox{-fuzzy sub algebra of a KU-algebra } X, \ \mbox{then } \mu(0,q) \leq \mu \ (z,q) \mbox{ , for any } z \in X \mbox{ and } q \\ \in Q. \end{array}$

Proof

Since z * z = 0 for any $x \in X$ and $q \in Q$, then $\mu(0, q) = \mu(z * z, q)$ $\leq \max \{\mu(z, q), \mu(z, q)\} = \mu(z,q)$

 $\therefore \mu(0,q) \leq \mu(z,q).$

P.M.Sitharselvam , T.Priya, T.Ramachandran/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue4, July-August 2012, pp.1286-1289

Theorem 5.2

A Q-fuzzy set μ of a KU– algebra X is an anti Q-fuzzy subalgebra if and only if for every $t \in [0,1]$, μ^{t} is either empty or a KU-sub algebra of X.

Proof:

Assume that μ is an anti Q-fuzzy sub algebra of X and $\mu^t \neq \phi$. Then for any $x, y \in \mu^t$ and $q \in Q$, we have $\mu(x * y, q) \leq \max \{\mu(x, q), \mu(y, q)\} \leq t$.

Therefore $x^*y \in \mu^t$. Hence μ^t is a KU-sub algebra of X. Now Assume that μ^t is a KU-sub algebra of X.

Then for any $x, y \in \mu^t$ implies $x^* y \in \mu^t$.

Take t = max { μ (x,q), μ (y,q)}.

Therefore $\mu(x * y,q) \le t = \max \{\mu(x,q), \mu(y,q)\}$. Hence μ is an Anti Q-fuzzy sub algebra of X.

Theorem 5.3

Any KU-sub algebra of a KU– algebra X can be realized as a level KU-sub algebra of some Anti Q-fuzzy sub algebra of X.

Proof:

Let A be a KU-sub algebra of a given KU – algebra X and let μ be a Q-fuzzy set in X defined by

 $\mu(\mathbf{x},\mathbf{q}) = \begin{cases} t, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$

where $t \in [0,1]$ is fixed and $q \in Q$. It is clear that $\mu^t = A$. Now we prove such defined μ is an anti Q-

fuzzy sub algebra of X.

Let $x, y \in X$. If $x, y \in A$, then $x * y \in A$.

Hence $\mu(x, q) = \mu(y, q) = \mu(x * y, q) = t$ and $\mu(x * y, q) \le \max\{\mu(x,q), \mu(y,q)\} = t$

If $x,y \notin A$, then $\mu(x,q) = \mu(y,q) = 0$ and $\mu(x * y) \le \max \{\mu(x), \mu(y)\} = 0$.

If at most one of $x, y \in A$, then at least one of $\mu(x,q)$ and $\mu(y,q)$ is equal to 0.

Therefore, $\max{\{\mu (x,q), \mu (y,q)\}} = 0$ so that $\mu(x * y) \le 0$, which completes the proof.

Theorem 5.4

Two lower level KU-sub algebras μ^s , μ^t (s< t) of an anti Q-fuzzy sub algebra are equal iff there is no $x \in X$ and $q \in Q$ such that $s \le \mu(x,q) \le t$.

Proof

Let $\mu^s = \mu^t$ for some s < t. If there exists $x \in X$ and $q \in Q$ such that $s \le \mu(x) < t$, then μ^t is a proper subset of μ^s , which is a contradiction.

Conversely, assume that there is no $x \in X$ and $q \in Q$ such that $s \le \mu(x,q) \le t$.

If $x \in \mu^s$, then $\mu(x,q) \le s$ and $\mu(x,q) \le t$.

Since $\mu(x,q)$ does not lie between s and t.

Thus $x\in\mu^t$, which gives $\mu^s\subseteq\mu^t$, Also $\mu^t\subseteq\mu^s.$ Therefore $\mu^s=\mu^t.$

Conclusion

In this article we have discussed anti Q-fuzzy KU- ideal of KU-algebras and its lower level cuts in detail. These concepts can further be generalized.

REFERENCES:

- [1] Biswas R., Fuzzy subgroups and Anti Fuzzy subgroups, Fuzzy sets and systems, 35 (1990),121-124.
- [2] Dudek W.A,On proper BCC-algebras,Bull. Inst.Math.Academia Sinica,20(1992),137-150.
- [3] Dudek W.A and Y.B.Jun, Fuzzification of ideals in BCC- algebras , Glasnik Matematicki, 36 ,(2001) , 127-138.
- [4] Hu Q.P. and X.Li,On BCH-algebras, Mathematics Seminar notes11(1983), 313-320.
- [5] Hu Q.P. and X.Li , On Proper BCH-algebras, Mathe Japonica 30(1985),659 – 661.
- [6] Iseki K. and S.Tanaka , An introduction to the theory of BCK – algebras , Math Japonica 23 (1978), 1- 20 .
- [7] Iseki K., On BCI-algebras , Math.Seminar Notes 8 (1980), 125-130.
- [8] Muthuraj R.,Sitharselvam P.M,Muthuraman M.S., Anti Q fuzzy group and its lower level subgroups, IJCA,3 (2010), 16-20.
- [9] Muthuraj R, Sridharan M., Sitharselvam P.M., M.S.Muthuraman, Anti Q- Fuzzy BGideals in BG-algebra, IJCA, 4 (2010), 27-31.
- [10] Neggers. J , S.S.Ahn and H.S.Kim , On Qalgebras, IJMMS 27(2001) , 749-757.
- [11] Prabpayak C. and Leerawat U., On Ideals and congurences in KU-algebras, Scientia Magna J.,5(1)(2009),54-57.
- [12] Ramachandran T., Priya T., Parimala M., Anti fuzzy T ideals of TM-algebras and its lower level cuts, International Journal of Computer Applications, volume 43(22),(2012),17-22.
- [13] Priya T.,Sithar Selvam P.M., Ramachandran T, Anti Fuzzy Ideals of CI- algebras and its lower level cuts, International journal of Mathematical archive, Communicated.
- [14] Samy M.Mostafa ,Mokthar A.Abd-Elnaby and Moustafa M.M.Yousef, Fuzzy ideals of KU- algebras, Int. Math. Forum, 6(63) , (2011), 3139-3149.
- [15] Sithar Selvam P.M.,Priya T.and Ramachandran T, Anti Fuzzy Subalgebras and Homomorphism of CI- algebras, International journal of Engineering Research & Technology, Accepted for publication.(july 2012,1(5))
- [16] Zadeh.L.A. , Fuzzy sets , Inform.control,8 (1965), 338 -353.