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Abstract:

In the present paper, theorem for osculatory
rational interpolation was shown to establish a
new criterion of interpolation and Routh model
reduction method for linear systems was
explained. On the basis of this conclusion a
practical algorithm was presented to get a
reduction model of the linear systems. A well-
known numerical example of the proposed
method is presented to illustrate the correctness
effectively.
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I.INTRODUCTION

The transfer function of frequency-domain in a
linear system is an expression method that describes
the system. In practical application, realistic models
are so high in dimension that a direct simulation or
design would be neither computationally desirable
nor physically possible in many cases. Hence, it is
significant to reduce the dimension of the system
(i.e., the order of transfer function) on the basis of
retaining the information of the original model of a
large extent. In recent decades, many methods [1-
5]had been introduced in scalar and interval systems.
The Pade approximation [6,7]was a classical method
among them, which made use of the series
expansion at zero of the original transfer function
G(s), namely it only used the information of each
order derivative with G(s) at zero. In the paper the
Pade approximation method will be extended to
osculatory rational interpolation. The denominator
polynomial of the reduced order model is obtained
from Routh table and the numerator polynomial is
obtained from theinterpolation method. This Pade
Approximation method can reduce the original
transfer function by taking advantage of the
information of each order derivative with the
transfer function G(s) at many other points.

This paper has six sections, in section Il, the basic
concept of Routh model reduction method is
explained. In section 111, theorem and algorithm of
interpolation method is discussed. In section 1V,
gives the further discussions of the present paper. In
section V, numerical example of the proposed
method is illustrated. Section VI gives the
conclusion.

I.LROUTH

METHOD
Let the transfer function of a higher order
system be represented by [6], [7]

G (s)= Dy +D;S+...+ Dk_lskk"l _D(s) |

€, +€S+.4+8S E(s)
Where D;, i=0,1,..., k-1 are constant | x r matrices,
and e;, i=0,1,..., k are scalar constants.

MODEL REDUCTION

@

Assume that the reduced model R (s) of order n is
required, and let it be of the form

n-1
R(s):D“(S): ,%+Als+...+,°:js 1 %)
E.(S) by+bs+..+b s +bs
where the A;, i=0,1,..., n -1 are constant | x r
matrices, and b;, i=0,1,...., n are scalar constants.

Algorithm 1

Step 1:The denominator E, (s) of reduced model
transfer function can be constructed from the Routh
Stability array of the denominator of the system
transfer function as follows.

The Routh stability array is formed by the following

bi—Z,lbi—l, j+l

b ;= bi—z,j+l -

L]

, (©)
(k—i+3)}
2

i-11

wherei>3and 1< j s{
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The routh table for the denominator of the system transfer pGd—ap=g(s) f (s).
function is given as

b,=e, Db,=e, by=e, Db,=e, .. Divide on the two sides of the above relation by qa
b=ty o=ty Du=tc  Dy=e, .. o get.

b b by, . p s)f(s f(s

. b, } [ELITCHONNIC

..... qa q aq ad

b, 1, by, Thus

by, d® (p) d%(p

D11 (4) ds (g )" ds™\ g

Si

b i=01...,n, k=01....,m -1
E, (s) may be easily constructed from the (k+1-n)

and (k+2—n)th rows of the above to give In the following proof we use the mathematical
induction. For k=0, obviously,

n
En (S)ZijSJ p(si)= ﬁ(si),

= 1 2 a(s;)  d(s)

=Bt n1S" +BeznsS" By 08" e () and it follows that

111, THEOREM AND ALGORITHMOF p(si)d(s;) - p(s)acs;) =0.
INTERPOLATION METHOD Hence

In this section we first prove a primary theorem and o B N W
then give a useful algorithm to reduce the linear system P4~ pg=(s—s;)fo(s).
models.

Where fy(s) is a polynomial.

Theorem 1 Let p/d, P/ be two rational fractions. And let Assume that it is true for k<n-1, that is,
q(s;) =0, §(s;)#0.then

d® (p d® (p
d® (E] d® (pj‘ ds® (a] 5T gg®) [aj y

) ST | A
ds* \ q ds k=01,...,n—1. (6)

q
i=0.1...n, k=01...m -1 Then pd — pg=(s-s;)" f,(s).

If and only if there exists a polynomial f(s), such that
Let a linear time-invariant system in the state-space

pgq—qp form [4] be
=[(s—5,)™(s—5,)™...(s=5,)™]1f () %(t) = AX(t) + Bu(t).
=g(s) f(s), {y(t) =Cx(t).
Where Where X,U and y are n-, m-, and r-dimensional
9(s) = (5-5) ™0 (5-81)™ L ....(s-8)™n state, control, and output vectors, respectively. Using

the Laplace transformation, the above system can be
A . represented in the frequency domain as

herep,gand P, are polynomials.

Y(s) =G(s)U (s),

Proof Let
G(s) =C(sl-A)*'B,
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Where G(s) is the (r x m) - dimensional transfer
function matrix whose elements are rational
functions of s, i.e.,

p(s) b, S"+..+by

G(s)=
q(s) a,s" +...+4a,

(7)

Which is a transfer function of the original system.
Now seek its reduction model

A - m-1 -
G(s)= ?(s) _ D, S" 4.+ Dy

A
as) g, s" +....+4,

(8)

m<n-1
that satisfies the following conditions
G (s)=G"(s)),

i
i=01...j, k=01..m -1 > m=2m

i=0

In terms of Theorem 1, it is equivalent to

(pd)™|, =(ap)™

g’
i=01...,j, k=04,.,m —1.
Now take the following steps respectively:

(1) Divided PG by g(s)=(s-S0)™ 0 (s-51)™1 " (s-
s)"ito get the quotient e(s) and the
remainder f(s).

(2) Divided PG by g(s)=(s-S0)™ 0 (s-1)™1 (s
s)"ito get the quotient I(s) and the
remainder h(s). It is held that

pa=g(s)e(s)+ f(s), )
qp=g(s)I(s) + h(s), (10)

Where both f(s) and h(s) are polynomials of degree
at most (2m-1).

Thus
(pa) ], = £ =P |, =h*[

j
i=01..,j, k=01.,m-1>m =2m

i=0
By using the basic theorem of algebra, it is obtained
that

f (s) = h(s). (11)

It is found that the coefficient of each term in
f(s) in (9) is the linear combination of 4, &,....,4,,
and the coefficient of each term in h(s) in (10) is the

linear combination of by,b,...,b,, ;.

By means of the relation (11), a linear system
with 2m+1 unknowns and 2m equations is formed.
Because the coefficients of a rational fraction as in
(8) have one dependent variable, without losing

generality, it can be assumed é.ozl. if the

coefficient matrix of the above linear system is
nonsingular, then its solution

A

60 , 61..., B, 1 8,..., &, can be uniquely determined
by using the Cramer rule.

On the basis of the above discussion an
algorithm to obtain the reduction model (8) will be
presented as follows.

Algorithm 2: Seek the coefficients of the reduction
model.

Step 1 Choose 2m points Sg,S1,..., Som-1,Si€c
(they can be multiple) and satisfy G(s;) #0,
then compute

9(8) =(5 =S )(S = 8,)---(S ~ o 1)
=(s=5p)™ (s—5)™...(s—5;)™

2m-1

=8 +0,, 48" +...+ 0,5+ 0,
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Step 2: Compute pq and ( P, respectively

PG = (D, 48" +.c+by) (@™ +..+8y)

m+n-1 0) m+n-2

=cl¥ +c s +o

m+n-1

s
+¢%s+ci?,
© _ 4
C0 - aObO !

0 _ 4 A
c,’ =a,b, +4ab,,

(0) _A4 A

Cm+n—2 _ambn—z + am—lbn—l’
0 _4

Cm+n—1 - ambn—l,

and

A n - m-1 "
gp=(a,s" +...+a,) (b, ;S +...+Dby)
_ A m-+n-1 (0) m-+n-2
=g =S +d;/ .S +...

+dVs+d S8

© _RK
do” =byay,

(0)

d m+n-2 m—lan~1 mAZan,
©  _RA

d m+n-1 — bm—1an.

Step 3: (1) Divide by g(s) to get f(s):

0 on-m-1 n-m-2

(o

R L o
§7 40, ST LGS HD, \/cﬁﬂ"jn,ls‘“*”'l +e gm0 400 )
(oS Gl et QoS
NV B L RNV
™. 9l 57
@ "tk
e

Thus get the recursive relations:

W = _c®

m+n—lgi+m—n+1,
i=01..,m+n-2,

(2) _ ~() )
G =G _Cm+n—29i+m—n+2,

i=01.. m+n-3

(3) _ ~(2) (2)
G =G _Cm+n—39i+m—n+3,

i=01.. m+n-4,

Ci(l) — Ci(l_l) —cUb

m-+n—| g i+m-n+l,

i=0,1,..., m+n-1 -1,

(n-m) _ ~(n—-m-1 (n-m-1)
Ci — o Nty
i=01..,2m-1,

When k <0, let g, =0. In the above the recursive
relations, the superscript n in Cf") represent
thecoefficientswhich are obtained after carrying out
the algorithm n steps, and the subscript i in Ci(”)

represents the corresponding degree about the
variables.

(2)Divide q p by g(s)to get h(s).

Step 4According to f(S)=h(s), get a linear
system with (2m+1) unknowns and 2m equations. let
a, =land solveBo....,Bmfl’ a,,...,a, by using
the Cramer rule.

IV.FURTHER DISCUSSION
(1) Stabilization

The above method can ensure the reduction model
stable. In order to produce the dominator
polynomial, the following famous method: the
retaining dominant poles will be introduced. Then its
numerator can be produced by using the above
method, and at this time, the number of points is

o(p)+1.

839 |Page



J.V.B.Jyothi, T.Narasimhulu / International Journal of Engineering Research and Applications

(IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.836-841

(2) Choice of the interpolation points

By the way, the above method is similar to the
classicalPade  approximation when all the
interpolation points are zeros, it only takes
advantage of information of G(s) at zero.

Usually, interpolation points chosen had
better reflect the features of the original model G(s)
well. According to experience, we can choose the
points which are located in the disk centered at the
origin with radius: the distance between origin and
the furthest poles; or besides some dominant poles;
or besides origin.

V. NUMERICAL EXAMPLE

In this section we give one numerical
example to illustrate algorithm 1
Example

For the interpolation points 0, 0.6,2, 3, and
6. Seek a reduction model of type [1/2] for

s* +13s° + 63s? +133s +102

G(s) =

Solution:

Routh method applying to the denominator

E(s) =s® +14.5s° +81s* + 223s® + 318s® + 212.55 + 50

Routh Table

s® 1 81 318 50
s° 14.5 223 212.5

s? 65.62 303.3 50

s? 155.9 201.2

s? 218.6 50

st 1655

s® 50

Thus the reduced order denominator is
E,(s) = 218.6s +165.55 + 50

Using algorithm 1 to get the numerator of reduced
order model
g(s) =s(s—0.6)(s—2)(s—3)(s—6)
=5(s% =95 +18)(s? —2.65 +1.2)
g(s) =s® —11.6s" + 42.6s° —57.65° + 21.6s

s® +14.5s5° +81s* + 223s® + 31852 + 212.55 + 50

PG = (s* +13s® + 635> + 1335 +102)(a,s° + &S + a,)

PG =a,s° +(133a, +a,)s’ +(63a, +133a, +a,)s* +(133a, + 63a, +1333,)s°
+(102a, +133a, +63a,)s” + (102a, +133a,)s +102a,

pg =cgs® +cis® +cyst +cos® +cos® +cls+cg

Pq = g(s)e(s) + f(s)

f(s) = pg—g(s)e(s)

f(s)=cis® +c;s* +c58° +c38° +cis+ ¢

f(s) = (133a, +a,)s’ + (74.6a, +133a, +a,)s*
+(90.4a, + 63a, +133a,)s® + (159.6a, +133a, + 63a,)s”
+ (1023, +133a, — 21.6a,)s+102a,
P = (s® +14.55° +81s* +223s® +318s> +212.55 +50)(b,s + b, )
qp =h,s” +(14.5b, +D,)s® + (81b, +14.5b,)s® + (223, +81h,)s*
+ (3180, +2230,)s* + (212.50, + 318, )s”
+ (500, +21.5b, )5 + 50D,
gp=dVs” +dgs® +dJs® +dys* +dJs® +dJs* +d)s+d]
ap = g(s)I(s) + h(s)
h(s) =ap —g(s)I(s)
h(s) =dgs® +dis® +d;s* +djs® +d;s* +d;s+d;
h(s) = (14.5b, +b, )s® + (14.5b, +80b,)s® + (810, + 234b,)s*
+(223b, +275.4b,)s® + (3180, + 270.1h,)s’
+(212.5h, + 28.4b,)s + 50D,
According to f(S) = h(S) the linear system

0 0 50 0 a, 102
-102 216 2125 284 |a, 133
—133 -159.6 318 270.1 | b, 63
-63 -904 223 2754 Db, 13

Is formed

Solve the systems to obtain the reduction model (see
fig.1)

0.665s + 2.04
218.6s> +165.55 + 50

Rz (s)=

The below figurel shows the simulation result of
comparison of step response for original and reduced
order transfer functions.
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Figl. Comparison of step response of original and
reduced order systems.

VI.CONCLUSION

In this paper, we have observed osculatory

rational interpolation to establish a new criterion of
interpolation. And the Routh model reduction was
introduced to obtain the denominator polynomial of
the reduced order transfer function. This Routh
method ensures the stability. This method is simple
and can be applied to practical control engineering.
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