
J.V.B.Jyothi, T.Narasimhulu / International Journal of Engineering Research and Applications 

(IJERA)      ISSN: 2248-9622 www.ijera.com 

Vol. 2, Issue 4, July-August 2012, pp.836-841 

836 | P a g e  

An Osculatory Rational Interpolation Method in Linear Systems 

by Using Routh Model 

*J.V.B.Jyothi     * T.Narasimhulu 
* Pursuing M. E (Control Systems), ANITS, Sangivalasa, Visakhapatnam – 531162, India. 

 

Abstract:  
In the present paper, theorem for osculatory 

rational interpolation was shown to establish a 

new criterion of interpolation and Routh model 

reduction method for linear systems was 

explained. On the basis of this conclusion a 

practical algorithm was presented to get a 

reduction model of the linear systems. A well-

known numerical example of the proposed 

method is presented to illustrate the correctness 

effectively. 
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I.INTRODUCTION 
The transfer function of frequency-domain in a 

linear system is an expression method that describes 

the system. In practical application, realistic models 

are so high in dimension that a direct simulation or 

design would be neither computationally desirable 

nor physically possible in many cases. Hence, it is 

significant to reduce the dimension of the system 

(i.e., the order of transfer function) on the basis of 

retaining the information of the original model of a 

large extent. In recent decades, many methods [1-

5]had been introduced in scalar and interval systems. 

The Pade approximation [6,7]was a classical method 

among them, which made use of the series 

expansion at zero of the original transfer function 

G(s), namely it only used the information of each 

order derivative with G(s) at zero. In the paper the 

Pade approximation method will be extended to 

osculatory rational interpolation. The denominator 

polynomial of the reduced order model is obtained 

from Routh table and the numerator polynomial is 

obtained from theinterpolation method. This Pade 

Approximation  method can reduce the original 

transfer function by taking advantage of the 

information of each order derivative with the 

transfer function G(s) at many other points. 

 

 

 

 

 

 

This paper has six sections, in section II, the basic 

concept of Routh model reduction method is 

explained. In section III, theorem and algorithm of 

interpolation method is discussed. In section IV, 

gives the further discussions of the present paper. In 

section V, numerical example of the proposed 

method is illustrated. Section VI gives the 

conclusion.   

II.ROUTH MODEL REDUCTION 

METHOD 
Let the transfer function of a higher order 

system be represented by [6], [7] 
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Where Di, i=0,1,…, k-1 are constant l x r matrices, 

and ei, i=0,1,…, k are scalar constants. 

Assume that the reduced model R (s) of order n is 

required, and let it be of the form 
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where the Ai, i=0,1,…, n  -1 are constant l x r 

matrices, and bi, i=0,1,…., n are scalar constants.  

Algorithm 1 

Step 1:The denominator En (s) of reduced model 

transfer function can be constructed from the Routh 

Stability array of the denominator of the system 

transfer function as follows.  

The Routh stability array is formed by the following 
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The routh table for the denominator of the system transfer 

function is given as 
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En (s) may be easily constructed from the (k+1-n)
th

and (k+2-n)
th

 rows of the above to give 
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III.THEOREM AND ALGORITHMOF 

INTERPOLATION METHOD 

 In this section we first prove a primary theorem and 

then give a useful algorithm to reduce the linear system 

models. 

Theorem 1 Let qpqp ˆ/ˆ,/ be two rational fractions. And let 

.0)(ˆ,0)(  ii sqsq then 

.1,.....,1.0,.....,1.0

ˆ

ˆ
)(

)(

)(

)(





















i

s

k

k

sk

k

mkni

q

p

ds

d

q

p

ds

d

i

i

 

If and only if there exists a polynomial f(s), such that  
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Where 

g(s) = (s-s0)
 m 0 (s-s1)

m 1 …(s-sn)
m n  

herep,q and qp ˆ,ˆ are polynomials. 

Proof Let 
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In the following proof we use the mathematical 

induction. For k=0, obviously, 
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Where f0(s) is a polynomial. 

Assume that it is true for k<n-1, that is, 
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Let a linear time-invariant system in the state-space 

form [4] be 
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Where ux,  and y are n-, m-, and r-dimensional 

state, control, and output vectors, respectively. Using 

the Laplace transformation, the above system can be 

represented in the frequency domain as 
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Where G(s) is the (r x m) - dimensional transfer 

function matrix whose elements are rational 

functions of s, i.e., 
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Which is a transfer function of the original system. 

Now seek its reduction model  
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that satisfies the following conditions 
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In terms of Theorem 1, it is equivalent to  
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(s-

sj)
m j to get the quotient e(s) and the 

remainder f(s). 

(2) Divided qp ˆ by g(s)=(s-s0)
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m
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…
(s-
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m j to get the quotient l (s) and the 

remainder h(s). It is held that 
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Where both f(s) and h(s) are polynomials of degree 

at most (2m-1). 
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that 
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It is found that the coefficient of each term in 

f(s) in (9) is the linear combination of maaa ˆ....,ˆˆ
1,0

and the coefficient of each term in h(s) in (10) is the 

linear combination of .ˆ...,ˆ,ˆ
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 By means of the relation (11), a linear system 

with 2m+1 unknowns and 2m equations is formed. 

Because the coefficients of a rational fraction as in 

(8) have one dependent variable, without losing 

generality, it can be assumed .1ˆ
0 a  if the 

coefficient matrix of the above linear system is 

nonsingular, then its solution 

mm aabbb ˆ...,ˆ,ˆ...,ˆ,ˆ
1110  can be uniquely determined 

by using the Cramer rule.  

On the basis of the above discussion an 

algorithm to obtain the reduction model (8) will be 

presented as follows. 

Algorithm 2: Seek the coefficients of the reduction 

model. 

Step 1 Choose 2m points s0,s1,…, s2m-1,siC 

(they can be multiple) and satisfy G(si)  0, 

then compute 
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Step 2: Compute p


q and 


pq , respectively 
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Step 3: (1) Divide  by g(s) to get f(s): 
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Thus get the recursive relations: 
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When k <0, let g k =0. In the above the recursive 

relations, the superscript n in c
n

i

)(  represent 

thecoefficientswhich are obtained after carrying out 

the algorithm n steps, and the subscript i in 
)(n

ic

represents the corresponding degree about the 

variables. 

(2)Divide ).()( shgettosgbypq


 

Step 4According to ),()( shsf  get a linear 

system with (2m+1) unknowns and 2m equations. let

mm aabbsolveanda ˆ,...,ˆˆ....,ˆ1ˆ
1,100  by using 

the Cramer rule. 

IV.FURTHER DISCUSSION 

(1) Stabilization  

The above method can ensure the reduction model 

stable. In order to produce the dominator 

polynomial, the following famous method: the 

retaining dominant poles will be introduced. Then its 

numerator can be produced by using the above 

method, and at this time, the number of points is 

.1)ˆ(  p  
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(2) Choice of the interpolation points 

By the way, the above method is similar to the 

classicalPade approximation when all the 

interpolation points are zeros, it only takes 

advantage of information of G(s) at zero. 

Usually, interpolation points chosen had 

better  reflect the features of the original model G(s) 

well. According to experience, we can choose the 

points which are located in the disk centered at the 

origin with radius: the distance between origin and 

the furthest poles; or besides some dominant poles; 

or besides origin. 

V. NUMERICAL EXAMPLE 
In this section we give one numerical 

example to illustrate algorithm 1  

Example        
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Thus the reduced order denominator is 
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Solve the systems to obtain the reduction model (see 

fig.1) 
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The below figure1 shows the simulation result of 

comparison of step response for original and reduced 

order transfer functions. 
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Fig1. Comparison of step response of original and 

reduced order systems. 

VI.CONCLUSION 
In this paper, we have observed osculatory 

rational interpolation to establish a new criterion of 

interpolation. And the Routh model reduction was 

introduced to obtain the denominator polynomial of 

the reduced order transfer function. This Routh 

method ensures the stability. This method is simple 

and can be applied to practical control engineering. 
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