
Abhilasha Gupta, B.V.R. Reddy, Udayan Ghosh, Ashish Khanna / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.019-026

19 | P a g e

A Permission-based Clustering Mutual Exclusion Algorithm for

Mobile Ad-Hoc Networks

Abhilasha Gupta*, B.V.R. Reddy **, Udayan Ghosh***, Ashish Khanna****
*, **, *** (University School of Information Technology, Guru Gobind Singh Inderprastha University, New Delhi)

 **** (M.A.I.T, Guru Gobind Singh Inderprastha University, New Delhi)

ABSTRACT
In the last ten years a lot of research has

been done on resource allocation in Ad-hoc

networks. The Classical approaches of mutual

exclusion and its variants need to be modified to

suit the dynamic topology, low bandwidth and low

processing capabilities of mobile ad-hoc network

(MANET).The distributed mutual exclusion in

MANETs is comparatively less explored area of

research. In this paper, we propose a new

approach for mutual exclusion in MANETs which

is based on clustering and the concept of weight

throwing. The algorithm uses cluster based

hierarchal approach which also helps in reducing

the message complexity of the algorithm.

Keywords - Ad-hoc network, Clustering, Critical

Section, Mutual Exclusion (MUTEX), Voting

1. Introduction

A mobile ad- hoc networks is a network

which has no fixed infrastructure and is combination

of mobile nodes and some immobile infrastructure.

Ad-hoc network has dynamic topology. Nodes in ad-

hoc system can communicate directly only with the

nodes that are immediately within their transmission

range. To communicate with the other nodes, an

intermediate node is required to forward the packet

from the source to the destination. Therefore, in ad

hoc system, nodes are required to cooperate in order

to maintain connectivity and each node may act as a

router in routing data through the network.

Commonly suggested applications for MANETs

include disaster management, Battlefields, and

environmental data collection. Although lots of

hardware challenges have been solved, programming

application for MANETs remains a tedious task.

The resource allocation problem is one of the most

important problems in MANETs. However, according

to Badrinath-Acharya-Imelinski [1], due to the special

characteristics of mobile computing environment, the

algorithms proposed for static distributed systems

needs to be modified before these can be applied in

mobile computing environment. For that purpose,

they proposed two-tier principle to restructure the

distributed algorithms to make them suitable for

mobile environment. Moreover, MANETs are an

important class of mobile computing systems and

because of its infrastructure less nature two-tier

principal cannot be applied directly to MANETs.

Hence, the algorithms required to solve a resource

allocation problem in MANETs, has to be designed

considering the special characteristics of MANETs.

 Mutual exclusion (MUTEX) is a fundamental

problem in distributed systems, where collections of

nodes intermittently need entering the Critical Section

(CS) in order to exclusively process few critical

operations, e.g. accessing the shared resource. A

solution to the MUTEX problem must satisfy the

following three correctness properties:

(i) Mutual Exclusion (safety): No two processes can

be inside their CS simultaneously.

(ii) Deadlock Free (liveness): At any point of time, at

least one node able to take an action and enter CS.

(iii) Starvation Free (Fairness): Every node wanting

to enter CS must eventually be able to enter CS.

The performance of a mutual exclusion (ME)

algorithm can be judged based upon various

performance parameters like Waiting time,

Synchronization delay, Message complexity,

Message size [2].

Permission-based algorithms [3] need cycles of

message exchange among the nodes to get the

permission to enter CS. The main concept on which

permission-based algorithms are based is as follows:

When a process wants to execute its CS, it sends

request to other nodes for their permission. A process

on getting a request, it grants permission if it is not

interested in CS. If it is interested in CS, the priority

of the incoming request is located against its own

request. Commonly, priority decisions totally depend

upon the timestamps. Total ordering of events is done

with the help of Lamport’s [4] logical clocks for

having clear time difference between the request time

Abhilasha Gupta, B.V.R. Reddy, Udayan Ghosh, Ashish Khanna / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.019-026

20 | P a g e

stamps. Permission-based algorithms can be further

classified into coterie-based algorithms and voting-

based algorithms. In voting-based algorithms, each

node in the current system is allocated a vote (a

nonnegative integer). A node wanting access to CS

must get permission from a suitable number of nodes,

i.e., a number of nodes whose total votes comprises a

majority of the total number of votes allocated to the

system. In coterie-based algorithms, a group of sets

(of the nodes of the system), called a coterie, is pin to

the system. A node wanting access to CS must get

permission from each and every node of a set from

the coterie. Each of these two categories may further

be classified into static and dynamic algorithms .The

paper [5] is proposed for solving the Group mutual

exclusion (GME) by using clustering concept. In [6]

[7], R.Mellier et J-F. Myoupo and Stefano Basagni

have presented a MUTEX protocol for MANETs

which takes advantages of the cluster structure

offered by the partitioning techniques.

This paper is organized as follow: the section 2

discusses related work and the basic idea of

clustering concept. Section 3 presents our proposed

algorithm & its pseudo code. We prove the algorithm

correctness in section 4. Section 5 gives the

performance analysis of proposed algorithm.

Conclusion and future work are offered in section 6.

.2. Related work
The origin of the mutual exclusion problem

can be traced back to 1965 when Dijkstra [8]

described and solved the mutual exclusion problem.

Dijkstra stated that any solution to the mutual

exclusion problem must satisfy 4 constraints.

Dijkstra’s algorithm guaranteed mutual exclusion and

was deadlock- free, but it did not guarantee fairness.

That is, it was possible that a process seeking access

to its critical section waited indefinitely while others

entered and exited their critical sections frequently.

Knuth [9] proposed the first fair solution to the

mutual exclusion problem. Thereafter, a number of

algorithms were proposed which guaranteed mutual

exclusion and were deadlock- free and fair. Each of

these algorithms aimed at improving performance in

terms of synchronization delay, the period of time

between the instant a site invokes mutual exclusion

and the instant when it enters CS. Some of these

algorithms are De Bruijns’s algorithm [10],

Eisenberg and McGuire’s algorithm [11] and

Peterson’s algorithm [12]. All these algorithms were

designed for the centralized systems, the systems

possessing a central memory that all processes can

access simultaneously for reading and writing.

A number of DME algorithms have been developed,

all aiming at enhanced performance with respect to

one performance metric or the other. Based on the

technique used, DME algorithms can be classified as

token based algorithms and permission-based

algorithms as suggested by Raynal [13], or as token-

based algorithms and non-token-based algorithms as

suggested by Singhal [14].In token-based algorithms,

a token is passed among all the nodes. A node is

allowed to enter the CS only if it possesses the token.

In a permission-based algorithm, the node requesting

for the CS must first obtain the permissions from

other nodes by exchanging messages. Some examples

of token-based algorithms are Helary et al.’s [15] and

Suzuki and Kasami’s [16] algorithms (broadcast

based, static), Singhal’s [17] and Yan et al.’s [18]

algorithms (broadcast-based, dynamic), Raymond’s

[19] and Neilson and Mizuno’s [20] algorithms

(logical structure-based, static) and Chang et al.’s

[21], Helary et al.’s [22] and Naimi et al.’s [23]

algorithms (logical structure-based, dynamic).

During the past several years, algorithms for solving

the mutual exclusion problem in MANETs have been

proposed. The entire algorithm makes use of a token

circulated along a logical ring or passed in a logical

tree consisting of all the nodes.

A token-based mutual exclusion algorithm, named

RL (Reverse link) [24], for ad-hoc network is

proposed. In the RL algorithm, when a node wishes

to access the shared resource, it sends a request

message along one of the communication link. The

RL algorithm totally orders nodes so that the lowest

ordered node is always the token holder. The

algorithm guarantees the safety and liveness property.

But it did not guarantee the network partitioning.

Malpani et al [25] proposed a parametric token based

algorithm with many variations. In the algorithm, a

dynamic logical ring is imposed on the nodes the

successor of a node in the ring is computed on- the-

fly.

Weigang Wu et al [26] proposed the first permission-

based MUTEX algorithm for MANETs. In order to

reduce the message cost, the algorithm uses the so

called”look-ahead” technique, which enforces

MUTEX only among the hosts currently competing

for the critical section (C.S). The algorithm is based

on the well-known Ricart-Agrawala algorithm [27] in

which, when a nodes wants to enter CS, it sends a

request to all the other nodes to collect permissions.

Several MUTEX algorithms for MANETs have been

proposed and nearly all of them use the token- based

approach [28] [29] [25] [30]. Compared with the

permission-based approach [26], the token-based

approach has many desirable features, e.g. nodes only

need to keep the information about their neighbors

and few messages are needed to pass the privilege of

entering CS. Both token-circulating (ring-based) and

token-asking (tree-based or graph-based) approaches

Abhilasha Gupta, B.V.R. Reddy, Udayan Ghosh, Ashish Khanna / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.019-026

21 | P a g e

have been used in MUTEX algorithm for MANETS.

The fatal problem of token loss makes these

algorithms not robust. In MANETs, the mobility and

disconnections of nodes make token loss a more

serious problem and the maintenance of a tree or ring

topology more difficult.

Compared with the token-based approach, permission

based algorithm have the following advantages:-

 There is no need to maintain the logical

topology to pass the token.

 There is no need to propagate any message

if no node request to enter CS.

These advantages make the permission-based

approach will suitable for MANETs where all the

resources, e.g. the network bandwidth and the battery

power of the nodes are limited.

A problem of the permission-based approach is the

large number of message to be exchanged between

the nodes. Therefore to design a efficient permission-

based algorithm , we use the “clustering concept”, in

which only clusterleader of the respective cluster is

responsible for taking & giving the permission to

enter the CS, which reduce the number of message

exchanged among the clusterleaders.

2.1Clustering Concept

Partitioning the nodes in to cluster is called

clustering. In addition, clustering is crucial for

managing the spatial reuse of the shared channel, for

reducing the amount of data to be exchanged in order

to maintain routing and control information in a

mobile environment, as well as for constructing and

maintaining cluster-based virtual network

architecture. In existing solutions for clustering of ad-

hoc networks [5], the clustering is performed in two

phases: clustering initialization and clustering

maintenance. Each cluster comprises clusterleader

and in-range nodes (direct communicates with its

own clusterleader).A clustering algorithm is required

to partition the nodes of the network so that the

following ad-hoc clustering properties are satisfied:

I. Every in-range node has at least a

clusterleader as neighbor (dominance

property).

II. Every in-range node affiliates with the

neighboring clusterleader that has the bigger

weight.

III. No two clusterleader can be neighbors

(independence property)

Election of clusterleader depends either on the basis

of lower id or on the basis of weight. Weight based

criteria is better way of deciding clusterleader rather

than deciding it on the basis of lower id. The heavier

the weight of a node, the better that node for the role

of clusterleader [5].The main benefit of this approach

is that, by representing with the weights mobility-

related parameters of the nodes, we can pick for the

role of clusterleader those nodes that are better suited

for that role. For instance, when the weight of a node

is inversely proportional to its speed, the less mobile

nodes are confirmed to be clusterleader. Since these

nodes either do not moves or move lesser than the

other nodes, their cluster is guaranteed to have a

durable life, and consequently the overhead attached

with the cluster maintenance in the mobile

environment is reduced.

2.2 Initialization of clusters

 Initially out of all nodes heaviest weight node is

chosen, after which nodes in direct range of that node

forms a cluster and this process is repeated till all

nodes are part of any cluster.

3. ALGORITHM
The algorithm is assumed to execute in a

system consisting of n nodes and m clusters, each

cluster contains one clusterleader. Nodes are labeled

as 0, 1…….n-1, and clusterleaders are labeled as 0,

1……m-1. We assume there is a unique time-stamp

generated with every “Req_CS” message by node i.

3.1 Assumptions

This algorithm takes the following assumptions on

the mobile nodes and clusters.

 All nodes have unique ids.

 No new cluster will be formed after

initialization.

 A link level protocol ensures that each node

is aware of the set of nodes with which it

can currently communicate by providing

indications of link formation and failures.

 Global synchronize clock is maintained on

each node.

 Each node has inbuilt singleton vote.

 Node can move in their respective cluster

only.

 No node can move while the cluster

formation is in progress.

 Each node has a different weight.

 No two clusters overlap with each other.

3.2 Requirements
As all nodes have singleton vote allocated to them, so

a node can enter C.S only when its respective

clusterleader acquire more than 50% of singleton

vote of whole system. Equation (1) should be met

accordingly if value of weight is even or odd.

Abhilasha Gupta, B.V.R. Reddy, Udayan Ghosh, Ashish Khanna / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.019-026

22 | P a g e

Where Majζ: number of majority weighted votes in

the system.

 Gives the total number of

singleton

 votes in the system.

 Vi = singleton vote of node i.

3.3 Data structures

3.3.1Data structures of clusterleader

1. Status: - indicate whether node is in the

Remainder, Waiting or C.S. Initially status

= Remainder

2. Clust_idi:- id of a particular clusterleader.

3. Clust_Vi:- Each clusterleader has singleton

vote. Singleton vote associated to

Clusterleader is used it to give permission.

4. Clust_Rqi:- Request list stores the request of

all nodes of cluster’s and requests Received

by other clusterleaders of their respective

nodes with their unique time stamp.

5. Clusteri: - The set of all nodes id in direct

wireless contact with clusteri.

6. Allower_infoi:- The set of all clusterleaders

with their respective singleton vote which

have allowed the requesting cluster to enter

C.S.

7. Clust_Tot_Vote:- total singleton vote of in-

range nodes of clusteri.

SYS_Tot_Vote:- total singleton vote of the

system.

8. Allow:- Boolean array indicating whether

the cluesterleader has given permission to

requesting node or not.

 Initially Allow ≠ TRUE (has not given

permission)

 Allow = TRUE (has given

permission)

3.3.2 Data structures of nodei

1. N_idi :- Each node has unique identifier.

2. N_Vi :- The singleton vote allocated to node

i.

3. T_Sreq :- Unique time stamp at which the

request is generated that is also used to set

the priority of request with which they will

be served.

4. Status:- indicate whether node is in the

Remainder, Waiting or C.S. Initially status =

Remainder

5. Clusterleader_infoi:-Clusterleader_infoi list

maintain the information about clusteri

3.4 Message used in the algorithm

 Req_CS(): when a node i whishes to enter

the CS. It send out Req_CS() to the its own

clusterleader.

 Cluster_Vote: a message used for

clusterleaders to transfer their singleton vote

for giving the permission to enter the CS to

requesting clusterleader.

 Allow_CS (): a message for node to enter the

CS. This message is received by requesting

node from its own clusterleader.

 Release (): a message for node i to release

the CS, it sends Release () to the own

clusterleader.

 Release_Cluster_Vote: when a requested

clusterleader’s request queue = φ, then it

will return their vote to the respective

clusterleader which has given permission.

3.5 Principle of the algorithm

In this paper, a mutual exclusion algorithm is

proposed which is permission based. This algorithm

works on the concept of clustering and uses a voting

based hierarchal approach. Here initialization is done

on the basis of weight throwing scheme [5]. Where

one by one cluster are made till the last node is part

of any cluster and each cluster has one clusterleader.

Total number of nodes in the cluster decides the

number of votes acquired by any clusterleader. Each

node in the system can send its request only to its

respective clusterleader which further forwards that

to the other clusterleader for getting more than half

number of votes to allow its requesting node to enter

to enter C.S. Each clusterleader maintains request list

of whole system. Request generated has unique time

stamp dependency upon lamport’s logical clock [4].

The proposed algorithm is event-driven. An event at

node i consists of receiving a message from

clusterleader. Each event triggers a procedure, which

is assumed to be executed atomically. Below, we

present the overview of the event-driven procedure.

 Node i wants to enter CS:

When node i want to enter the CS, it first sets T_Sreq

to the current time and sends the “Req_CS” message

to the clusterleader and sets status to waiting.

 Cluster leader i receives request from node

j:
When a Req_CS (j, T_Sreq) message sent by a node j

is received at clusterleader i.

Request stored in request-queue of clusterleader i

with its time-stamp and node id. if the singleton vote

of cluster i is greater than half of the total system

singleton vote and Allow ≠ TRUE then clusterleader i

sends “Allow_CS” message to requesting node j and

sets Allow = TRUE otherwise it sends

Req_CS(nid,T_Sreq) to all clusterleader.

Abhilasha Gupta, B.V.R. Reddy, Udayan Ghosh, Ashish Khanna / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.019-026

23 | P a g e

 Cluster leader i receives request from

clusterleader j
When a Req_CS (nid, T_Sreq) message sent by a

clusterleader j is received at clusterleader i, if the

request list of clusterleader i is empty and Allow ≠

TRUE then its sends the Cluster_Vote (Clust_id,

Clust_Tot_Vote) to requesting clusterleader j and sets

Clust_Tot_Votei = 0, sets Allow = TRUE otherwise

insert the request in the request list at its appropriate

position after sorting the list.

 Clusterleader i receives singleton vote

message from Clusterleader j.

When Cluster_Vote (Clust_id, Clust_Tot_Vote)

message sent by a clusterleader j is received by

clusterleader i. clusterleader i increments the value of

its own singleton vote by adding the singleton vote of

cluster j. if the singleton vote of clusterleader i is

greater than the half of the total singleton vote of the

system and Allow ≠ TRUE then it sends the

Allow_CS message to lowest T_Sreq node and set

Allow = TRUE otherwise wait for the new request.

 Node i receives Allow_CS message from

clusterleader j:
When node i received Allow_CS message from

clusterleader j. node i sets status = C.S. and enter

C.S.. After processing it come out from C.S.

 Node i exits from the C.S:

When node i comes out from the C.S. it sends

“Release” message to clusterleader j and sets status =

Remainder.

 Clusterleader i receives release message

from node j:

When “Release” message sent by a node j is received

by clusterleader i. firstly clusterleader sets Allow ≠

TRUE after that it checks request list and send

“Release_Cluster_Vote” message to the other

clusterleader or to its any other node whichever is

having lowest time stamp.

 “Release_Cluster_Vote” message is

received by clusterleader i.
When “Release_Cluster_Vote” message is received

by clusterleader i. clusterleader i restore the value if

its own singletons vote. If the request list of

clusterleader i is not empty and the singleton vote of

clusterleader i is greater than the total singleton vote

of the system and Allow ≠ TRUE then it sends

“Allow_CS” message to that node having lowest

T_Sreq.

Pseudo code: Clustering Permission based MUTEX

algorithm, code for ni.

1. Node i wants to enter C.S:

Initially when node i wants to enter C.S then

timestamp at which request is generated is also stored

and forwarded to respective clusterleader.

 T_Sreqi = t1 (current value of clock)

 State: = Waiting

Node i send Req_CS (nid, T_Sreq) to clusterleader j.

2. Clusterleader i receives request from

node j

Request stored in request_list of clusterleader with its

timestamp and node id.

If (Clust_Tot_Vote > ½ SYS_Tot_Vote) && Allow

≠ TRUE

{

Send Allow_CS() to node j

Allow: = TRUE

}

Else

{

Send Req_CS (nid, T_Sreqi) to all clusterleader.

}

3. Clusterleader i receives request from

clusterleader j

If (Cluster_reqi = φ && Allow ≠ TRUE)

{

Send Cluster_ Vote (Clust_Tot_Vote) to clusterleader

j

Set Clust_Tot_Vote = 0

Set Allow = TRUE

// comparison made between the time-stamp of

arrived request and request which is positioned at the

top on the list //

Else if (T_Sreqi < T_Sreqi)

{

Send Cluster_Vote (Clust_Tot_Vote) to clusterleader

j

Else

{

Insert the request in the request list at its appropriate

position after sorting the list.

}

}

}

4. Cluster leader i receives vote message

from clusterleader j.

// clusterleader i updates the value of its own

singleton vote//

Clust_Tot_Votei=Clust_Tot_Votei+ Clust_Tot_Vote j

Abhilasha Gupta, B.V.R. Reddy, Udayan Ghosh, Ashish Khanna / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.019-026

24 | P a g e

 (Current) (Received

vote)

If(Clust_Tot_Votei > ½ SYS_Tot_Vote && Allow

≠ TRUE)

{

Send Allow_CS () to lowest T_Sreq node.

Set Allow = TRUE

Else

{

Wait for additional singleton vote

}

}

5. Node i receives allow message from

clusterleader j

State = C.S

Enter C.S

Exit C.S

6. Node i exits from the C.S

Node i send_ Release () to clusterleader j

State: = Remainder

7. Clusterleader i receives release message

from node j

Set Allow ≠ TRUE

Checks request queue and send

Release_Cluster_Vote () to the other clusterleader or

to its any other node whichever is having lowest time

stamp.

8. When Release_Cluster_Vote () message is

received by clusterleader i.

Clust_Tot_Votei = Clust_Tot_Votei (received vote)

(Current vote)

If (Clust_Tot_Votei > ½ SYS_Tot_Vote && Allow ≠

TRUE)

{

Send Allow_CS () to that node having lowest

T_Sreq.

}

Else

{

Wait for the new request

}

4. Correctness of the proposed algorithm

In this section we prove the correctness of the

proposed algorithm that the three correctness

requirements for distributed MUTEX algorithm are

satisfied.

Lemma 5.1 Once the node i want to enter the C.S. it

eventually gets the access of C.S. [4].

Node i enter the CS when the following three

conditions are satisfied:

L1: Clusterleader of ni has received a message with

timestamp larger than (T_Sreqi, i) from all other

clusterleader.

L2: Node ni has lowest timestamp.

L3: Respective Cluster leader should have majority

votes

 (Equation 1)

Theorem 1: At most one node can be in the CS at any

time (safety).

Argument: we prove the theorem by contradiction.

Assuming two nodes ni and nj are executing the CS

simultaneously. From equation (1), every requesting

node must have more than 50% of singleton votes of

the total system vote. If both ni and nj are in CS

simultaneously, means both have 51% of majority

singleton votes which sums up to102%. However,

total singleton votes of the system can never be

exceeds by 100%.This is a contradiction.

Theorem 2: The algorithm is deadlock- free

(liveness).

Argument: A deadlock occurs when there is a circular

wait and there is no “RELEASE” in transit. This

means that each node in the cycle is waiting for a

“RELEASE” from its successor node in the

respective request queue. According to our

assumption each node has unique timestamp. Our

algorithm says eventually each request with unique

timestamp will be added to every request list.

Therefore we can say that request list is maintained

globally. Above discussion proves that to allow a

node to enter CS will be a global decision without

any deadlock.

Theorem 3: The algorithm is starvation-free

(fairness).

Proof A proposed mutual exclusion algorithm for

MANETs is fair if the requests for CS are executed in

the order of their timestamps [4]. Whenever a node

request for CS its request is forwarded to all the

cluster leaders eventually with the respective unique

timestamp, therefore clusterleaders are able to come

to the global decision that which requests time stamp

is lowest. In response to this decision eventually

Abhilasha Gupta, B.V.R. Reddy, Udayan Ghosh, Ashish Khanna / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.019-026

25 | P a g e

every request gets fair chance to enter CS in order.

The proof is by contradiction. Suppose a node ni’s

request has a smaller timestamp than the request of

another node nj and nj is able to execute the CS

before ni. For nj to execute the CS, it has to satisfy the

conditions L1 L2 and L3 (by lemma 5.1). This

implies that at some instant in time nj has its own

request at the top of its queue and it has also received

a message with timestamp larger than the timestamp

of its request from all other nodes. But request_list at

a node is ordered by timestamp, and according to our

assumption ni has lower timestamp. So ni’s request

must be placed ahead of the nj’s request in the

request_listj. This is a contradiction. Hence this

algorithm is starvation-free mutual exclusion

algorithm.

5. Performance Analysis of Algorithm
In this section, the performance of proposed

algorithm has been analyzed with respect to the

following performance metrics, namely, message

complexity, message size, waiting time,

synchronization delay.

Message size: The size of message used in proposed

algorithm has been given in the table (1).

 Table (1)

Performance parameter: the performance

parameter used in proposed algorithm has been given

in the table (2)

Performance

parameter

Best case Averag

e case

Worst

case

Waiting time 2T 2T(m+1

)

Message

complexity

0 if

clusterleade

r itself.

O(2) if any

node

 O(n)

Synchronizatio

n delay

2T 2T(m+1

)

 Table (2)

Where, T is the maximum message propagation

delay.

 m is the number of clusterleader.

 n is the number of nodes.

6. Conclusion and Future Work

In this paper, we described a permission-

based clustering mutual exclusion algorithm in

mobile ad-hoc networks. To reduce the number of

messages exchanged, the “Clustering concept” is

used. This algorithm is independent from logical

topology so as to reduce the cost of maintaining

logical topology. Simulation is left as a future

work.

REFERENCES
[1] B. R. Badrinath, A. Achaya, and T. Imielinski,

Desinging Distributed Algorithm for Mobile

Computing Networks. Computer

Communication, Vol. 19, No. 4, April 1996.

[2] A.Swaroop, Efficient group mutual exclusion

protocols for message passing distributed

computing system, doctoral diss, National

institute of technology, Kurukshetra, India,

2009.

[3] Saxena, P.C., Rai, J., A survey of permission-

based distributed mutual exclusion algorithms.

Computer standards & interfaces, vol. 25, no.

2, pp. 159-181, 2003.

[4] Lamport, L., Time, clocks, and the ordering of

events in a distributed systems.

Communications of the ACM, vol. 21, no. 7,

pp. 558-565, 1978.

[5] Ousmane thiare and Mohamed Naimi. “A

Weight- throwing Clustering Group Mutual

Exclusion Algorithm for Mobile Ad Hoc

Networks” International Journal of Digital

Content Technology and its Applications.

Volume 5, Number 4, April 2011.

[6] Romain Mellier and Jean-Frederic Myoupo,

“A clustering mutual exclusion protocol for

multi-hop mobile ad hoc networks”, Networks,

2005. Jointly held with the 2005 IEEE 7th

Malaysia International Conference on

Communication., 13th IEEE International

Conference, 6 pages, 2005.

 Message type Size

 Req_CS O(1)

 Allow_CS O(1)

 Cluster_Vote O(m)

 Release_CS O(1)

 Release_Cluster_Vote O(m)

Abhilasha Gupta, B.V.R. Reddy, Udayan Ghosh, Ashish Khanna / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.019-026

26 | P a g e

[7] Stefano Basagni, “Distributed clustering for ad

hoc networks”, Proceedings of I-SPAN,

Australia 1999.

[8] E.W. Dijkstra, Co-operating sequential

processes, in: F. Genuys (Ed.), Programming

Languages, Academic Press, New York, pp.

43–112, 1965.

[9] D.E. Knuth, Additional comments on a

problem in concurrent programming control,

Communications of the ACM 9 (5), pp.321–

322, 1966.

[10] J.G. De Bruijn, Additional comments on a

problem in concurrent programming control,

Communications of the ACM 10 (3), pp.137–

138, 1967.

 [11] M.A. Eisenberg, M.R. McGuire, Further

comments on Dijkstra’s concurrent

programming control problem,

Communications of the ACM 15 (11) (1972)

999.

 [12] G.L. Peterson, Myths about the mutual

exclusion problem, Information Processing

Letters 12 (3), pp.115– 116, 1981.

[13] M. Raynal, A simple taxonomy for distributed

mutual exclusion algorithms, ACM Operating

Systems Review 23 (2), pp. 47–51, 1991.

[14] M. Singhal, taxonomy of distributed mutual

exclusion, Journal of Parallel and Distributed

Computing 18, pp. 94–101, 1993.

 [15] M. Helary, N. Plouzeau, M. Raynal, A

distributed algorithm for mutual exclusion in

an arbitrary network, The Computer Journal

31 (4), pp. 289– 295, 1988.

[16] I. Suzuki, T. Kasami, A distributed mutual

exclusion algorithm, ACM Transactions on

Computer Systems 3 (4), pp. 344–349, 1985.

[17] M. Singhal, A heuristically aided algorithm for

mutual exclusion in distributed systems, IEEE

Transactions on Computers 38 (8), pp.651–

661, 1989.

[18] Y. Yan, X. Zhang, H. Yang, A fast token

chasing mutual exclusion algorithm in

arbitrary network topologies, Journal of

Parallel and Distributed Computing

35,pp.156–172,1996.

[19] K. Raymond, A tree based algorithm for

distributed mutual exclusion algorithms, ACM

Transactions on Computer Systems 7 (1), pp.

61– 77, 1989.

[20] L.N. Neilson, M. Mizuno, A DAG based

algorithm for distributed mutual exclusion,

International Conference on Distributed

Computer Systems, pp. 354– 360, 1991.

[21] Y.I. Chang, M. Singhal, M.T. Liu, An

improved o(log(n))mutual exclusion algorithm

for distributed systems, International

Conference on Parallel Processing,pp.295–

302,1990.

[22] M. Helary, A. Mostefaoui, M. Raynal, A

general scheme for token and tree based

distributed mutual exclusion algorithms, IEEE

Transactions on Parallel and Distributed

Systems 5 (11),pp. 1185– 1196,1994.

[23] M. Naimi, M. Trehel, A. Arnold, A log(n)

distributed mutual exclusion algorithm based

on path reversal, Journal of Parallel and

Distributed Computing 34,pp.1 – 13,1996.

[24] Jennifer Walter, Jennifer Welch and Nitin

Vaidya, “A mutual exclusion algorithm for ad

hoc mobile network”, In Journal of Wireless

Networks, vol. 7, pp. 585-600, 2001.

[25] N.Malpani, N. H. Vaidya and J. L. Welch,

Distributed Token Circulation on Mobile Ad

Hoc Networks, Technical report, Intel

Corporation 505 E. Huntland Dr. Suite 550,

Austin TX 78752.

[26] Wu, W., Cao, J., Yang, J.: A Scalable Mutual

Exclusion Algorithm for Mobile Ad Hoc

Networks. In: Proc. of ICCCN (2005).

[27] G. Ricart and A. Agrawala, An optimal

algorithm for mutual exclusion in computer

networks, Communications of the ACM, vol.

24, no. 1,pp. 9-17,1981.

[28] Baldoni, R., Virgillito, A., Petrassi, R.: A

Distributed Mutual Exclusion Algorithm for

Mobile Ad-Hoc Networks. In: Proc. of ISCC

(2002).

[29] Benchaïba, M., Bouabdallah, A., Badache, N.,

Ahmed-Nacer, M.: Distributed Mutual

Exclusion Algorithms in Mobile Ad Hoc

Networks: an Overview. ACM SIGOPS

Operating Systems Review 38(1) (2004).

[30] Walter, J., Kini, S.: Mutual Exclusion on

Multihop, Mobile Wireless Networks, Texas

A&M Univ., College Station, TX 77843-3112,

TR97-014 (December 9, 1997).

