
Prof.D.M.Thakore, S.J.Sarde / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.585-587

585 | P a g e

Assessing the Software Complexity and Security metrics from UML

Class diagram
1
 Prof.D.M.Thakore,

2
S.J.Sarde (M.Tech Student)

1
Department of Computer Engineering

Bharati vidyapeeth Deemed University College of Engineering, Pune-43, Maharashtra, India
2
Department of Computer Engineering

Bharati vidyapeeth Deemed University College of Engineering, Pune-43, Maharashtra, India

Abstract-As the standard definition of software

engineering it is the development of sound

engineering principle in order to achieve the

software which is effective, efficient, understandable,

and further it can be run on any real time machine.

In software engineering, Software metrics are very

useful for a forward engineering of re-engineering

process of existing software system. Also, they are

absolutely necessary in re-engineering process. They

show exactness, clear picture and understanding of

the existing software system. It should be the first

step in effective re-engineering process.

Quality of software systems heavily depends

on their structure, which affects maintainability and

readability. However, the ability of humans to deal

with the complexity and security of large software

systems is limited. In this paper we are proposing

system methodology approach, that should measure

coupling, cohesion (Complexity), Data Access and

Operation Access Metric (Security) which dependent

on the assumption that the attributes, methods,

relationship and classes of Object-Oriented systems

are connected in more than one way.

Index term: Class diagram, object oriented language,

software quality metrics-complexity and security,

source code, Unified Modelling language etc.

I Introduction
Software engineers generally use indirect

measures that lead to metrics which provide a

quantitative basis for understanding the underlying

information in software development processes.

Software metrics have always been important for

software developers to assure the quality of some

representation of software and organizations are

achieving promising results through their use.

Therefore, to develop suitable software metrics models

for user (developer) who urgently need them for re-

engineering of existing software system. Therefore, this

proposed methodology approach “source code analysis

for software quality metrics” proposes that the

evaluation of metrics as part of reverse engineering in

re-engineering process i.e. Software Reverse

Engineering Tool (SRET). SRET should be developed

under two categories: 1) Complexity and 2) Security

Source code requirement analysis is for extracting

software quality metrics for re-engineering process is

done manually or with some tool but it can take more

time due to complexity and unambiguous nature of

source code. If some user require particular metrics

urgently to re-engineer the existing software system,

because such metrics are vital or necessary for effective

re-engineer process. If such metrics are extracted

manually then it should take more time and also,

budget. That is the derive force behind the development

of such a system which does it automatically without

any manual efforts

Consider e.g. Both users (developer and system

analyzer) should review the source code for complexity

and security metrics manually. It should be good for

small software system, but if software system is large

then it is quite cumbersome because large software

system may contain large no. of source code (LOC)

with more complexity and less security. Also, it should

require more time for calculation of complexity and

security and also wastage of resources.

Therefore, to develop such suitable Software

Reverse Engineering Tool (SRET) which could help

system analyzer and developer to review the source

code and calculate the source code complexity and

security with automatic framework using UML Class

Diagram.

II Existing tools and their limitations
Software engineering developer and system

analyst should be based on the tools for implementing

these metrics to support them in quality evaluation and

ensure tasks to allow to measure software quality and to

deliver the information needed as input for their

decision making and engineering processes. Currently a

large body of software metrics tools exists. But these

are not the tools which have been used to evaluate the

software metrics.

1) Analyst4j : It is based on the Eclipse platform and

available as a stand-alone Rich Client Application or as

an Eclipse IDE plug-in. It features search, metrics,

analyzing quality and report generation for Java

programs [2].

2) VizzAnalyzer: It is a tool for quality analysis. It

reads or parses software code and other design

specifications as well as documentation and performs a

Prof.D.M.Thakore, S.J.Sarde / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.585-587

586 | P a g e

number of quality analyses. The VizzAnalyzer is a

framework or environment for analyses and

visualizations of existing software system. The

VizzAnalyzer is a framework designed to help

programmers or developer or system analyst in software

engineering activities like re-engineering [2,3].

Shortcomings with this technique:

1) It has high coupling values and less cohesion values.

2) Also it ignores security metrics such as Data and

Operation Access Metrics.

3) It analysis only few source code language file such as

for java.

III Literature Survey
Software metrics are very useful in a forward

engineering of re-engineering process of existing

software system. Also, they are absolutely credential in

re-engineering process. They show exactness, clear

picture and concise understanding of the existing

software system. It should be the first step in effective

re-engineering process.

Use of the powerful and practical metrics like

cohesion, coupling of existing systems and develop or

generate new metrics and then add them to the new

complexity and security categories to enhance the

quality of the software re-engineering process which

leads to the enhance quality of the software which is

under the process of re-engineering[4].

Software reengineering is an expensive process due

to the complexity of the software, we cannot

emphasise on the area where the re-engineering work is

required,. Coupling and Cohesion metrics are

complexity metrics out of particularly cohesion metrics

have the potential to help in this identification and to

measure progress. The most extensive work on such

metrics is with cohesion metrics. It should use of

dependence information that make them an excellent

choice for cohesion measurement.

It should be raise the most important question such

as does a software developer or analyst which could be

access to complexity metric values for the program do a

better job of restructuring the program? [5]

Security metric is not considered as much as other

quality attributes such as complexity metrics. Also,

most security studies concentrate on the level of

individual program statements. Such type of approach

makes it hard and expensive to discover and fix

vulnerabilities caused by design errors in the existing

system.

Therefore, in this paper we should also focus on the

security design of an existing object oriented

application and define security metrics. These metrics

allow designers (developer or system analyzer) to find

out and fix security vulnerabilities at an early stage of

the re-engineering process which will help to reduce the

cost of software reengineering as it reduces the rework

and consumption of resources which helps the designer

to review the security metrics to make particular

decision about security into re-engineering approach. In

particular, to propose security metrics to measure Data

Encapsulation (accessibility) and Cohesion

(interactions) of a given object-oriented class from the

point of view of potential information such as source

code. Defining another security metrics which cover the

entire source code of existing software including

coupling, inheritance, and cohesion [6].

IV Proposed Work and system architecture

Figure 1: Proposed Architecture of System

Here take the input from user (developer), a

document which contains source code. Convert this

source code document into Core Prototype Model

(class diagram) specifies the entities and relations that

can and should be extracted immediately from source

code. Then process this output for Complete Model as

input specifies Object, Property, Entity and Association

are made available to handle the extensibility

requirement. On the output of Complete Model, then

apply our rules on the basis of which Security

Accessibility and complexity metrics are extracted.

In the case of in information extraction:

DAM = No. of private (protected) attributes/total no.

of attributes in class

OPM = No. of public methods/ total no. of methods

in a class

Cohesion = No. of methods interactions with

attributes in the program code / maximum

no. of methods interactions with attributes

Coupling = Access frequency of attributes of one

class/sum of frequency of all attributes

1. Core Prototype Model

The Core Prototype Model states the entities

and relations that can and should be extracted

Prof.D.M.Thakore, S.J.Sarde / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.585-587

587 | P a g e

immediately from source code. The core model consists

of the main Object Oriented entities such as Classes,

Methods, Attributes and Inheritance Definition. For the

reengineering we require the other two ideas namely the

associations Invocation and Access. An Invocation

presents the definition of a Method calling another

Method and an Access presents a Method accessing an

Attribute.

In automated software modelling, the Source Code

as software requirement specification is translated to the

formal specifications such as Template Information

with CDIF Format.

2. Complete-Meta-Model

Objects, Property, Entity and Association are made

accessible to handle the prerequisite. For specifying

language plug-ins, it is authorized to define language

precise classes and to add language precise attributes to

existing Objects. Tool prototypes are more limited in

extending the model: they can define tool precise

properties for and can add attributes to existing Objects.

They are, however, not authorized to extend the

repertoire of entities and associations.

3. CDIF Information Exchange Format

CDIF is standard for transferring models or

standard for information exchange with different tools.

Key issue in the reengineering of large scale

object-oriented systems is due to the heterogeneity in

today’s object-oriented programming languages.

Proposed system also generates Template Information

into CDIF Form for these programming constraints.

This is also added facility provided in the

proposed system as compared to current existing work.

V Conclusion
In this paper we have emphasise on the

software quality metrics complexity and security via

analyzing UML class diagram which is obtained as an

input from the source code and the document

specification. The proposed work is fully automated

eliminating the manual effort required from the

developer and analyzer, further because of the

elimination of manual work these system is effective,

efficient for the reengineering of the software which

already in existence with effective utilization of the key

resources .

VI References
[1] “Beyond Language Independent

ObjectOrientedMetrics:Model Independent

Metrics” Michele Lanzalanza@iam.unibe.ch

Software Composition Group Universit ´a di

Berna, Svizzera and

St´ephaneDucasseducasse@iam.unibe.ch

Software Composition Group Universit ´e de

Berne, Suisse

[2] “Comparing Software Metrics Tools”

RudigerLincke, Jonas Lundberg and Welf Lowe

Software Technology Group School of

Mathematic Mathematics and Systems

EngineeringVaxjoUniversity,Sweden{rudiger.lin

cke|jonas.lundberg|welf.lowe}@vxu.se

[3] A Qualitative Evaluation of a Software

Development and Re-Engineering Project

Thomas Panas,RudigerLincke, Jonas

Lundberg,Welf Lowe Software Technology

Group MSI, University of Vaxjo, Sweden

[4] “Development and Application of Reverse

Engineering Measures” in a Re-engineering Tool

S. Zhou, H. Yang and P. Luker William C. Chu

Department of Computer Science Department of

Information Engineering De Montfort University

Feng Chia University England Taiwan

[5] “An Empirical Study of Slice-Based Cohesion

and Coupling Metrics” Timothy M. Meyers and

David Binkley Loyola College in Maryland

Baltimore, Maryland 21210-2699, USA

{tmeyers,binkley}@cs.loyola.edu

[6] Alshammari, Bandar and Fidge, Colin J. and

Corney, Diane (2009) “Security metrics for

object-oriented class designs”. In: QSIC 2009

Proceedings of : Ninth International Conference

on Quality Software , August 24-25, 2009, Jeju,

Korea. (In Press)

[7] “New Conceptual Coupling and Cohesion

Metrics for Object-Oriented

Systems”BélaÚjházi, Rudolf Ferenc,

TiborGyimóthy University of Szeged, Hungary

Department of Software Engineering

ujhazi.bela@stud.u-szeged.hu, {ferenc,

gyimi}@inf.u-szeged.hu and Denys Poshyvanyk

The College of William and Mary, USA

Computer Science Department

denys@cs.wm.edu

[8] “Reverse Engineering Component Models for

Quality Predictions” Steffen Becker, Michael

Hauck, and MirceaTrifu FZI Research Center

Software Engineering Karlsruhe, Germany Klaus

Krogmann Karlsruhe Institute of Technolgy

Software Design and Quality Karlsruhe,

Germany Jan Kofroˇn Charles University in

Prague Distributed Systems Research Group

Prague, Czech Republic

[9] “An Exchange Model for Reengineering Tools”

Sander Tichelaar and Serge Demeyer, Software

Composition Group, University of Berne,

Switzerland, {demeyer,tichel}@iam.unibe.ch

[10] “A Visual Analysis and Design Tool for

Planning Software Reengineerings” Martin Beck,

Jonas Tr ¨umper and J¨urgenD¨ollner

{martin.beck}, {jonas.truemper},

{juergen.doellner}@hpi.uni-potsdam.deHasso-

Plattner-Institute – University of Potsdam,

Germany

