
M Rajasekhara Babu, Vivek Dilip Mitkari, Karan Thakkar, Kirti Barode / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.011-018

11 | P a g e

Point-to Analysis for Object-Oriented Language

M Rajasekhara Babu1, Vivek Dilip Mitkari
 1
, Karan Thakkar

 1
, Kirti Barode 1

1 School of Computing Science and Engineering, VIT University,

632014 Vellore, India

Abstract—

Pointer analysis is the problem of statically

determining the runtime targets of pointer variables in

a program. This information has a wide variety of

client applications in optimizing compilers and software

engineering tools. This paper focuses on precise points-

to analysis for Object Oriented Languages (OOL) such

as Java, C#, Scala, etc based on Andersen's points-to

analysis for C language, which validates the

performance of the analysis on a large set of Java

programs. Implementation of this analysis is done by

using a subset-based approach which is done by using

Binary Decision Diagrams (BDDs). This paper first

introduces BDDs and operations on BDDs using some

simple points-to examples. Then, a complete subset-

based points-to algorithm is presented, expressed

completely using BDDs and BDD operations.

Keywords: Subset based analysis, Pointer analysis, OOL.

I. INTRODUCTION
This paper requires pointer behavior knowledge to

analyze program which uses pointers. Without this

knowledge accessing pointer will lead to affect the

precision and efficiency of any analysis that requires this

information, such as optimizing compilers or a program

understanding tools. Pointer analysis is the problem of

statically determining the runtime targets of pointer

variables in a program. A solution is imprecise if, for any

variable, the inferred target set is larger than necessary.

Thus, the most imprecise but sound solution has each

variable pointing to every other. Obtaining a perfect (i.e.

flow-sensitive and context sensitive) solution, however, is

undecidable in general [2] and, in practice; obtaining even

relatively imprecise information (i.e. flow-insensitive and

context-insensitive) is expensive [1].

A software system requires strong support from software

engineering tools for program understanding, maintenance,

and testing. To determine properties of a program at run-

time, various static analysis methods are followed which

optimizes compilers and software engineering tools [5].

One of the fundamental static analyses is points-to

analysis. For OOL, points-to analysis determines the set of

objects whose addresses may be stored in a given reference

variable or reference object field. The analysis constructs

an abstraction for the run-time memory states of the

analyzed program by computing such points-to sets for

variables and fields. This abstraction is typically

represented by one or more points-to graphs. Points-to

analysis enables a variety of other analyses. For example,

side-effect analysis, which determines the memory

locations that may be modified by the execution of a

statement, and def-use analysis, which identifies pairs of

statements that set the value of a memory location and

subsequently use the value [5]. Such analyses are needed

by compilers to perform well-known optimizations such as

code motion and partial redundancy elimination. These

analyses are also important in the context of software

engineering tools, for example, def-use analysis is needed

for program slicing and data-flow-based testing. Points-to

analysis is a crucial prerequisite for employing these

analyses and optimizations. In this paper we define and

evaluate a point-to analysis for OOL which is based on

Andersen's points-to analysis for C [6], with all extensions

necessary to handle object-oriented features.

At a very high level, one can see this problem as finding

the allocation sites that reach a variable in the program.

Consider an allocation statement S: a = new A ();. If a

variable x is used in some other part of the program, then

one would like to know whether x can refer to (point-to) an

object allocated at S.

A key problem in developing efficient solvers for the

subset-based points-to analysis is that for large programs

there are many points-to sets, and each points-to set can

become very large. Often, many of these points-to sets are

equal or almost equal. In particular, we wanted to examine

three aspects of the BDD solution: (a) execution time for

the solver, (b) memory usage, and (c) ease of specifying

the points-to algorithm using a standard BDD package. In

summary, our experience was that BDDs were very

effective in all three aspects.

II. RELATED WORK

Pointer analysis is hot cake in the area of compiler

optimization. Till 2001, one hundred papers and twelve

PhD thesis have been published on pointer analysis at

various level of analysis abstraction [7]. (David J. Pearce et

al., 2007) proposed Efficient Field-Sensitive Pointer

Analysis for C which includes an approach to model

indirect struct call and function calls and aggregates for

pointer analysis of C. For the first time, an O (v) bound on

the time needed for field-sensitive pointer analysis of C is

M Rajasekhara Babu, Vivek Dilip Mitkari, Karan Thakkar, Kirti Barode / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.011-018

12 | P a g e

obtained, where v is the number of nodes in the constraint

graph. Furthermore, they evaluated its effect on time and

precision and these results indicate that field-sensitivity,

while offering greater precision, is expensive to compute

[8]. Tobias Gutzmann et al. proposed Towards Path-

Sensitive Points-to Analysis analyses the basic definitions

of pointer analysis, name schema, flow sensitivity, context

sensitivity, and SSA (Static Single Assignment). Path

sensitive approach was proposed which uses the fact that

control flow statements may make branching decisions

based upon input variables. A general approach was

presented which can be applied to many intermediate

representations and its application (with and without SSA

form). Implementation for Flow-Insensitive Analysis and

Memory SSA based Program Representation is also

presented. At last various metrics like abstract metrics,

source level metrics, and performance considerations for

different type of programs in different languages.Paul

Anderson et al. proposed Flow insensitive points-to sets in

which pointer analysis is performed. Flow-insensitive

analysis assumes that program statements can be executed

in any order which consider two algorithms that perform

flow and context insensitive points-to analysis. Both

algorithms are first considered with structure fields

collapsed and then with structure fields expanded. The first

is an implementation of Andersen’s algorithm and second

an extension of Fahndrich’s algorithm. Both algorithms

read in normalized statements that represent the pointer

manipulations in the program and comparison is done on

the basis of points- to data i.e. collapsed fields, expanded

fields and Edge histograms. Maryam Emami et al.

proposed Context-Sensitive Interprocedural Points-to

Analysis in the Presence of Function Pointers.

A new method for computing the points-to information for

stack allocated data structures is projected. This method

uses the concept of abstract stack locations to capture all

possible and definite relationships between accessible stack

locations. The method provides context-sensitive inter-

procedural information, and it handles general function

pointers in an integrated fashion. The points-to information

can be used to generate traditional alias pairs, or it can be

used directly for numerous other optimization and

transformations including pointer replacement and array

dependence testing. Rupesh Nasre et al. proposed

Prioritizing Constraint Evaluation for Efficient Points-to

Analysis where prioritizing approach is projects an

inclusion-based point-to analysis. In typical inclusion-

based points-to analysis iteratively evaluates constraints

and computes points-to solution until a fix point. In each

iteration, (i) points-to information is propagated across

directed edges in a constraint graph G and (ii) more edges

are added by processing the points-to constraints. It is

observed that by prioritizing the order of processing the

information within each of the above two steps can lead to

efficient execution of the points-to analysis. A

prioritization framework is developed for implementing

prioritized versions of Andersen’s analysis. Ben Hardekopf

et al. proposed a Flow-Sensitive Pointer Analysis for

Millions of Lines of Code. The typical method for

optimizing a flow-sensitive dataflow analysis is to perform

a sparse analysis which directly connects variable

definitions with their uses, allowing data flow facts to be

propagated only to those program locations that need the

values. Unfortunately, sparse pointer analysis is

problematic because pointer information is required to

compute the very def-use information that would enable a

sparse analysis. This paper shows how this difficulty can

be overcome and how the use of a sparse analysis greatly

increases the scalability of flow-sensitive pointer analysis.

The key insight behind our technique is to stage the pointer

analysis. Auxiliary pointer analysis first computes

conservative def-use information, which then enables the

primary flow-sensitive analysis to be, performed sparsely

using the conservative def-use information. This idea

actually defines a family of staged flow-sensitive analyses.

Not only for procedural language but also for object

oriented language point-to analysis algorithms have been

proposed. Atanas Rountev et al., proposed Points-to

Analysis for Java Using Annotated Constraints. authors

have define and evaluate a points-to analysis for Java

which is based on Andersen's points-to analysis for C ,

with all extensions necessary to handle object-oriented

features. It includes implementation of the analysis is done

by using a constraint-based approach which employs

annotated inclusion constraints. Constraint annotations

allow to model precisely and efficiently the semantics of

virtual calls and the flow of values through object fields.

Pointer analysis is hot cake in the area of compiler

optimization. Till 2001, one hundred papers and twelve

PhD thesis have been published on pointer analysis at

various level of analysis abstraction [7]. (David J. Pearce et

al., 2007) proposed Efficient Field-Sensitive Pointer

Analysis for C which includes an approach to model

indirect struct call and function calls and aggregates for

pointer analysis of C. For the first time, an O (v) bound on

the time needed for field-sensitive pointer analysis of C is

obtained, where v is the number of nodes in the constraint

graph. Furthermore, they evaluated its effect on time and

precision and these results indicate that field-sensitivity,

while offering greater precision, is expensive to compute

[8]. Tobias Gutzmann et al. proposed Towards Path-

Sensitive Points-to Analysis analyses the basic definitions

of pointer analysis, name schema, flow sensitivity, context

sensitivity, and SSA (Static Single Assignment). Path

sensitive approach was proposed which uses the fact that

control flow statements may make branching decisions

based upon input variables. A general approach was

presented which can be applied to many intermediate

representations and its application (with and without SSA

form). Implementation for Flow-Insensitive Analysis and

Memory SSA based Program Representation is also

M Rajasekhara Babu, Vivek Dilip Mitkari, Karan Thakkar, Kirti Barode / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.011-018

13 | P a g e

presented. At last various metrics like abstract metrics,

source level metrics, and performance considerations for

different type of programs in different languages.Paul

Anderson et al. proposed Flow insensitive points-to sets in

which pointer analysis is performed. Flow-insensitive

analysis assumes that program statements can be executed

in any order which consider two algorithms that perform

flow and context insensitive points-to analysis. Both

algorithms are first considered with structure fields

collapsed and then with structure fields expanded. The first

is an implementation of Andersen’s algorithm and second

an extension of Fahndrich’s algorithm. Both algorithms

read in normalized statements that represent the pointer

manipulations in the program and comparison is done on

the basis of points- to data i.e. collapsed fields, expanded

fields and Edge histograms. Maryam Emami et al.

proposed Context-Sensitive Interprocedural Points-to

Analysis in the Presence of Function Pointers.

A new method for computing the points-to information for

stack allocated data structures is projected. This method

uses the concept of abstract stack locations to capture all

possible and definite relationships between accessible stack

locations. The method provides context-sensitive inter-

procedural information, and it handles general function

pointers in an integrated fashion. The points-to information

can be used to generate traditional alias pairs, or it can be

used directly for numerous other optimization and

transformations including pointer replacement and array

dependence testing. Rupesh Nasre et al. proposed

Prioritizing Constraint Evaluation for Efficient Points-to

Analysis where prioritizing approach is projects an

inclusion-based point-to analysis. In typical inclusion-

based points-to analysis iteratively evaluates constraints

and computes points-to solution until a fix point. In each

iteration, (i) points-to information is propagated across

directed edges in a constraint graph G and (ii) more edges

are added by processing the points-to constraints. It is

observed that by prioritizing the order of processing the

information within each of the above two steps can lead to

efficient execution of the points-to analysis. A

prioritization framework is developed for implementing

prioritized versions of Andersen’s analysis. Ben Hardekopf

et al. proposed a Flow-Sensitive Pointer Analysis for

Millions of Lines of Code. The typical method for

optimizing a flow-sensitive dataflow analysis is to perform

a sparse analysis which directly connects variable

definitions with their uses, allowing data flow facts to be

propagated only to those program locations that need the

values. Unfortunately, sparse pointer analysis is

problematic because pointer information is required to

compute the very def-use information that would enable a

sparse analysis. This paper shows how this difficulty can

be overcome and how the use of a sparse analysis greatly

increases the scalability of flow-sensitive pointer analysis.

The key insight behind our technique is to stage the pointer

analysis. Auxiliary pointer analysis first computes

conservative def-use information, which then enables the

primary flow-sensitive analysis to be, performed sparsely

using the conservative def-use information. This idea

actually defines a family of staged flow-sensitive analyses.

Not only for procedural language but also for object

oriented language point-to analysis algorithms have been

proposed. Atanas Rountev et al., proposed Points-to

Analysis for Java Using Annotated Constraints. authors

have define and evaluate a points-to analysis for Java

which is based on Andersen's points-to analysis for C ,

with all extensions necessary to handle object-oriented

features. It includes implementation of the analysis is done

by using a constraint-based approach which employs

annotated inclusion constraints. Constraint annotations

allow to model precisely and efficiently the semantics of

virtual calls and the flow of values through object fields.

III. MOTIVATION
Modern superscalar and VLIW (Very Long

Instruction Word) processors require sufficient Instruction

Level Parallelism (ILP) to reach peak utilisation. For this

reason, exposing ILP through instruction scheduling and

register allocation is a crucial role of the compiler. This

task is complicated by the presence of instructions which

indirectly reference memory, since their data dependencies

are not known. For languages such as C/C++, this problem

is particularly acute because pointer variables (the main

source of indirect memory references) can target

practically every memory location without restriction.

Therefore, to achieve maximum pipeline throughput, the

compiler must rely on pointer analysis to disambiguate

indirect memory references. Pointer analysis is an

important enabling technology that can improve the

precision and performance of many program analyses by

providing precise pointer information.

Finally, pointer analysis finds many other important uses

within the compiler. In particular, it often enables

traditional optimisations (e.g. common sub expression

elimination) to be applied at places which would otherwise

be deemed unsafe.

IV. BDD BACKGROUND
A Binary Decision Diagram (BDD) is a

representation of a set of binary strings of length n that is

often, equivalently, thought of as a binary-valued function

that maps binary strings of length n to 1 if they are in the

set or to 0 if they are not. Structurally, a BDD is a rooted

directed acyclic graph, with terminal nodes 0 and 1, and

where every non-leaf node has two successors: a 0-

successor and a 1-successor. As in a binary tree, to

determine whether a string is in the set represented by a

BDD, one starts at the root node, and proceeds down the

BDD by following either the 0- or 1- successor of the

current node depending on the value of the bit of the string

M Rajasekhara Babu, Vivek Dilip Mitkari, Karan Thakkar, Kirti Barode / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.011-018

14 | P a g e

being tested. Eventually, one ends up either at 1, indicating

that the string is in the set, or at 0 indicating that it is not.

To use a concrete example, consider the program fragment

in Figure 1. The points-to relation we would compute for

this code is {(a, X), (a, Y), (b, X), (b, Y), (c, X), (c, Y), (c,

Z)}, where (a, A) indicates that variable a may point to

objects allocated at allocation site X. Using 00 to represent

a and X, 01 to represent b and Y, and 10 to represent c and

Z, we can encode this points-to relation using the set

{0000,0001,0100,0101,1000,1001,1010} .

Figure 2(a) shows an unreduced BDD representing this set

where the variables a, b and c are encoded at BDD node

levels V0 and V1 and the heap objects X, Y and Z are

encoded at the H0 and H1 levels. As a convention, 0-

successors are indicated by dotted edges and 1-successors

are indicated by solid edges.

Figure 1. Example code fragment

Notice that nodes marked P, Q, and R in Figure 2(a) are at

the same level and have the same 0- and 1-successors. This

is because they represent the subset {X, Y}, which is

shared by all three pro-gram variables. Because they are at

the same level and share the same successors, they could

be merged into a single node, reducing the size of the

BDD. Furthermore, since their two successors are the same

(the 1 node), their successor does not depend on the bit

being tested, so the nodes could be removed entirely.

Simplifying other nodes in this manner, we get the BDD in

Figure 2(b). The BDD with the fewest nodes is unique if

we maintain a consistent ordering of the nodes; it is called

a reduced BDD. When BDDs are used for computation,

they are always kept in a reduced form.

In the examples so far, the bits of strings were tested in the

order in which they were written. However, any ordering

can be used, as long as it is consistent over all strings

represented by the BDD.

For example, Figure 2(c) shows the BDD that represents

the same relation, but tests the bits in a different order.

This BDD requires 8 nodes, rather than 5 nodes as in

Figure 2(b). In general, choosing a bit ordering which

keeps the BDDs small is very important for efficient

computation; however, determining the optimal ordering is

NP-hard [4]. BDDs support the usual set operations (union,

inter-section, complement, difference) and can be

maintained in reduced form during each operation. A

binary operation on BDDs X and Y, such as X Y, takes

time proportional to the number of nodes in the BDDs

representing the operands and result. In the worst case, the

number of nodes in the BDD representing the result can be

the product of the number of nodes in the two operands,

but in most cases, the reduced BDD is much smaller [4].

BuDDy [3] is one of several publicly-available BDD

packages. Instead of requiring the programmer to

manipulate individual bit positions in BDDs, BuDDy

provides an interface for grouping bit positions together.

The term domain is used to refer to such a group. In the

example in Figure 2, we used the domain V to represent

variables, and H to represent pointed-to heap locations.

Another BDD operation is existential quantification. For

example, given a points-to relation P H, we can

existentially quantify over H to find the set S of variables

with non-empty points-to sets: S = {v│ h. (v, h)

P}.

The relational product operation implemented in

BuDDy composes set intersection with existential

quantification, but is implemented more efficiently than

these two operations composed. Specifically, rel-prod(A,

B, V1) = {(v2, h) │ v1. ((v1, v2) A Ʌ (v1, h) B)}. To

illustrate this with an example, for the code fragment in

Figure 1, consider the initial points-to set {(a, X), (b, Y),

(c, Z)} (corresponding to the first three lines of code) and

the assignment edge set {(b, a), (a, b), (b, c)}

(corresponding to the last three lines of code). The pair (a,

b) corresponds to the statement b: = a; that is, we write the

variables in reverse order, indicating that all allocation

sites reaching a also reach b. The initial points-to set is

represented in the BDD in Figure 3(a) using the domains

V1 and H1.

 (a) (b)

(c)

Figure 2. BDDs for points-to relation {(a, X), (a, Y), (b,

X), (b, Y), (c, X), (c, Y), (c, Z)} (a) Unreduced using

ordering V1V0H1H0, (b) reduced using ordering

X: a = new O ();

Y: b = new O ();

Z: c = new O ();

a = b;

b = a;

c = b;

1 0

bi
t

3(

V
1)

bi

t

2(
V

0)

bi

t

1(
H

1)
bi
t

0(

H

0) 0 1

bi

t
3(

V

1) bi

t

2(
V

0)

bi

t

0(
H

0)

bi
t

1(

H
1)

P

Q

0 1

R

bi

t

3(
V

1) bi
t

2(

V
0)

bi
t

1(

H
1)

bi

t

0(
H

0)

M Rajasekhara Babu, Vivek Dilip Mitkari, Karan Thakkar, Kirti Barode / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.011-018

15 | P a g e

V1V0H1H0, (c) reduced using alternative ordering

H0V0H1V1

 (a) (b) (c) (d) (e)

Figure 3. (a) BDD for initial points-to set {(a, X),(b, Y),(c,

Z)} (b) BDD for edge set {(a b),(b a), (b c)} (c)

result of rel-prod((a),(b),V1) (the points-to set {(a, Y),(b,

X),(c, C)}) (d) result of replace((c),V2ToV1) (e) result of

(a) (d) (the points-to set {(a, X),(a, Y),(b, X),(b, Y),(c,

Y),(c, Z)}

The edge set contains pairs of variables, so two variable

domains (V1 and V2) are required to represent it; its

representation is shown in Figure 3(b). Given these two

BDDs, we can apply the relational product with respect to

V 1 to obtain the BDD of the points-to sets after

propagation along the edges (Figure 3(c)), using the

domains V2 and H.

The replace operation creates a BDD in which information

that was stored in one domain is moved into a different

domain. For example, we would like to find the union of

the points-to relations in parts (a) and (c) of Figure 3, but

the former uses the domains V1 and H, while the latter uses

V2 and H.

Before finding the union, we are applying the replace

operation to (c) to obtain (d), which, like (a), uses domains

V1 and H. We can now find (e) = (a) (d), the points-to set

after one step of propagation. If we repeated these steps a

second time, we would obtain the final points-to set BDD

from Figure 2(b).

Note that it is possible for a BDD for a large set to have

fewer nodes than the BDD for a smaller set. In this case,

although the points-to set grows from three, to six, to seven

pairs, the BDD representing it goes from eight to six to five

nodes (see Figures 3(a), 3(e), and 2(b), respectively).

V. POINTS-TO ALGORITHM WITH BDDS
A points-to analysis computes a points-to relation

between variables of pointer type and allocation sites. Our

analysis is a Java extension of the analysis suggested for C

by Andersen [1]. As such, it is both flow-insensitive and

context-insensitive. The analysis takes as input constraints

modeling four types of statements: allocation, simple

assignment, field store, and field load (Figure 4). Pt (l)

indicates the points-to set of variable l. l1 l2 indicates that

l2 may point to anything that l1 may point to. Based on a

call graph built using class hierarchy analysis [7], we add

appropriate assignment edges to model inter-procedural

pointer flow through method parameters and return values.

We took this approach of generating all the constraints

ahead of time because in this first study, we wanted to

clearly separate the constraint generator from the solver. In

future work, we plan to integrate them more closely,

making it possible to experiment with building the call

graph on-the-fly as the points-to analysis proceeds. The

inference rules shown in Figure 5 are used to compute

points-to sets. The basic idea is to apply these rules until a

fixed point is reached. The first rule models simple

assignments: if l1 points to O, and is assigned to l2, then l2

also points to O. The second rule models field stores: if l

points to O2, and is stored into q.f, then O1.f also points to

O2 for each O1 pointed to by q.

Figure 4. The four types of pointer statements (constraints).

Similarly, the third rule models field loads: if l is loaded

from p.f, and p points to O1, then l points to any O2 that

O1.f points to.

Figure 5: Inference Rules

This algorithm is still in its infancy and requires huge

number of improvements. This algorithm has been

improved to extend the support for virtual functions and

auto-boxing. The extension to virtual functions can be

achieved by integrating the Hierarchical Analysis with Fast

Static Analysis. Fast Static Analysis provides excellent

results if virtual functions are present. Hence, a hybrid of

these two Analytical methods will prove to be helpful in

improving the stability of the algorithm. Auto Boxing is

used by most of the programmers since it’s easy to use and

reduces the lines of code. Therefore, compatibility for Auto

1 0 1 0 1 0

V

1

1 V

1

0

V

2

1

V

1

0

H

1

H

0

1 0 1 0

a: l := new C Oa  pt(l)

 l2:= l1 l1 -> l2

 q.f:= l l -> q.f

 l := p.f p.f -> l

M Rajasekhara Babu, Vivek Dilip Mitkari, Karan Thakkar, Kirti Barode / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.011-018

16 | P a g e

Boxing is an essential point that would be taken care of

during the improvement.

A. BDD Implementation

The rules presented in Figure 5 apply to elements of

points-to (pt) and assignment-edge () relations. In BDDs,

we encode them as operations on entire relations, rather

than their individual elements. In our algorithm, we map

the components of relations onto five BuDDy domains

(groups of bit positions).

 FD is a domain representing the set of field

signatures.

 V1 and V2 are domains of variables of pointer

type. We need two such domains in order to

represent the relation of two variables.

 H1 and H2 are domains of allocation sites. Two

are needed, along with the FD domain, in order to

represent the pt relation for fields of objects,

which contains elements of the form O2 pt

(o1. f).

We now describe the most important relations used in the

algorithm, along with the domains onto which they are

mapped.

 pointsTo V1 H1 is the points-to relation for

variables, and consists of elements of the form O2

pt(l).

 fieldPt (H1 FD) H2 is the points-to relation for

fields of heap objects, and consists of elements of

the form O2 pt(O1.f).

 edgeSet V1 V2 is the relation of simple

assignments, and consists of elements of the form

l1 l2.

 stores V1 (V2 FD) is the relation of field

stores, and consists of elements of the form

l1 l2.f .

 loads (V1 FD) V2 is the relation of field

loads, and consists of elements of the form

l1.f l2.

 typeFilter V1 H1 is a relation which specifies

which ob-jects each variable can point-to, based

on its declared type. This is used to restrict the

points-to sets for variables to the appropriate

objects.

The BDD algorithm is given in Figure 6. First, the

algorithm loads input constraints and initializes the

relations introduced above. The main algorithm consists of

an inner loop nested within an outer loop. To make the

algorithm easier to understand, we annotated the type of

the relations involved in each step of computation. Lines

1.1 to 1.2 implement rule (1). In line 1.1, the edgeSet and

pointsTo relations are combined. This rel-prod operation

computes relation {(l2, O) │ l1.l1 l2 Ʌ O pt (l1)}, the

pre-conditions of rule (1). In line 1.2, the relation is

converted to use domains V1 and H1 rather than V2 and H1,

and in line 1.4, it is added into the pointsTo relation. Line

1.3 will be explained later. Lines 2.1 to 2.3 implement rule

(2). Line 2.1 computes the intermediate result of the first

two pre-conditions: tmpRel1 = {(O2, q.f) │ l.O2 pt(l) Ʌ

l q.f}. In line 2.2, tmpRel1 is changed to domains suitable

for the next computation. In line 2.3, the resulting relation

of all three pre-conditions is computed as {(O2, O1.f) │ q.

(O2, q. f) Ʌ O1 pt (q)}.

 In a similar way, lines 3.1 to 3.3 implement rule (3).

Again, the first two pre-conditions are first combined to

form a temporary relation (line 3.1), then combined with

the results from rule (2) (line 3.2). After changing the

result to the appropriate domains (line 3.3), we obtain new

points-to pairs to add to the points-to relation. These are

merged into the pointsTo set in line 4.2. The algorithm in

Figure 6 is very close to the real code of our

implementation using the BuDDy package. So far, we have

not explained the purpose of lines 1.3 and 4.2. An earlier

points-to study [9, 10] showed that static type information

is very useful to limit the size of points-to sets by including

only allocation sites of a subtype of the declared type of

the variable. Lines 1.3 and 4.2 implement this by screening

all newly-introduced points-to pairs with a typeFilter

relation. This relation is constructed in line 0.3 from three

relations read from the input file: the subtype relation

between types, the declared type relation between variables

and types, and the allocated type relation between

allocation sites and type

B. BDD Algorithm for Points-to Analysis

/* --- initialization --- */

/* 0.1 */ load constraints from the input file

/* 0.2 */ initialize pointsTo, edgeSet, loads, and stores

/* 0.3 */ build typeFilter relation

repeat

repeat

/* --- rule 1 --- */

/* 1.1 */ newPt1:[V2xH1] = relprod(edgeSet:[V1xV2],

pointsTo:[V1xH1], V1);

/* 1.2 */ newPt2:[V1xH1] = replace(newPt1:[V2ToV1],

V2ToV1);

/* --- apply type filtering and merge into pointsTo relation

--- */

/* 1.3 */ newPt3:[V1xH1] = newPt2:[V1xH1] \

typeFilter:[V1xH1];

/* 1.4 */ pointsTo:[V1xH1] = pointsTo:[V1xH1] [

newPt3:[V1xH1];

until pointsTo does not change

/* --- rule 2 --- */

/* 2.1 */ tmpRel1:[(V2xFD)xH1] =

relprod(stores:[V1x(V2xFD)], pointsTo:[V1xH1], V1);

/* 2.2 */ tmpRel2:[(V1xFD)xH2] =

replace(tmpRel1:[(V2xFD)xH1], V2ToV1 & H1ToH2);

/* 2.3 */ fieldPt:[(H1xFD)xH2] =

M Rajasekhara Babu, Vivek Dilip Mitkari, Karan Thakkar, Kirti Barode / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.011-018

17 | P a g e

relprod(tmpRel2:[(V1xFD)xH2], pointsTo:[V1xH1], V1);

/* --- rule 3 --- */

/* 3.1 */ tmpRel3:[(H1xFD)xV2] =

relprod(loads:[(V1xFD)xV2], pointsTo:[V1xH1], V1);

/* 3.2 */ newPt4:[V2xH2] =

relprod(tmpRel3:[(H1xFD)xV2], fieldPt:[(H1xFD)xH2],

H1xFD);

/* 3.3 */ newPt5:[V1xH1] = replace(newPt4:[V2xH2],

V2ToV1 & H2ToH1]);

/* --- rule 4 --- */

/* --- apply type filtering and merge into pointsTo relation

--- */

/* 4.1 */ newPt6:[V1xH1] = newPt5:[V1xH1] \ typeFilter:[

V1xH1];

/* 4.2 */ pointsTo:[V1xH1] = pointsTo:[V1xH1] [

newPt6:[V1xH1];

until pointsTo does not change

Figure 6: The basic BDD algorithm for points-to analysis

VI. EXPERIMENT RESULTS
Here we are considering two factors in choosing a

variable ordering: the ordering of domains and interleaving

of the variables of different domains. We use the following

naming scheme for orderings: when we list several domain

names together, their variables are interleaved; when we

list domain names separated by underscores, the variables

of one domain all come before those of the next. For

example, if f0, f1,..., fn are the variables of the domain fd

and v0 ,v1,...,vn are the variables of the domain v1, the

ordering fdv1 corresponds to f0v0 f1v1.... fnvn , and fd_v1

corresponds to f0 f1.... fnv0v1....vn.

Within each domain, the variables are arranged from the

most significant bit to the least significant bit, because the

more significant bits may not all be used (always 0), and

placing them closer to the beginning reduces the BDD size.

 Using the default ordering fdv1v2h1h2, our BDD solver

cannot solve real benchmarks. We investigated the

performance bottleneck and found that most of time was

spent on the relprod operation for rule (1) (line 1.1 of

Figure 6). This operation propagates points-to sets along

assignment edges. Since this operation only involves the

edgeSet and pointsTo relations, which use the domains v1,

v2 and h1, only the arrangement of these three domains

affects this operation. We experimented with several

arrangements and interleaving of these three key domains.

The effect of two different orderings of the domains h1 and

v1 on the execution time of the rel-prod operation in line

1.1 (on the javac benchmark, with off-line simplification

and respecting declared types) is shown in the graph in

Figure 7. In the given graph, the x-axis gives the loop

iteration number and the y-axis gives the time spent on

each iteration of the relprod operation in line 1.1. The solid

line corresponds to the case where h1 comes after v1

whereas the dotted line corresponds to the case where h1

comes before v1. It is observed that the execution time of

relprod changes dramatically: with v1 before h1, each

operation takes less than 0.5s, while with h1 before v1, each

operation takes about 4.2s on average. Thus, our

experiments with other orderings confirm this behavior,

and we can conclude that arranging v1 before h1 is a good

heuristic.

Figure 7. Effect of domain arrangement

VII. CONCLUSION AND FUTURE WORK
In this paper, we presented a BDD based points-to

analysis that scales very well in terms of time and space,

and is very easy to implement using standard BDD

packages. The motivation to use BDDs came from the fact

that for large programs, the number and size of points-to

sets can grow so that even well-tuned traditional

representations fail to scale appropriately. BDDs have been

shown to work well for large problems in the model

checking community, and we wanted to see if it could be

applied effectively to the points-to problem. We showed

that with the appropriate tuning, a fairly simple algorithm

could deliver a solver that was competitive with previously

existing solvers and provided a very compact

representation of points-to relationships. In our work so

far, we concentrated on choosing a good variable ordering

and developing the incremental propagation algorithm. It is

possible that this could be further improved by introducing

some aspects of graph-based solvers into the BDD solver.

For example, it would be very interesting to see if efficient

BDD algorithms for collapsing strongly connected

components [11] would further improve the efficiency of

our BDD based points-to algorithm. Another idea which

has been suggested for improving the efficiency of BDDs

is dynamic variable reordering.

ACKNOWLEDGMENT
The authors would like to thank the School of

Computer Science and Engineering, VIT University, for

giving them the opportunity to carry out this project and

also for providing them with the requisite resources and

infrastructure for carrying out the research.

M Rajasekhara Babu, Vivek Dilip Mitkari, Karan Thakkar, Kirti Barode / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.011-018

18 | P a g e

REFERENCES
[1] S. Horwitz. Precise flow-insensitive may-alias

analysis is NP-Hard. ACM Transactions on

Programming Languages and Systems, 19(1):1–6,

Jan. 1997.

[2] W. Landi. Undecidability of static analysis. ACM

Letters on Programming Languages and Systems,

1(4):323–337, 1992.

[3] Jørn Lind-Nielsen. BuDDy, a Binary Decision

Diagram Package. Department of Information

Technology, Technical University of Denmark,

http://www.itu.dk/research/buddy/.

[4] Flow-Sensitive Pointer Analysis for Millions of

Lines of Code, by Ben Hardekopf University of

California, Calvin Lin The University of Texas at

Austin, Semi-sparse flow-sensitive pointer analysis.

In Symposium on Principles of Programming

Languages (POPL), 2009.

[5] Points-to Analysis for Java Using Annotated

Constraints by Atanas Rountev Ana Milanova

Barbara G. Ryder Department of Computer Science

Rutgers University New

Brunswick,NJ08901frountev,milanova,ryderg@cs.r

utgers.edu.

[6] L. Andersen. Program Analysis and Specialization

for the C Programming Language. PhD thesis,

DIKU, University of Copenhagen, 1994.

[7] Pointer Analysis: Haven’t We Solved This Problem

Yet? , Michael Hind IBM Watson Research Centre

30 Saw Mill River Road Hawthorne, New York

10532,june 18-19,2001,ACM Journal

Snowbird,Utah,USA .

[8] fficient Field-Sensitive Pointer Analysis for C,

David J. Pearce, Paul H. J. Kelly, and Chris Hankin.

E. Cientifeld, ACMTransactions on Programming

Languages and Systems, Vol. 30, No. 1, Article 4,

Publication date: Nov. 2007.

[9] Ondˇrej Lhot´ak. Spark: A flexible points-to analysis

framework for Java. Master’s thesis, McGill

University, December 2002.

[10] Ondˇrej Lhot´ak and Laurie Hendren. Scaling Java

points-to analysis using Spark. In G. Hedin, editor,

Compiler Construction, 12th International

Conference, volume 2622 of LNCS, pages 153–169,

Warsaw, Poland, April 2003. Springer.

[11] Aiguo Xie and Peter A. Beerel. Implicit

enumeration of strongly connected components. In

International Conference on Computer-Aided

Design, pages 37 – 40, Nov 1999.

