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Abstract—  

Pointer analysis is the problem of statically 

determining the runtime targets of pointer variables in 

a program. This information has a wide variety of 

client applications in optimizing compilers and software 

engineering tools. This paper focuses on precise points-

to analysis for Object Oriented Languages (OOL) such 

as Java, C#, Scala, etc based on Andersen's points-to 

analysis for C language, which validates the 

performance of the analysis on a large set of Java 

programs. Implementation of this analysis is done by 

using a subset-based approach which is done by using 

Binary Decision Diagrams (BDDs). This paper first 

introduces BDDs and operations on BDDs using some 

simple points-to examples. Then, a complete subset-

based points-to algorithm is presented, expressed 

completely using BDDs and BDD operations. 
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I.  INTRODUCTION 
This paper requires pointer behavior knowledge to 

analyze program which uses pointers. Without this 

knowledge accessing pointer will lead to affect the 

precision and efficiency of any analysis that requires this 

information, such as optimizing compilers or a program 

understanding tools. Pointer analysis is the problem of 

statically determining the runtime targets of pointer 

variables in a program. A solution is imprecise if, for any 

variable, the inferred target set is larger than necessary. 

Thus, the most imprecise but sound solution has each 

variable pointing to every other. Obtaining a perfect (i.e. 

flow-sensitive and context sensitive) solution, however, is 

undecidable in general [2] and, in practice; obtaining even 

relatively imprecise information (i.e. flow-insensitive and 

context-insensitive) is expensive [1]. 

A software system requires strong support from software 

engineering tools for program understanding, maintenance, 

and testing. To determine properties of a program at run-

time, various static analysis methods are followed which 

optimizes compilers and software engineering tools [5]. 

One of the fundamental static analyses is points-to 

analysis. For OOL, points-to analysis determines the set of 

objects whose addresses may be stored in a given reference 

variable or reference object field. The analysis constructs 

an abstraction for the run-time memory states of the 

analyzed program by computing such points-to sets for  

 

variables and fields. This abstraction is typically 

represented by one or more points-to graphs. Points-to 

analysis enables a variety of other analyses. For example, 

side-effect analysis, which determines the memory 

locations that may be modified by the execution of a 

statement, and def-use analysis, which identifies pairs of 

statements that set the value of a memory location and 

subsequently use the value [5]. Such analyses are needed 

by compilers to perform well-known optimizations such as 

code motion and partial redundancy elimination. These 

analyses are also important in the context of software 

engineering tools, for example, def-use analysis is needed 

for program slicing and data-flow-based testing. Points-to 

analysis is a crucial prerequisite for employing these 

analyses and optimizations. In this paper we define and 

evaluate a point-to analysis for OOL which is based on 

Andersen's points-to analysis for C [6], with all extensions 

necessary to handle object-oriented features. 

 

At a very high level, one can see this problem as finding 

the allocation sites that reach a variable in the program. 

Consider an allocation statement S: a = new A ();. If a 

variable x is used in some other part of the program, then 

one would like to know whether x can refer to (point-to) an 

object allocated at S. 

A key problem in developing efficient solvers for the 

subset-based points-to analysis is that for large programs 

there are many points-to sets, and each points-to set can 

become very large. Often, many of these points-to sets are 

equal or almost equal. In particular, we wanted to examine 

three aspects of the BDD solution: (a) execution time for 

the solver, (b) memory usage, and (c) ease of specifying 

the points-to algorithm using a standard BDD package. In 

summary, our experience was that BDDs were very 

effective in all three aspects. 

 

II. RELATED WORK 

Pointer analysis is hot cake in the area of compiler 

optimization. Till 2001, one hundred papers and twelve 

PhD thesis have been published on pointer analysis at 

various level of analysis abstraction [7]. (David J. Pearce et 

al., 2007) proposed Efficient Field-Sensitive Pointer 

Analysis for C which includes an approach to model 

indirect struct call and function calls and aggregates for 

pointer analysis of C. For the first time, an O (v) bound on 

the time needed for field-sensitive pointer analysis of C is 
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obtained, where v is the number of nodes in the constraint 

graph. Furthermore, they evaluated its effect on time and 

precision and these results indicate that field-sensitivity, 

while offering greater precision, is expensive to compute 

[8]. Tobias Gutzmann et al. proposed Towards Path-

Sensitive Points-to Analysis analyses the basic definitions 

of pointer analysis, name schema, flow sensitivity, context 

sensitivity, and SSA (Static Single Assignment). Path 

sensitive approach was proposed which uses the fact that 

control flow statements may make branching decisions 

based upon input variables. A general approach was 

presented which can be applied to many intermediate 

representations and its application (with and without SSA 

form). Implementation for Flow-Insensitive Analysis and 

Memory SSA based Program Representation is also 

presented. At last various metrics like abstract metrics, 

source level metrics, and performance considerations for 

different type of programs in different languages.Paul 

Anderson et al. proposed Flow insensitive points-to sets in 

which pointer analysis is performed. Flow-insensitive 

analysis assumes that program statements can be executed 

in any order which consider two algorithms that perform 

flow and context insensitive points-to analysis. Both 

algorithms are first considered with structure fields 

collapsed and then with structure fields expanded.  The first 

is an implementation of Andersen’s algorithm and   second 

an extension of Fahndrich’s algorithm. Both algorithms 

read in normalized statements that represent the pointer 

manipulations in the program and comparison is done on 

the basis of points- to data i.e. collapsed fields, expanded 

fields and Edge histograms. Maryam Emami et al. 

proposed Context-Sensitive Interprocedural Points-to 

Analysis in the Presence of Function Pointers. 

A new method for computing the points-to information for 

stack allocated data structures is projected. This method 

uses the concept of abstract stack locations to capture all 

possible and definite relationships between accessible stack 

locations. The method provides context-sensitive inter-

procedural information, and it handles general function 

pointers in an integrated fashion. The points-to information 

can be used to generate traditional alias pairs, or it can be 

used directly for numerous other optimization and 

transformations including pointer replacement and array 

dependence testing. Rupesh Nasre et al. proposed 

Prioritizing Constraint Evaluation for Efficient Points-to 

Analysis where prioritizing approach is projects an 

inclusion-based point-to analysis. In typical inclusion-

based points-to analysis iteratively evaluates constraints 

and computes points-to solution until a fix point. In each 

iteration, (i) points-to information is propagated across 

directed edges in a constraint graph G and (ii) more edges 

are added by processing the points-to constraints. It is 

observed that by prioritizing the order of processing the 

information within each of the above two steps can lead to 

efficient execution of the points-to analysis. A 

prioritization framework is developed for implementing 

prioritized versions of Andersen’s analysis. Ben Hardekopf 

et al. proposed a Flow-Sensitive Pointer Analysis for 

Millions of Lines of Code. The typical method for 

optimizing a flow-sensitive dataflow analysis is to perform 

a sparse analysis which directly connects variable 

definitions with their uses, allowing data flow facts to be 

propagated only to those program locations that need the 

values. Unfortunately, sparse pointer analysis is 

problematic because pointer information is required to 

compute the very def-use information that would enable a 

sparse analysis. This paper shows how this difficulty can 

be overcome and how the use of a sparse analysis greatly 

increases the scalability of flow-sensitive pointer analysis. 

The key insight behind our technique is to stage the pointer 

analysis. Auxiliary pointer analysis first computes 

conservative def-use information, which then enables the 

primary flow-sensitive analysis to be, performed sparsely 

using the conservative def-use information. This idea 

actually defines a family of staged flow-sensitive analyses. 

 

Not only for procedural language but also for object 

oriented language point-to analysis algorithms have been 

proposed. Atanas Rountev et al., proposed Points-to 

Analysis for Java Using Annotated Constraints. authors 

have define and evaluate a points-to analysis for Java 

which is based on Andersen's points-to analysis for C , 

with all extensions necessary to handle object-oriented 

features. It includes implementation of the analysis is done 

by using a constraint-based approach which employs 

annotated inclusion constraints. Constraint annotations 

allow to model precisely and efficiently the semantics of 

virtual calls and the flow of values through object fields. 

Pointer analysis is hot cake in the area of compiler 

optimization. Till 2001, one hundred papers and twelve 

PhD thesis have been published on pointer analysis at 

various level of analysis abstraction [7]. (David J. Pearce et 

al., 2007) proposed Efficient Field-Sensitive Pointer 

Analysis for C which includes an approach to model 

indirect struct call and function calls and aggregates for 

pointer analysis of C. For the first time, an O (v) bound on 

the time needed for field-sensitive pointer analysis of C is 

obtained, where v is the number of nodes in the constraint 

graph. Furthermore, they evaluated its effect on time and 

precision and these results indicate that field-sensitivity, 

while offering greater precision, is expensive to compute 

[8]. Tobias Gutzmann et al. proposed Towards Path-

Sensitive Points-to Analysis analyses the basic definitions 

of pointer analysis, name schema, flow sensitivity, context 

sensitivity, and SSA (Static Single Assignment). Path 

sensitive approach was proposed which uses the fact that 

control flow statements may make branching decisions 

based upon input variables. A general approach was 

presented which can be applied to many intermediate 

representations and its application (with and without SSA 

form). Implementation for Flow-Insensitive Analysis and 

Memory SSA based Program Representation is also 
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presented. At last various metrics like abstract metrics, 

source level metrics, and performance considerations for 

different type of programs in different languages.Paul 

Anderson et al. proposed Flow insensitive points-to sets in 

which pointer analysis is performed. Flow-insensitive 

analysis assumes that program statements can be executed 

in any order which consider two algorithms that perform 

flow and context insensitive points-to analysis. Both 

algorithms are first considered with structure fields 

collapsed and then with structure fields expanded.  The first 

is an implementation of Andersen’s algorithm and   second 

an extension of Fahndrich’s algorithm. Both algorithms 

read in normalized statements that represent the pointer 

manipulations in the program and comparison is done on 

the basis of points- to data i.e. collapsed fields, expanded 

fields and Edge histograms. Maryam Emami et al. 

proposed Context-Sensitive Interprocedural Points-to 

Analysis in the Presence of Function Pointers. 

A new method for computing the points-to information for 

stack allocated data structures is projected. This method 

uses the concept of abstract stack locations to capture all 

possible and definite relationships between accessible stack 

locations. The method provides context-sensitive inter-

procedural information, and it handles general function 

pointers in an integrated fashion. The points-to information 

can be used to generate traditional alias pairs, or it can be 

used directly for numerous other optimization and 

transformations including pointer replacement and array 

dependence testing. Rupesh Nasre et al. proposed 

Prioritizing Constraint Evaluation for Efficient Points-to 

Analysis where prioritizing approach is projects an 

inclusion-based point-to analysis. In typical inclusion-

based points-to analysis iteratively evaluates constraints 

and computes points-to solution until a fix point. In each 

iteration, (i) points-to information is propagated across 

directed edges in a constraint graph G and (ii) more edges 

are added by processing the points-to constraints. It is 

observed that by prioritizing the order of processing the 

information within each of the above two steps can lead to 

efficient execution of the points-to analysis. A 

prioritization framework is developed for implementing 

prioritized versions of Andersen’s analysis. Ben Hardekopf 

et al. proposed a Flow-Sensitive Pointer Analysis for 

Millions of Lines of Code. The typical method for 

optimizing a flow-sensitive dataflow analysis is to perform 

a sparse analysis which directly connects variable 

definitions with their uses, allowing data flow facts to be 

propagated only to those program locations that need the 

values. Unfortunately, sparse pointer analysis is 

problematic because pointer information is required to 

compute the very def-use information that would enable a 

sparse analysis. This paper shows how this difficulty can 

be overcome and how the use of a sparse analysis greatly 

increases the scalability of flow-sensitive pointer analysis. 

The key insight behind our technique is to stage the pointer 

analysis. Auxiliary pointer analysis first computes 

conservative def-use information, which then enables the 

primary flow-sensitive analysis to be, performed sparsely 

using the conservative def-use information. This idea 

actually defines a family of staged flow-sensitive analyses. 

Not only for procedural language but also for object 

oriented language point-to analysis algorithms have been 

proposed. Atanas Rountev et al., proposed Points-to 

Analysis for Java Using Annotated Constraints. authors 

have define and evaluate a points-to analysis for Java 

which is based on Andersen's points-to analysis for C , 

with all extensions necessary to handle object-oriented 

features. It includes implementation of the analysis is done 

by using a constraint-based approach which employs 

annotated inclusion constraints. Constraint annotations 

allow to model precisely and efficiently the semantics of 

virtual calls and the flow of values through object fields. 

 

III. MOTIVATION 
Modern superscalar and VLIW (Very Long 

Instruction Word) processors require sufficient Instruction 

Level Parallelism (ILP) to reach peak utilisation. For this 

reason, exposing ILP through instruction scheduling and 

register allocation is a crucial role of the compiler. This 

task is complicated by the presence of instructions which 

indirectly reference memory, since their data dependencies 

are not known. For languages such as C/C++, this problem 

is particularly acute because pointer variables (the main 

source of indirect memory references) can target 

practically every memory location without restriction. 

Therefore, to achieve maximum pipeline throughput, the 

compiler must rely on pointer analysis to disambiguate 

indirect memory references. Pointer analysis is an 

important enabling technology that can improve the 

precision and performance of many program analyses by 

providing precise pointer information. 

Finally, pointer analysis finds many other important uses 

within the compiler. In particular, it often enables 

traditional optimisations (e.g. common sub expression 

elimination) to be applied at places which would otherwise 

be deemed unsafe. 

 

IV. BDD BACKGROUND 
A Binary Decision Diagram (BDD) is a 

representation of a set of binary strings of length n that is 

often, equivalently, thought of as a binary-valued function 

that maps binary strings of length n to 1 if they are in the 

set or to 0 if they are not. Structurally, a BDD is a rooted 

directed acyclic graph, with terminal nodes 0 and 1, and 

where every non-leaf node has two successors: a 0-

successor and a 1-successor. As in a binary tree, to 

determine whether a string is in the set represented by a 

BDD, one starts at the root node, and proceeds down the 

BDD by following either the 0- or 1- successor of the 

current node depending on the value of the bit of the string 
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being tested. Eventually, one ends up either at 1, indicating 

that the string is in the set, or at 0 indicating that it is not. 

To use a concrete example, consider the program fragment 

in Figure 1. The points-to relation we would compute for 

this code is {(a, X), (a, Y), (b, X), (b, Y), (c, X), (c, Y), (c, 

Z)}, where (a, A) indicates that variable a may point to 

objects allocated at allocation site X. Using 00 to represent 

a and X, 01 to represent b and Y, and 10 to represent c and 

Z, we can encode this points-to relation using the set 

{0000,0001,0100,0101,1000,1001,1010} . 

Figure 2(a) shows an unreduced BDD representing this set 

where the variables a, b and c are encoded at BDD node 

levels V0 and V1 and the heap objects X, Y and Z are 

encoded at the H0 and H1 levels. As a convention, 0-

successors are indicated by dotted edges and 1-successors 

are indicated by solid edges. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Example code fragment 

 

Notice that nodes marked P, Q, and R in Figure 2(a) are at 

the same level and have the same 0- and 1-successors. This 

is because they represent the subset {X, Y}, which is 

shared by all three pro-gram variables. Because they are at 

the same level and share the same successors, they could 

be merged into a single node, reducing the size of the 

BDD. Furthermore, since their two successors are the same 

(the 1 node), their successor does not depend on the bit 

being tested, so the nodes could be removed entirely. 

Simplifying other nodes in this manner, we get the BDD in 

Figure 2(b). The BDD with the fewest nodes is unique if 

we maintain a consistent ordering of the nodes; it is called 

a reduced BDD. When BDDs are used for computation, 

they are always kept in a reduced form. 

In the examples so far, the bits of strings were tested in the 

order in which they were written. However, any ordering 

can be used, as long as it is consistent over all strings 

represented by the BDD. 

For example, Figure 2(c) shows the BDD that represents 

the same relation, but tests the bits in a different order. 

This BDD requires 8 nodes, rather than 5 nodes as in 

Figure 2(b). In general, choosing a bit ordering which 

keeps the BDDs small is very important for efficient 

computation; however, determining the optimal ordering is 

NP-hard [4]. BDDs support the usual set operations (union, 

inter-section, complement, difference) and can be 

maintained in reduced form during each operation. A 

binary operation on BDDs X and Y, such as X  Y, takes 

time proportional to the number of nodes in the BDDs 

representing the operands and result. In the worst case, the 

number of nodes in the BDD representing the result can be 

the product of the number of nodes in the two operands, 

but in most cases, the reduced BDD is much smaller [4]. 

BuDDy [3] is one of several publicly-available BDD 

packages. Instead of requiring the programmer to 

manipulate individual bit positions in BDDs, BuDDy 

provides an interface for grouping bit positions together. 

The term domain is used to refer to such a group. In the 

example in Figure 2, we used the domain V to represent 

variables, and H to represent pointed-to heap locations. 

Another BDD operation is existential quantification. For 

example, given a points-to relation P  H, we can 

existentially quantify over H to find the set S of variables 

with non-empty points-to sets:               S = {v│ h. (v, h)  

P}. 

The relational product operation implemented in 

BuDDy composes set intersection with existential 

quantification, but is implemented more efficiently than 

these two operations composed. Specifically, rel-prod(A, 

B, V1) = {(v2, h) │ v1. ((v1, v2) A Ʌ (v1, h) B)}. To 

illustrate this with an example, for the code fragment in 

Figure 1, consider the initial points-to set {(a, X), (b, Y), 

(c, Z)} (corresponding to the first three lines of code) and 

the assignment edge set {(b, a), (a, b), (b, c)} 

(corresponding to the last three lines of code). The pair (a, 

b) corresponds to the statement b: = a; that is, we write the 

variables in reverse order, indicating that all allocation 

sites reaching a also reach b. The initial points-to set is 

represented in the BDD in Figure 3(a) using the domains 

V1 and H1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           (a)                                            (b)                                   

(c) 

 

Figure 2. BDDs for points-to relation {(a, X), (a, Y), (b, 

X), (b, Y), (c, X), (c, Y), (c, Z)} (a) Unreduced using 

ordering V1V0H1H0, (b) reduced using ordering 

X: a = new O (); 

Y: b = new O (); 

Z: c = new O (); 

a = b; 

b = a; 

c = b; 
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V1V0H1H0, (c) reduced using alternative ordering 

H0V0H1V1 

 

 

 

 

 

 

 

 

 

 

 

       

    (a)                     (b)              (c)                 (d)              (e) 

 

Figure 3. (a) BDD for initial points-to set {(a, X),(b, Y),(c, 

Z)} (b) BDD for edge set {(a  b),(b a), (b c)} (c) 

result of rel-prod((a),(b),V1) (the points-to set {(a, Y),(b, 

X),(c, C)}) (d) result of replace((c),V2ToV1) (e) result of 

(a) (d) (the points-to set {(a, X),(a, Y),(b, X),(b, Y),(c, 

Y),(c, Z)} 

 

The edge set contains pairs of variables, so two variable 

domains (V1 and V2) are required to represent it; its 

representation is shown in Figure 3(b). Given these two 

BDDs, we can apply the relational product with respect to 

V 1 to obtain the BDD of the points-to sets after 

propagation along the edges (Figure 3(c)), using the 

domains V2 and H. 

The replace operation creates a BDD in which information 

that was stored in one domain is moved into a different 

domain. For example, we would like to find the union of 

the points-to relations in parts (a) and (c) of Figure 3, but 

the former uses the domains V1 and H, while the latter uses 

V2 and H. 

Before finding the union, we are applying the replace 

operation to (c) to obtain (d), which, like (a), uses domains 

V1 and H. We can now find (e) = (a)  (d), the points-to set 

after one step of propagation. If we repeated these steps a 

second time, we would obtain the final points-to set BDD 

from Figure 2(b). 

 

Note that it is possible for a BDD for a large set to have 

fewer nodes than the BDD for a smaller set. In this case, 

although the points-to set grows from three, to six, to seven 

pairs, the BDD representing it goes from eight to six to five 

nodes (see Figures 3(a), 3(e), and 2(b), respectively). 

 

V. POINTS-TO ALGORITHM WITH BDDS 
A points-to analysis computes a points-to relation 

between variables of pointer type and allocation sites. Our 

analysis is a Java extension of the analysis suggested for C 

by Andersen [1]. As such, it is both flow-insensitive and 

context-insensitive. The analysis takes as input constraints 

modeling four types of statements: allocation, simple 

assignment, field store, and field load (Figure 4). Pt (l) 

indicates the points-to set of variable l. l1 l2 indicates that 

l2 may point to anything that l1 may point to. Based on a 

call graph built using class hierarchy analysis [7], we add 

appropriate assignment edges to model inter-procedural 

pointer flow through method parameters and return values. 

We took this approach of generating all the constraints 

ahead of time because in this first study, we wanted to 

clearly separate the constraint generator from the solver. In 

future work, we plan to integrate them more closely, 

making it possible to experiment with building the call 

graph on-the-fly as the points-to analysis proceeds. The 

inference rules shown in Figure 5 are used to compute 

points-to sets. The basic idea is to apply these rules until a 

fixed point is reached. The first rule models simple 

assignments: if l1 points to O, and is assigned to l2, then l2 

also points to O. The second rule models field stores: if l 

points to O2, and is stored into q.f, then O1.f also points to 

O2 for each O1 pointed to by q. 

 

 

 

 

 

 

 

Figure 4. The four types of pointer statements (constraints). 

 

Similarly, the third rule models field loads: if l is loaded 

from p.f, and p points to O1, then l points to any O2 that 

O1.f points to. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Inference Rules 

 

This algorithm is still in its infancy and requires huge 

number of improvements. This algorithm has been 

improved to extend the support for virtual functions and 

auto-boxing. The extension to virtual functions can be 

achieved by integrating the Hierarchical Analysis with Fast 

Static Analysis. Fast Static Analysis provides excellent 

results if virtual functions are present. Hence, a hybrid of 

these two Analytical methods will prove to be helpful in 

improving the stability of the algorithm. Auto Boxing is 

used by most of the programmers since it’s easy to use and 

reduces the lines of code. Therefore, compatibility for Auto 
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a: l := new C        Oa  pt(l) 

     l2:= l1               l1 -> l2 

     q.f:= l              l -> q.f 

     l := p.f              p.f -> l 
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Boxing is an essential point that would be taken care of 

during the improvement. 

A. BDD Implementation 

The rules presented in Figure 5 apply to elements of 

points-to (pt) and assignment-edge ( ) relations. In BDDs, 

we encode them as operations on entire relations, rather 

than their individual elements. In our algorithm, we map 

the components of relations onto five BuDDy domains 

(groups of bit positions). 

 FD is a domain representing the set of field 

signatures. 

 V1 and V2 are domains of variables of pointer 

type. We need two such domains in order to 

represent the  relation of two variables. 

 H1 and H2 are domains of allocation sites. Two 

are needed, along with the FD domain, in order to 

represent the pt relation for fields of objects, 

which contains elements of the form    O2  pt 

(o1. f). 

We now describe the most important relations used in the 

algorithm, along with the domains onto which they are 

mapped. 

 pointsTo  V1 H1 is the points-to relation for 

variables, and consists of elements of the form O2 

pt(l). 

 fieldPt  (H1 FD) H2 is the points-to relation for 

fields of heap objects, and consists of elements of 

the form O2 pt(O1.f ). 

 edgeSet  V1 V2 is the relation of simple 

assignments, and consists of elements of the form 

l1 l2. 

 stores  V1  (V2  FD) is the relation of field 

stores, and consists of elements of the form  

l1  l2.f . 

 loads  (V1  FD) V2 is the relation of field 

loads, and consists of elements of the form  

l1.f  l2. 

 typeFilter  V1  H1 is a relation which specifies 

which ob-jects each variable can point-to, based 

on its declared type. This is used to restrict the 

points-to sets for variables to the appropriate 

objects. 

 

The BDD algorithm is given in Figure 6. First, the 

algorithm loads input constraints and initializes the 

relations introduced above. The main algorithm consists of 

an inner loop nested within an outer loop. To make the 

algorithm easier to understand, we annotated the type of 

the relations involved in each step of computation. Lines 

1.1 to 1.2 implement rule (1). In line 1.1, the edgeSet and 

pointsTo relations are combined. This rel-prod operation 

computes relation {(l2, O) │ l1.l1  l2 Ʌ O pt (l1)}, the 

pre-conditions of rule (1). In line 1.2, the relation is 

converted to use domains V1 and H1 rather than V2 and H1, 

and in line 1.4, it is added into the pointsTo relation. Line 

1.3 will be explained later. Lines 2.1 to 2.3 implement rule 

(2). Line 2.1 computes the intermediate result of the first 

two pre-conditions: tmpRel1 = {(O2, q.f) │  l.O2  pt(l) Ʌ 

l q.f}. In line 2.2, tmpRel1 is changed to domains suitable 

for the next computation. In line 2.3, the resulting relation 

of all three pre-conditions is computed as {(O2, O1.f) │ q. 

(O2, q. f) Ʌ O1 pt (q)}. 

 In a similar way, lines 3.1 to 3.3 implement rule (3). 

Again, the first two pre-conditions are first combined to 

form a temporary relation (line 3.1), then combined with 

the results from rule (2) (line 3.2). After changing the 

result to the appropriate domains (line 3.3), we obtain new 

points-to pairs to add to the points-to relation. These are 

merged into the pointsTo set in line 4.2. The algorithm in 

Figure 6 is very close to the real code of our 

implementation using the BuDDy package. So far, we have 

not explained the purpose of lines 1.3 and 4.2. An earlier 

points-to study [9, 10] showed that static type information 

is very useful to limit the size of points-to sets by including 

only allocation sites of a subtype of the declared type of 

the variable. Lines 1.3 and 4.2 implement this by screening 

all newly-introduced points-to pairs with a typeFilter 

relation. This relation is constructed in line 0.3 from three 

relations read from the input file: the subtype relation 

between types, the declared type relation between variables 

and types, and the allocated type relation between 

allocation sites and type 

B. BDD Algorithm  for Points-to Analysis 

 

/* --- initialization --- */ 

/* 0.1 */ load constraints from the input file 

/* 0.2 */ initialize pointsTo, edgeSet, loads, and stores 

/* 0.3 */ build typeFilter relation 

repeat 

repeat 

/* --- rule 1 --- */ 

/* 1.1 */ newPt1:[V2xH1] = relprod(edgeSet:[V1xV2], 

pointsTo:[V1xH1], V1); 

/* 1.2 */ newPt2:[V1xH1] = replace(newPt1:[V2ToV1], 

V2ToV1); 

/* --- apply type filtering and merge into pointsTo relation 

--- */ 

/* 1.3 */ newPt3:[V1xH1] = newPt2:[V1xH1] \ 

typeFilter:[V1xH1]; 

/* 1.4 */ pointsTo:[V1xH1] = pointsTo:[V1xH1] [ 

newPt3:[V1xH1]; 

until pointsTo does not change 

 

/* --- rule 2 --- */ 

/* 2.1 */ tmpRel1:[(V2xFD)xH1] = 

relprod(stores:[V1x(V2xFD)], pointsTo:[ V1xH1], V1); 

/* 2.2 */ tmpRel2:[(V1xFD)xH2] = 

replace(tmpRel1:[(V2xFD)xH1], V2ToV1 & H1ToH2); 

/* 2.3 */ fieldPt:[(H1xFD)xH2] = 



M Rajasekhara Babu, Vivek Dilip Mitkari, Karan Thakkar, Kirti Barode / International Journal of 

Engineering Research and Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 4, July-August 2012, pp.011-018 

17 | P a g e  

 

relprod(tmpRel2:[(V1xFD)xH2], pointsTo:[ V1xH1], V1); 

 

/* --- rule 3 --- */ 

/* 3.1 */ tmpRel3:[(H1xFD)xV2] = 

relprod(loads:[(V1xFD)xV2], pointsTo:[V1xH1], V1); 

/* 3.2 */ newPt4:[V2xH2] = 

relprod(tmpRel3:[(H1xFD)xV2], fieldPt:[(H1xFD)xH2], 

H1xFD); 

/* 3.3 */ newPt5:[ V1xH1] = replace(newPt4:[V2xH2], 

V2ToV1 & H2ToH1]); 

 

/* --- rule 4 --- */ 

/* --- apply type filtering and merge into pointsTo relation 

--- */ 

/* 4.1 */ newPt6:[ V1xH1] = newPt5:[ V1xH1] \ typeFilter:[ 

V1xH1]; 

/* 4.2 */ pointsTo:[ V1xH1] = pointsTo:[V1xH1] [ 

newPt6:[V1xH1]; 

until pointsTo does not change 

Figure 6: The basic BDD algorithm for points-to analysis 

 

VI. EXPERIMENT RESULTS 
Here we are considering two factors in choosing a 

variable ordering: the ordering of domains and interleaving 

of the variables of different domains. We use the following 

naming scheme for orderings: when we list several domain 

names together, their variables are interleaved; when we 

list domain names separated by underscores, the variables 

of one domain all come before those of the next. For 

example, if f0, f1,..., fn are the variables of the domain fd 

and v0 ,v1,...,vn are the variables of the domain v1, the 

ordering fdv1 corresponds to f0v0 f1v1.... fnvn , and fd_v1 

corresponds to f0 f1.... fnv0v1....vn.  

Within each domain, the variables are arranged from the 

most significant bit to the least significant bit, because the 

more significant bits may not all be used (always 0), and 

placing them closer to the beginning reduces the BDD size. 

 Using the default ordering fdv1v2h1h2, our BDD solver 

cannot solve real benchmarks. We investigated the 

performance bottleneck and found that most of time was 

spent on the relprod operation for rule (1) (line 1.1 of 

Figure 6). This operation propagates points-to sets along 

assignment edges. Since this operation only involves the 

edgeSet and pointsTo relations, which use the domains v1, 

v2 and h1, only the arrangement of these three domains 

affects this operation. We experimented with several 

arrangements and interleaving of these three key domains. 

The effect of two different orderings of the domains h1 and 

v1 on the execution time of the rel-prod operation in line 

1.1 (on the javac benchmark, with off-line simplification 

and respecting declared types) is shown in the graph in 

Figure 7. In the given graph, the x-axis gives the loop 

iteration number and the y-axis gives the time spent on 

each iteration of the relprod operation in line 1.1. The solid 

line corresponds to the case where h1 comes after v1 

whereas the dotted line corresponds to the case where h1 

comes before v1. It is observed that the execution time of 

relprod changes dramatically: with v1 before h1, each 

operation takes less than 0.5s, while with h1 before v1, each 

operation takes about 4.2s on average. Thus, our 

experiments with other orderings confirm this behavior, 

and we can conclude that arranging v1 before h1 is a good 

heuristic. 

 

 
 

Figure 7. Effect of domain arrangement 

 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we presented a BDD based points-to 

analysis that scales very well in terms of time and space, 

and is very easy to implement using standard BDD 

packages. The motivation to use BDDs came from the fact 

that for large programs, the number and size of points-to 

sets can grow so that even well-tuned traditional 

representations fail to scale appropriately. BDDs have been 

shown to work well for large problems in the model 

checking community, and we wanted to see if it could be 

applied effectively to the points-to problem. We showed 

that with the appropriate tuning, a fairly simple algorithm 

could deliver a solver that was competitive with previously 

existing solvers and provided a very compact 

representation of points-to relationships. In our work so 

far, we concentrated on choosing a good variable ordering 

and developing the incremental propagation algorithm. It is 

possible that this could be further improved by introducing 

some aspects of graph-based solvers into the BDD solver. 

For example, it would be very interesting to see if efficient 

BDD algorithms for collapsing strongly connected 

components [11] would further improve the efficiency of 

our BDD based points-to algorithm. Another idea which 

has been suggested for improving the efficiency of BDDs 

is dynamic variable reordering. 
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