
T.Sukumar, Dr.K.R.Santha

/ International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 4, July-August 2012, pp.499-504

499 | P a g e

Maze Based Data Hiding Using Back Tracker Algorithm
T.Sukumar

1
, Dr.K.R.Santha

2

Department of IT, SVCE, Anna University, India

Department of EEE, SVCE, Anna University, India

I INTRODUCTION
Steganography is an art and science of writing

hidden messages in such a way that no one, apart from

the sender and intended recipient, suspects the

existence of the message, a form of security through

obscurity. A word steganography is of Greek origin

and means "concealed writing" from the Greek

word stegano means "covered or protected",

and graphic means "writing". classically, the hidden

message may be an invisible link between the visible

lines of a private letter [1] and [2].

Steganography includes the concealment of

information within computer files. In digital

steganography, electronic communications may

include steganographic coding inside of a transport

layer, such as a document file, image file, program or

protocol. Media files are ideal for steganographic

transmission because of their large size. As a simple

example, a sender might start with an innocent image

file and adjust the color of every 100th pixel to

correspond to a letter in the alphabet, a change so

subtle that someone not specifically looking for it is

unlikely to notice it [2].

A maze (See Fig 2.1) basically contains cells,

walls, a starting cell and an end cell. Logically, a maze

is a puzzle with complex multipath network, and a

player is to find a solution path from the Starting cell to

the end cell. A rectangular maze has m cells in width

and n cells in height and is denoted as m x n maze, it is

called perfect if there exists one and only one path

between any two cells

[1].

II PREVIOUS WORKS
A. Maze Generation

Fig.2.1. An example to illustrate a maze structure

B. Perfect Maze And An Imperfect Maze

Figs. 2.2 and 2.3 show a perfect maze and an

imperfect maze, respectively. From our observation,

most puzzles appearing in websites are rectangle and

perfect. For security consideration, the created maze

should look like a common one hence; here we only

deal with rectangular perfect mazes. Regarding cells as

nodes, carved invisible walls as links.

Fig.2.2. A 16×12 perfect maze

Fig.2.3. A 16×12 imperfect maze

C. Expressing Maze As A Graph

We can express a maze as a graph. Fig.2.4 shows an

example, a number attached to a link connecting two

nodes S and E.

Fig.2.4 Correspondence between an imperfect maze

and a graph

http://en.wikipedia.org/wiki/Ancient_Greek
http://en.wikipedia.org/wiki/Invisible_ink
http://en.wikipedia.org/wiki/Pixel

T.Sukumar, Dr.K.R.Santha

/ International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 4, July-August 2012, pp.499-504

500 | P a g e

Based on this representation, we can find that a perfect

maze corresponds to a tree (see Fig. 2.5), such relation

can be used to prove whether a generated maze is

perfect.

Fig.2.5. Correspondence between a perfect maze and a

tree.

D. Existing Approaches

In this section, we will first introduce a typical

maze generator, then a steganographic method based

on this generator is described.

Hunt-and-Kill maze generating (HKMG) algorithm

There are a number of maze generating

algorithms, Hunt-and-Kill maze generating algorithm

is typical. The HKMG algorithm generates a maze by

carving walls. Fig. 2.6 shows a maze generated by the

HKMG algorithm.

Fig 2.6 An maze generated by HKMG algorithm.

HKMG algorithm, there are three types of cells defined

as follows:

• „In‟ cell (I): a cell that has been processed and always

keeps its type.

• „Frontier‟ cell (F): a cell that is processed and is a 4-

neighbor of a certain “I” cell.

• „Out‟ cell (O): a cell not yet processed.

The HKMG algorithm described as follows

1. Mark all cells as O cells.

2. Mark the starting cell as I cell, and mark each O cell

in the 4-neighborhood of

the I cell as F cell.

3. Choose an F cell around an I cell, and carve the wall

between the F cell and the I cell. Mark the F cell as I

cell, and mark each O cell in the 4-neighborhood of the

I cell as F cell. Repeat step 3 until there is no F cell.

4. End

Fig 2.7 the capacities of different sizes of mazes.

The main idea of the existing method is to

consider multipath rather than only the solution path to

gain more embedding capacity. Before Describing the

proposed method, we will define “embeddable cell”

which will be used to embed a bit. Suppose the HKMG

algorithm is used to generate a perfect maze, and the

solution path from the starting cell to the end cell is

located. All cells on the path are marked as I cells, the

other cells are reset to be O cells, and all walls are

rebuilt, except those in the path (see Fig.2.8).

Definition 1. An embeddable cell, A, is an I cell,

which is in the solution path with exact two O cells in

its 4-neighbors, and each O cell should not be a

neighbor of another embeddable cell which appears

before A. Fig. 2.8 shows an example. In Fig. 2.8(b), the

cells with black triangles are embeddable ones and the

gray cell is an O cell and is the overlapped neighbor of

two I cells, thus the cell with a black solid circle is not

an embeddable cell. Based on the definition, all

embeddable cells can be located. According to the

embedding bit, we carve the wall between an

embeddable cell and one O cell around it, and mark the

O cell as I cell. There are six kinds of embeddable cells

shown in Fig. 2.9.

Fig. 2.8. One example to illustrate embeddable cells.

(a) The white path stands for the solution path. (b)

Embeddable cells marked by black triangles.

T.Sukumar, Dr.K.R.Santha

/ International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 4, July-August 2012, pp.499-504

501 | P a g e

Fig. 2.9 Six kinds of embeddable cells.

Each embeddable cell has two neighboring O

cells marked as 1 and 0. If a “1” bit is embedded, then

the wall between the embeddable cell and the cell

marked “1” is carved, and the “1” cell is marked as I

cell. Otherwise the wall between the embeddable cell

and the cell marked as “0” is carved, and the “0” cell is

marked as I cell. To increase embedding capacity, we

can embed bits into multipath instead of only one path.

In the existing method, we first generate a perfect maze

with HKMG algorithm. Subsequently, we choose some

cells as the start cells and one cell as the common end

one of the multipaths. Finally, we solve the perfect

maze to obtain the corresponding multipath. This

multipath sometimes will merge at some cells. The two

solution paths start at different cells respectively they

should have the common end cell E. The second path

from maze is merged into the first path from S to E at

cell A as shown in the figure Fig 2.10(d). Note that the

number of solution paths and all the start cells and one

end cell are chosen through a random number

generator and a seed, which will be considered as the

secret key [5]&[6].

Fig.2.10 An example of using existing method to

embed data in a perfect maze

Table 3.1 Comparison of Algorithms

(a) A perfect maze generated by HKMG algorithm.

(b) Two paths from S to E and T to E in (a) located with

merged points A.

(c) The result after performing Step 3 of the proposed

embedding algorithm to (b).

(d) All embeddable cells located.

(e) The result after embedding data in embeddable cells

with D cells marked.

 (f) The result of applying HKMG algorithm to process F

cells.

 (g) The immediate result of applying Step 8 of the

proposed embedding algorithm to (f).

(h) The perfect maze generated after processing all Ds.

III IMPLEMENTATION
The main idea of the proposed method is to

consider SOLUTION PATH rather than only MULTI

PATH to gain more embedding capacity. Before define the

proposed work., we first discuss some available list of

maze generation algorithms, that meet out requirement to

gain more embedding capacity.

From the above table, Recursive Backtracker is

the algorithm gives higher river factor comparatively from

Hunt and Kill algorithm. Recursive backtracker gives

larger solution path than the HKMG, and also the dead end

gets decreased by one percent , by this for the same size of

T.Sukumar, Dr.K.R.Santha

/ International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 4, July-August 2012, pp.499-504

502 | P a g e

maze that with same start cell and same end cell by

Recursive backtracker gives higher embeddable cell than

by HKMG.

E. Embedding Algorithm

The details of the proposed embedding algorithm are

described as follows:

1. Creating a maze using the Recursive Backtracker

algorithm.

Fig 3.1Generated perfect maze by recursive

backtracker

2. Choose one cell as start cells and one cell as the end

cell. Solve solution path from these starting cells to

the end cell

3. Reset all cells to be O cells and all walls as visible.

Set those cells On solution path to be I cells. Carve

each wall between two I cells

Fig 3.2 After finding the solution path

4. Find all embeddable cells in solution path and order

them according to the path sequence. Note that we

do not set the cell on boundary to be embeddable

cell even if the cell is embeddable.

Fig 3.3 After finding the embeddable cells

5. For each embeddable cell, if the embedding bit is 1

(0), the wall between the embeddable cell and its

neighboring O cell marked 1 (0) is carved and the

cell marked 1 (0) is set as I cell, the other

neighboring O cell marked 0 (1) is set as D cell (see

D stands for the D cell).Then write the binary

representation of the processed cell to a file

6. Set those O cells around I cells to be F cells.

7. Process these F cells using recursive backtracker

algorithm, O stands for the O cell.

Fig 3.4 After embedding with d cell remains unprocessed

8. Process the D cells.(a) Scan the maze, and check if

any D cell exists. If none, go to step 9. Otherwise,

choose a D cell with one of its neighbors being an

un-embeddable I cell and carve the wall between the

D cell and the un-embeddable I cell. Mark the D cell

as I cell, and mark each O cell in the 4-

T.Sukumar, Dr.K.R.Santha

/ International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 4, July-August 2012, pp.499-504

503 | P a g e

neighborhood of the I cell as F cell (b) Check if any

F cell exists. If yes, go to step 7. If none, go to step

8.

`

Fig 3.5 After processing of all cells with Marking

Fig 3.6 After processing of all cells without Marking

9. End

F. Extraction Algorithm

To extract the embedded bits, the receiver must

know the start and end cells of solution path which can be

extracted through the secret key and a pseudo random

number generator. Since the generated maze is perfect, the

receiver can get the original solution path accurately

according to these start and end cells. Then, the receiver

can locate all embeddable cells. Then use the Binary

Representation of the maze to redraw the maze as in the

sender side finally according to the direction of the branch

in each embeddable cell, secret data can be extracted

successfully.

Fig 3.7 Stegomaze Architecture

G. Maze Generation

Basically a maze is a collection of cells., so first

generate the cells upto mentioned maze size. then address

each cell to identify them. generating different mazes at

every time is our objective here., so we use a random

number generator and seed to achieve this. the random

number generator generates the unique pattern of results

for unique seed., by using the pattern the corresponding

unique maze gets generated. hence the same maze will be

generated for same seed any number of times.

H. Locate Embeddable Cells

After the maze gets generated, we first find the

solution path where the secret data to be embed. For that

we have to feed the starting cell and the end cell. From the

start cell, find the next cell from its four neighbors and

there is no wall between the current cell and next cell.

Process till it reaches the end cell. Push the solution cells in

a separate stack.

Rebuild the walls of all cells except the cells from

the solution path. Mark the cells in the solution path as

embeddable cells if the cell contains two neighbors and the

neighbors should not be a neighbor of any other cell. Push

the embeddable cells in a separate stack.

I. Embedding Data

The embeddable cells are used to embed the secret

data. Using the random number generator, mark one of the

neighbor for zero bit and the another for one bit. the secret

data should be converted into binary form. the binary data

is to be embed into the maze. if the zero bit is to be embed,

carve the walls between the embeddable cell and its zero

bit , else carve the walls between the embeddable cell and

its one bit. after embedding , the binary representation of

T.Sukumar, Dr.K.R.Santha

/ International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 4, July-August 2012, pp.499-504

504 | P a g e

the embeddable cells is stored in the file. After that process

all the remaining cells so that it looks like a maze.

J. Encrypting File

The stored binary representation of the maze is then

encrypted using DES encryption standard. Read the 8 bit

key from the user and by using that encrypt the file. Finally

the encrypted file and the key alone is shared with the

ultimate receiver.

K. Decrypting File And Extract T Original Data

By using the same secret key and the encrypted

file as input decrypt using same DES and get the binary

representation of the maze. By using the seed from the

decrypted file, the original maze gets generated. Then

using the binary representation of the maze, the original

maze after embedding will be regenerated. Then use the

start cell and end cell to find the solution path. Then find

the embeddable cells, and depends on the branching on

every embeddable cells, the binary bits gets extracted.

Then the extracted binary data is converted to ASCII value

to get the character equivalent of the binary. Thus the

original data can be extracted successfully.

IV CONCLUSION
We proposed an enhancement in existing method to

embed secret data into mazes. It generates perfect mazes

that cannot be distinguished visually by humans from other

perfect mazes commonly used. Hence, it significantly

improves security over the existing HKMG embedding

algorithm by providing encryption to sharing Data. When

embedding bits into one solution path our new method

provides approximately twice the embedding capacity of

the one-path HKMG algorithm.

FUTURE ENHANCEMENT
With larger mazes our algorithm can utilize

multiple paths for embedding to further increase capacity,

while maintaining its “undetectability” from human vision.

Data compression can be used to increase the embedding

capacity. In this project we are working with maze, in

future other puzzle games can be used for hiding the Data.

ACKNOWLEDGMENT
The authors would like to thank the anonymous

reviewers for their valued comments which helped to

improve the manuscript.

REFERENCES

[1] Hui-Lung Lee, Chia-Feng Lee, Ling-Hwei Chen,”A

perfect maze based steganographic method” The

Journal of Systems and Software, August 2010

[2] Zhan-He Ou; Ling-Hwei Chen; , "Hiding data in

Tetris," Machine Learning and Cybernetics

(ICMLC), 2011 IEEE Transactions on , vol.1, no.,

pp.61-67, 10-13 July 2011

[3] Hopper, N.; von Ahn, L.; Langford, J.; , "Provably

Secure Steganography," Computers, IEEE

Transactions on , vol.58, no.5, pp.662-676, May

2009

[4] Artz, D."Digital steganography: hiding data within

data," Internet Computing, IEEE , vol.5, no.3,

pp.75-80, May 2007

[5] Andrew D. Ker "Steganalysis of Embedding in Two

Least-Significant Bits," Information Forensics and

Security, IEEE Transactions on , vol.2, no.1, pp.46-

54, March 2007

[6] Anderson, R.J.; Petitcolas, F.A.P.; , "On the limits of

steganography," Selected Areas in Communications,

IEEE Journal on , vol.16, no.4, pp.474-481, May

2006

[7] http://www.msdn.com

[8] http://www.social.msdn.com

[9] http://www.dotnetpearls.com

[10] http://www.stackoverflow.com

http://www.msdn.com/
http://www.social.msdn.com/
http://www.dotnetpearls.com/
http://www.stackoverflow.com/

