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Abstract 
Processing blurred images is a key problem in many image 

applications. Existing methods to obtain blur invariants 

which are invariant with respect to centrally symmetric 

blur are based on geometric moments or complex 

moments. In this paper, we propose a new method to 

construct a set of blur invariants using the orthogonal 

Legendre moments. Some important proper-ties of 

Legendre moments for the blurred image are presented 

and proved. The performance of the proposed descriptors 

is evaluated with various point-spread functions and 

different image noises. The comparison of the present 

approach with previous methods in terms of pattern 

recognition accuracy is also provided. The experimental 

results show that the proposed descriptors are more robust 

to noise and have better discriminative power than the 

methods based on geometric or complex moments.  

Keywords—Blur invariants, blurred image, Legendre 

moments, pattern recognition, symmetric blur. 

I. INTRODUCTION 
IMAGE processing is a very active area that has impacts in 

many domains from remote sensing, robotics, traffic 

surveillance, to medicine. Automatic target recognition and 

tracking, character recognition, 3-D scene analysis and 

reconstruction are only a few objectives to deal with. Since the 

real sensing systems are usually imperfect and the 

environmental conditions are changing over time, the acquired 

images often provide a degraded version of the true scene. An 

important class of degradations we are faced with in practice 

is image blurring, which can be caused by diffraction, lens 

aberration, wrong focus, and atmospheric turbulence. In 

pattern recognition, two options have been widely explored 

either through a two steps approach by restoring the image and 

then applying recognition methods, or by designing a direct 

one-step solution, free of blurring effects. In the former case, 

the point spread function (PSF), most often unknown in real 

applications, should be estimated [1]–[5]. In the latter case, 

finding a set of invariants that are not affected by blurring is  

the key problem and the subject of this paper. The pioneering 

work in this field was performed by Flusser and Suk [6] who 

derived invariants to convolution with an arbitrary Centro- 

 

 

symmetric PSF. These invariants have been success-fully used 

in template matching of satellite images [6], in pat-tern 

recognition [7]–[10], in blurred digit and character recognition 

[11], [12], in normalizing blurred images into canonical forms 

[13], [14], and in focus/defocus quantitative measurement 

[15]. More recently, Flusser and Zitova introduced the 

combined blur-rotation invariants [16] and reported their 

successful application to satellite image registration [17] and 

camera motion estimation [18]. Suk and Flusser further 

proposed a set of combined invariants which are invariant to 

affine transform and to blur [19]. The extension of blur 

invariants to –dimensions has also been investigated [20], 

[21]. All the existing methods to derive the blur invariants are 

based on geometric moments or complex moments. However, 

both geometric moments and complex moments contain 

redundant information and are sensitive to noise especially 

when high-order moments are concerned. This is due to the 

fact that the kernel polynomials are not orthogonal. Teague 

has suggested the use of orthogonal moments to re-cover the 

image from moments [22]. It was shown that the orthogonal 

moments are better than other types of moments in terms of 

information redundancy, and are more robust to noise [23]. As 

noted by Teh and Chin [23], the moment invariants are 

considered reliable features in pattern recognition if they are 

in-sensitive to the presence of image noise. Consequently, it 

could be expected that the use of orthogonal moments in the 

construction of blur invariant provides better recognition 

results. To the authors’ knowledge, no orthogonal moments 

have been used to construct the blur invariants. In this paper, 

we propose a new method to derive a set of blur invariants 

based on orthogonal Legendre moments (for a recent survey 

on moments, refer to [24]–[27]). The organization of this 

paper is as follows: in Section II, we review the theory of blur 

invariants of geometric moments and the definition of 

Legendre moments. In Section III, we establish a relationship 

between the Legendre moments of the blurred image and those 

of the original image and the PSF. Based on this relationship, 

a set of blur invariants using Legendre moments is provided. 

The experimental results for evaluating the performance of the 

proposed descriptors are given in Section IV. Finally, some 

concluding remarks are provided. 
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II. BLURINVARIANTS AND LEGENDRE 

MOMENTS 
This section first reviews the theory of blur invariants of geo-

metric moments proposed by Flusser and Suk [6], [7], and 

then presents some basic definitions of Legendre moments. 

A. Blur Invariants of Geometric Moments 

The 2-D geometric moment of order , with image in-

tensity function , is defined as 

 

where, without loss of generality, we assume that the image 

function is defined on the square . The 

corresponding central moment of image is de-fined as 

 

with the coordinates denoting  the centroid of 

 

 

Let  be a blurred version of the original image . 

The blurring is classically described by the convolution 

 

where h is the PSF of the imaging system, and * denotes 

linear convolution. In this paper, we assume that the 

PSF, , is a centrally symmetric image function and the 

imaging system is energy-preserving, that is, 

 

As noted by Flusser [7], the assumption of centrally symmetry 

is not a significant limitation of practical utilization of the 

method. Most real sensors and imaging systems have PSFs 

with certain degrees of symmetry. In many cases they have 

even higher symmetry than central, such as axial or radial 

symmetry. Thus, the central symmetry assumption is general 

enough to describe almost all practical situations.  

Lemma 1: The centroid of the blurred image is related 

to the centroid of the original image and that of the 

PSF as 

 

In particular, if  is centrally symmetric, then 

. In such a case, we have 

,  . The proof of Lemma 1 can be 

found in [9].  

B. Legendre Moments 

The 2-D th order Legendre moment of image function 

is defined as [28] 

 
where Pp(x) is the p

th
-order orthonormal Legendre 

polynomials given by 

 
With 

 
The corresponding central moments are defined as 

 

III. METHOD 

In this section, we first establish a relationship between the 

Legendre moments of the blurred image and those of the 

original image and the PSF. We then derive a set of blur 

moment invariants. 

A. Legendre Moments of the Blurred Image 

The 2-D normalized Legendre moments of blurred 

image,  are  
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In the rest of this subsection, we discuss how to 

express the Legendre moments of blurred image in terms of 

Legendre moments of the original image and the PSF. 

Making the notation 

and 

 where the superscript T indicates the 

vector transposition, we have  

 
where , with ,is 

a lower triangular matrix. 

Since all the diagonal elements of 

 ,  are not zero, the matrix  is 

nonsingular, thus 

 
where , with  , is the inverse 

matrix of . 

 
By expanding, we obtain 

 
Similarly  

 
Replacing the variable x by x+a, we have 

 
Substituting these values we will get, 

 
Similarly we have, 

 
The following theorem reveals the relationship between the 

Legendre moments of the blurred image and those of the 

original image and the PSF.  

Theorem 1: Let be the original image function and the 

PSF be an arbitrary image function, and  be a 

blurred version of , then the relations 

 

 

And 

 
hold for every p and q. 

Proof: substituting the values we have, 

 
It can be rewritten as  

 
Theorem 2: If satisfies the conditions of central 

symmetry, then 

 
B. Blur Invariants of Legendre Moments 
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With the help of Theorems 1 and 2, we are now ready to 

construct a set of blur invariants of Legendre moments 

through the following theorem. 

Theorem 3: Let be an image function. Let us define the 

following function . 

 
 

Then, is invariant to centrally symmetric blur for any p 

and q. The number p+q is called the order of the invariant. 

Theorem 4: Let be an image function. Let us define the 

following function . 

If is even then  

 

 
Fig. 1. Standard gray-level image of cat with size 128x 128. 

If is odd then 

 
Then, is invariant to centrally symmetric blur and to 

translation for any p and q. 

 

IV. E XPERIMENTAL RESULTS 
In this section, some experiments are described in order to 

show the invariance of the proposed method to various PSF’s 

and its robustness to different kinds of noise. The comparison 

with some existing methods in terms of recognition accuracy 

is also provided. 

A. Test of Invariance and Robustness to Noise 

A toy cat image, whose size is 128x 128 (Fig. 1), has been 

chosen from the public Columbia database [30]. This image 

was then successively degraded by out-of-focus blur, 

averaging mask, Gaussian function and motion filter as 

reported in [8], [9], and [19]. The parameter (standard 

deviation of the Gaussian function) of Gaussian blur was 

chosen equal to 0.5, and the parameter  (   means the angle 

in the counterclockwise direction,  corresponds to a 

horizontal motion, and corresponds to a vertical motion) 

of motion blur set to 0.  

 
Fig. 2. Some examples of the blurred image: (a) averaging 

blur with additive zero-mean Gaussian noise, STD=10; (b) 

motion blur with additive zero-mean Gaussian noise, STD=20; 

(c) out-of-focus blur with additive salt-and-pepper noise, 

density =0.01 (d) Gaussian blur with additive salt-and-pepper 

noise, density = 0.02. 

 
Fig. 3. Relative error for averaging blur with Gaussian noise 

shown in Fig. 2(a). Horizontal axis: standard deviation of 

noise; vertical axis: relative error between the corrupted image 

and original image. 
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Fig. 4. Relative error for motion blur with Gaussian noise 

shown in Fig. 2(b). Horizontal axis: standard deviation of 

noise; vertical axis: relative error between the corrupted image 

and original image. 

 
Fig. 5. Relative error for out-of-focus blur with salt-and-

pepper noise shown in Fig. 2(c). Horizontal axis: noise 

density; vertical axis: relative error between the corrupted 

image and original image. 

 

Fig. 6. Relative error for Gaussian blur adding salt-and-pepper 

noise shown in Fig. 2(d). Horizontal axis: noise density; 

vertical axis: relative error between the corrupted image and 

original image. 

 

Other parameters such as the size for averaging blur, 

the radius for out-of-focus and the depth for motion filter were 

chosen equal to the size of blur mask in all the experiments. 

We first checked that the eighteen Legendre moment 

invariants of order up to seven were exactly equal to those of 

the original image whatever the blurring mode. 

Let us define the 

vectors  and 

for any odd value of . The 

relative error between the two images is computed by 

 
where ||.|| is Euclidean norm in L

2
 space. In the following 

experiments, moment invariants of order up to r=7 are used.  

 

The next experiment was carried out to verify the 

performance of the invariants to both image blur and noise. 

The original cat image was blurred by a 9x 9 averaging mask 

and a zero-mean Gaussian noise with standard deviation 

(STD) from 1 to 50 was added. Some examples of the blurred 

image with additive Gaussian noise or salt-and-pepper noise 

are shown in Fig. 2. Plots in Fig. 3 compare the relative error 

defined by (27) for Flusser’s method based on geometric 

moment invariants (GMI) 
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Fig. 9. Some examples of the blurred images 

corrupted by various types of noise 

 
 

where eighteen blur invariants derived from central 

moments are used [7], the complex moment invariants (CMI) 

reported in [16] and the present Legendre moment invariants 

(LMI) up to order seven by averaging blur with different 

Gaussian noises. It can be seen from the figure that the 

proposed descriptors per-form better than the GMI and CMI. 

Then, the cat image was 

 

blurred by a 11x 11 motion filter, and the same Gaussian noise 

was added. The results (Fig. 4) again indicate the better 

behavior of the proposed method. Similarly, the original cat 

image was degraded on one hand by out-of-focus blur (13 

pixel-radius of the PSF support) and by adding a salt-and-

pepper noise with noise densities varying from 0.004 to 0.2 

(see Fig. 5) and, on another hand, by Gaussian blur (the PSF 

was a Gaussian function with 15 pixel-radius of support) with 

the same salt-and-pepper noise (see Fig. 6). It can be also seen 

that a better robustness is achieved whatever the PSF or the 

additive noises.  

 

B. Classification Results 

This experiment was carried out to compare the discrimination 

power of the GMI, CMI and LMI. A set of alphanumeric 

characters whose size is 50x 50 pixels (Fig. 7) is used for the 

recognition task. The reason for choosing such a character set 

is that the elements in subset {0, o}, {2, Z}, {7, T}, and {9, q} 

can be easily misclassified due to their similarity. The testing 

set is generated by adding averaging blur, out-of-focus blur, 

Gaussian blur and motion blur with mask of sizes 3x 3, 4x 4, 

5x 5, 6x 6, 7x 7, 8x 8, 9x 9, 10x10, 11x 11, 12x12 pixels, 

respectively. The parameter of Gaussian blur was chosen 

equal to 1 or 2, and the parameter of motion blur set to 0 or 1, 

forming a set of 480 images. Note that the original images as 

well as the blurred images are mapped onto the area of 

orthogonality, and the actual size of the blurred images in this 

experiment is 80x 80. This is followed by adding a white 

Gaussian noise with different standard deviations, salt-and-

pepper noise with different noise densities and multiplicative 

noise with different noise densities. The Euclidean distance is 

used here as the classification measure. Table I shows the 

classification rates using the different moment invariants. One 

can observe from this table that the recognition results are 

quite good for the different methods in the noise-free case. 

The classification rates remain high for low and moderate 

noise levels but decrease significantly when the noise level 

goes up. However, if the GMI behaves better than the CMI, 

the LMI approach is the only one providing a rate close to or 
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over 90% whatever the noise nature and its level. In the next 

example, eight objects were selected from the Coil-100 image 

database of Columbia University as an original image set (see 

Fig. 8). The actual size of the blurred images in this 

experiment is 160x 160. Fig. 9 shows some examples of the 

blurred and corrupted images. The recognition results are 

displayed in Table II. They lead to the same conclusions 

regarding the performance of the respective moment invariants 

but the decrease in recognition rate is more significant when 

the noise level is increased. This is also true for the LMI. The 

CMI do not perform well in these experiments due to their 

additional invariance to rotation. The worse numerical 

stability is a tax on the combined invariance. The 

orthogonality of LMI explains the difference in performance 

with GMI. We also compared the computational load of the 

GMI, CMI and LMI in these two experiments. The programs 

were implemented in MATLAB 6.5 on a PC P4 2.4 GHZ, 

512M RAM. It can be seen from Tables I and II that the GMI 

and the LMI computations are much faster than the CMI ones. 

This is due to the fact that the computation of the complex 

moments requires a mapping transformation which is time 

consuming. 

C. Real Image Analysis 

In the last experiment, we tested the performance of the in-

variants on images degraded by real out-of-focus blur. A 

sequence of eight pictures of a comb lying on a black ground 

was taken by a digital camera (Panasonic DMC-FZ50). The 

images differ from each other by the level of out-of-focus blur. 

The picture was captured 8 times from the same position but 

with different focus depth, manually set. All the test images 

are depicted in Fig. 10. The values of GMI, CMI, and LMI 

were computed for each image. Table III depicts the values of 

, where  denotes the mean of eight real images and  the 

standard deviation. From this table, it can be seen that the 

minimal value of the LMI is 3.42% and the maximum value of 

the LMI is 6.15%, which are lower than those obtained with 

GMI (resp. 4.91%, 12.43%) and the CMI (resp. 7.47%, 

7.54%). 

V. CONCLUSION ANDPERSPECTIVES 
In this paper, we have proposed a new approach to derive a 

1set of blur invariants using the orthogonal Legendre 

moments. The relationship between the Legendre moments of 

the blurred image and those of the original image and the PSF 

has been established, and using this relationship, a set of blur 

invariants based on Legendre moments has been derived. The 

experiments conducted so far in very distinct situations 

demonstrated that the proposed descriptors are more robust to 

noise and have better discriminative power than the methods 

based on geometric or complex moments. 

One weak point of these descriptors is that they are only in-

variant to translation, but not invariant under image scaling 

and rotation. The derivation of combined invariants to both 

geometric transformation and blur is currently under 

investigation. 
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