
Sachin Upadhyay, Ankit Agrawal, Himanshu Hora, Imran Khan, Ashish pandey / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2227-2233

2227 | P a g e

 Reduction of Human Effort in Software Architecture Transformation

Sachin Upadhyay
[1]

, Ankit Agrawal
[2]

 ,Himanshu Hora
[3]

 Imran Khan
[4]

,Ashish

pandey
[5]

[1] M.Tech(CSE) B.U. Ajmer(Rajsthan)

 [2]M.Tech.(SE) SRMSCET,Bareilly

 [3]Asst.Professor, SRMSCET,Bareilly

 [4] M.Tech R.T.U. Kota(Rajsthan)

 [5]Asst. Professor, B. U.,Ajmer(Rajsthan)

Abstract— Since the architecture of a software system

constrains the quality attributes, the decisions taken during

architectural design have a large impact on the resulting

system.Software Architecture (SA) allows for early

assessment of and design for quality attributes of a software

system, and it plays a critical role in current software

development. Over the past decade, software architecture

research has emerged as the principled study of the overall

structure of software systems, especially the relations

among subsystems and components. The software architect

realizes architectural transformations in order to change it.

This retrospective on a decade-plus of software architecture

research examines the maturation of the software

architecture research area by tracing the types of research

questions and techniques used at various stages.

Keywords— software architecture, quality, model

transformation, techniques, tools, research paradigms

I. INTRODUCTION

Software architecture is a relatively young area within

software engineering. To assess its progress, maturity, and

prospects, I will examine the growth of this area against the

backdrop of normal growth and maturity in software

engineering, paying special attention to the way we design

and carry out research projects. Software architecture (SA)

is considered of highest importance to the software

development life-cycle [20]. It is used to represent and

communicate the system structure and behavior to all of its

stakeholders with various concerns. Additionally, SA

facilitates stakeholders in understanding design decisions

and rationale, further promoting reuse and efficient

evolution. SA transformations require special attention,

because of the well-known impact on the project success.

Arguments that support this statement can be mentioned.

Firstly, SA transformations may be oriented to an evolution

changing the source model into a target model and staying

at the same level of abstraction. These directly influence the

final system properties. Secondly, transformational

approaches may be carried out in service of refinement

going from a high level SA description to a more detailed

one, thus constructing iteratively the final SA, which

represents the input of the next development stage. Finally,

because of their influence on software quality, they can

provide good mechanisms for early-stage quality

management. The control of the quality moves to the stage

of architectural transformations decreasing in this way

production costs and speeding up the time-to market. On the

other hand, it enhances the role of the software architect.

The architect must be creative in reasoning tradeoffs among

different alternatives and applies SA transformations based

on his tacit architectural knowledge and carry out research

projects.

 Fig 1: Architecture Evaluation Process

The architect‘s experience is still crucial for the success of

architecture construction, even though architectural

knowledge is widely reported in the literature. While a

SADM encodes the knowledge on how to proceed to build

architecture, tactics and patterns encode the knowledge of

well-known solutions to common problems or requirements.

II. SOFTWARE ARCHITECTURE DEFINITION

AND DESCRIPTION

Recently a newer definition of a software systems

architecture was given in that is the set of principal design

decisions about the system. Design decisions encompass

every aspect of the system under development, including

design decisions related to: (1) system structure (2) behavior

(also referred to as functional) (3) interaction (4) the

system‘s nonfunctional properties, such as dependability (5)

the system‘s development itself, for example, the process

that will be used to develop and evolve the system. It can

also be derived definitions for SA models, ADLs, and the

act of modeling. An SA model is a document that captures

some or all of the design decisions that make up a system‘s

SA. SA models are referred to as architecture descriptions.

A model means a formal specification, where a formal

specification expects either textual or graphical language

with strictly defined syntax and semantics. An ADL is a

notation in which SA models can be expressed. SA

Sachin Upadhyay, Ankit Agrawal, Himanshu Hora, Imran Khan, Ashish pandey / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2227-2233

2228 | P a g e

modeling is the effort to capture and document the design

decisions.All paragraphs must be indented. All paragraphs

must be justified, i.e. both left-justified and right-justified.

The architectural analysis stage serves to define the

problems an architect must solve. An architect examines

architectural concerns and context in order to come up with

a set of architecturally significant requirements. During the

architectural synthesis stage, the architect designs SA

solutions for a set of architecturally significant

requirements. This task requires an architect to create the

proposed solutions. For this purpose, the architect can apply

existing solutions (e.g. styles, patterns) to solve the

problems at hand. The design is created and synthesized by

the architect to capture the design knowledge. The architect

also produces the necessary traces between reasoning

knowledge, design knowledge, general and context

knowledge. Architectural evaluation ensures that the

proposed architectural solutions are the right ones. The

candidate architectural solutions are evaluated against the

architecturally significant requirements. At this stage, an

architect shares architecture knowledge with architecture

evaluators. This allows the evaluators to learn,

search/retrieve, and evaluate the reasoning knowledge and

design knowledge. In order to perform an architecture

evaluation, they often need to trace reasoning knowledge to

context knowledge (i.e. the requirements), general

knowledge and design knowledge. When an architecture

design is evaluated and approved, architects and reviewers

may distill the design as a general design pattern in general

knowledge for future reuse.

Fig 2: Software Architecture Lifecycle

After architecture evaluation, the SA is realized by

designers during architectural implementation. At this stage

designers and developers need to learn, and search/retrieve

the available reasoning knowledge in order to understand

the architecture design for implementation. Architects share

the knowledge with the implementers to facilitate their

understanding. Once the initial system is deployed,

architectural changes may take place during the architectural

maintenance stage. At this stage, tracing the design

knowledge aims to learn about design reasoning and

evaluate the impact of certain architectural changes.

III. SA MODEL TRANSFORMATION

AUTOMATION

The first ideas regarding software architectural

transformation appeared in the ‗90s on the migration trend

from code towards software architecture technology.

Several definitions of architectural transformation can be

found in the literature. Kikhaar [16] defines architectural

transformations as operations performed at the code level.

Changes applied to the architectural model of a software

system are qualified to impact analysis phase and they are

left to the software architect experience. Carriere, Woods

and Kazman [19] discuss about architectural

transformations, too. They describe architectural elements in

terms of their static and dynamic features and define

transformations in terms of features modification. Early

architectural changes are categorized to transformations for

understanding, analysis, and modification [18]. The idea

towards automatic model synchronization from model

transformations has been introduced in [15].

Fig. 3. Model Transformation

Later on model driven development technologies discuss

about the idea to automate the process of creating new SA

models and to facilitate evolution in a rapidly changing

environment by using model transformations. The

systematic use of models and reuse of model

transformations simplifies and formalize various activities

and tasks that comprise the SA lifecycle. We distinguish

horizontal and vertical SA model transformations (Fig. 2).

In vertical transformations models from higher level of

abstraction are transformed to models of lower level of

abstraction, e.g. platform independent models to platform

specific models [5]. Here knowledge of platforms is

encoded into automatic model transformations, reused for

many systems rather than redesigned for each new system.

An automatic model transformation specifies how an output

model is constructed based on the elements of an input

Sachin Upadhyay, Ankit Agrawal, Himanshu Hora, Imran Khan, Ashish pandey / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2227-2233

2229 | P a g e

model. Horizontal model transformations are used for

describing mappings between models of the same

abstraction level. By relating concepts of various types,

knowledge of modeling domains is encoded into

transformations, enabling the integrated use of models

without having to specify relationships between each set

models manually.

A.ARGUMENTS FOR SA MODEL TRANSFORMATION

AUTOMATION

Model transformation languages aim at automating the

process of deriving one model from another one. Thus,

when the mapping between two different kinds of models is

known, model transformations can provide the following

benefits: (1) Repetitive, laborious and error-prone tasks,

required to create a model from another model are avoided,

as transformations are executed by a tool.(2) Architectural

knowledge can be encapsulated in model transformations,

ensuring target model quality. (3) The mapping process

encapsulated in a model transformation can be easily

applied, as software architects applying the model

transformations do not need to know the details about how

the mapping is performed. (4) Changes are less difficult to

manage, as they can be done at the corresponding

abstraction level and propagated quickly to lower

abstraction levels by model transformations. The SA model

in the model-driven process would be updated and then the

change propagated to design, implementation and

deployment models. Nevertheless, most of model

transformation languages have difficulties to preserve

manual changes made to a model when the model is

updated, so this kind of round-trip engineering is still an

open research issue. (5) When several transformations, from

a source model to different kinds of target models are

available, the same source model can be reused.SA model

transformations are not easy to apply. Firstly, the architect

has to remember all the constraints on elements and

relationships in order to perform a correct improvement. For

certain types of transformation that require vast experience

he may need additional design knowledge about the static or

dynamic aspects of the system. Secondly, architectural

decisions may result in several alternatives of SA

improvement; the architect is rarely able to decide which

modification to choose, before he understands all

consequences of applying a certain approach. Architects

have almost no assistance in reasoning about changes.

Thirdly, in order to satisfy a new requirement more than one

transformation need to be applied to modify SA model and

an optimal evolution path needs to be developed. Finally,

the architect may need to integrate new crosscut concerns

(i.e. security [29]) that could affect the consistency of the

SA. model due to modifications of all elements affected by

that concern. The execution of a transformation causes a

reaction in chain where other architectural changes are

required. Usually they propagate in the structure altering

adjacent views or hierarchical sub-structures stopping just at

the lowest level of the model. Because of the multiplicity of

applied transformations and their unpredictable

consequences, the process of SA modification is error-prone

due to the overwhelmingly complex design space for human

beings and time consuming, especially when manually

performed by an architect, whose skills to control changes

are limited to the ability of remembering a transformation

sequence, constraints, or conditions. It is therefore necessary

to provide automation tools and techniques to the

architectural model transformations.

IV. APPROACHES SUPPORTING AUTOMATIC

TRANSFORMATION

This section presents five approaches, which are pattern-

based refactoring, sequence of transformations with

multiple views extraction, an architecture evolution style,

architecture refactoring to improve quality attributes, and

evolutionary optimization of an SA model. The presentation

framework focus is on the approach description, the goal of

transformation, the ADL, the multiple views consistency

and the tools to be used in transformation.

A. PATTERN-BASED REFACTORING DESCRIPTION

Pattern-based refactoring represents the process of

transforming a model using a design pattern [4]. This

technique is achieved by developing met models called

transformation specifications that characterize families of

transformations. Fig. 3 gives an overview of the main

concepts involved in this model transformation approach.

Fig. 4. Metamodelling approach to pattern-based refactoring

A meta modeling consists in patterns specification and

transformation rules. Pattern specifications include the

problem specification, which is a precise specification of the

Sachin Upadhyay, Ankit Agrawal, Himanshu Hora, Imran Khan, Ashish pandey / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2227-2233

2230 | P a g e

family of design problems that the pattern addresses;

solution specification, which is a precise specification of the

designs representing solutions of the pattern and

transformation specification, which is a specification of

problem-to-solution transformations defining a

transformation language.

Composing two or more design patterns could lead to

conflicts that must be resolved involving possible trade-off

analysis. A validation step is required for models that

contain composed patterns.

ADL. A general purpose ADL is considered by pattern-

based refactoring approach. Thus it has been applied to SA

models represented in UML notation.

Goal. The main goal of automating the process of applying

pattern based transformations is to reduce the effort of

consistently and correctly realizing a general knowledge

that is collected in specific patterns across a SA model.

Multiple views. This approach does not consider multiple

views. Functionality conformance is the only concern.

Tools. The software tools are called pattern-aware,

embedding codified knowledge of patterns that can be

accessed during usage that tools. Pattern-aware tools present

patterns as abstraction units that architects can use to

construct SA models. A tool support for such approach

should provide two interfaces, one for a pattern engineer to

evolve and manipulate the tool‘s representation of the UML

meta model, and the other for the architect to create,

manipulate and evolve UML SA models using patterns.

Such tools can help in establishing conformance of models

to the specification, due to preserving functional properties

when defining common properties to problem and solution

specifications.

B.SEQUENCE OF TRANSFORMATION WITH

MULTIPLE VIEWS EXTRACTION DESCRIPTION.

 Transformation in SA models is described using a precise

mathematical semantics, which is called category theory in

[6]. This approach separates computations of a system from

its coordination and configuration, allowing the introduction

of a dynamic configuration step. SA models are diagrams in

the sense of category theory [17] involving explicit

superposition and refinement relationships between

architectural components. SA is defined by the space of all

possible configurations that can result from a certain starting

configuration. From this starting configuration, a dynamic

step produces the derivation from one SA model to another

in a sequence of transformations.

ADL. This technique is expressed by using COMMUNITY,

which is a domain specific ADL.

Goal. There are two goals to be considered for SA model

transformation. A first goal is to produce SA model

derivation in a sequence of transformations as it has been

described above. Another goal is to extract multiple views

from an ADL metamodel in a systematic way, by listing the

design questions each view should answer. Each one of the

view types is defined by a metamodel, which is obtained

from the architectural metamodel by adding the necessary

new entities Automatic transformation of software

architecture models 11 and associations. The views

metamodel also show (through a class diagram and OCL

expressions) how the new entities are related to those of the

SA model.

Multiple views. Multiple views are homogeneous, coherent,

relevant, and explicitly related, because they stem from the

constructs of an ADL suitable for the description of

important architectural concepts. Architectural concepts,

their relationships, and their aggregations into various

different views are explicitly defined through a metamodel

that enables to relate the various views explicitly and

enforce their mutual consistency through constraints. Each

view can be described in a declarative way through the

metamodel, and operationally as a transformation from the

architecture. The decisions on which views to define and

how to define them is guided by an explicit enumeration of

the design questions the architect would like the views to

answer.

Tools. There is a workbench developed as a proof of

concept This workbench provides a graphical integrated

development environment to write,run, debug components

and draw configurations of components and connectors.The

workbench is extended to provide support for computation,

coordination and distribution views.

C. SPECIFYING AN ARCHITECTURE EVOLUTION

STYLE DESCRIPTION.

A sequence of transformations is also considered by Garlan

in [2] where an architecture evolution style is defined and

the possibility to automatically generate possible paths is

envisioned. The key is that at an architectural level many

systems evolutions follow certain common paths. Each path

defines a sequence of SA models in which the first element

of the path is the SA model of the current system, and the

final element is a desired target SA model. Links between

successive nodes in a path are associated with transitions

that are composed using a set of evolution operators for that

style. In this respect an evolution style is like a state

machine for which an execution trace defines an evolution

path. Path constraints are specified to constrain the space of

paths and to give the correctness dimension of this

approach. The evaluation function is introduced for

comparison of different paths with respect to quality

metrics.

Goal. The goal is to provide automated assistance for

expressing architectural evolution and for reasoning about

the correctness and quality of evolution paths to achieve

business concerns of stakeholders by choosing an optimal

path. This asistance is provided by taking advantage of

regularity in the space of common architectural evolutions.

Sachin Upadhyay, Ankit Agrawal, Himanshu Hora, Imran Khan, Ashish pandey / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2227-2233

2231 | P a g e

ADL. The ADL notation for SA models representation is

Acme. SA model is a graph in which nodes represent

components and edges represent connectors. Ports are

defined as interfaces of components. Annotations with

properties of these elements provide more-detailed

semantics to represent

reliability (for components), protocols of interaction (for

connectors), or signatures of required and provided services

(for ports). In this way a list of properties may vary from an

SA model to another SA model.

Multiple views. A particularity of this approach is the set of

architectures, which is an architectural style and is defined

by specifying a vocabulary of architectural structures as a

set of component, connector, and port types, together with a

set of constraints. Other specifications refer to evolution

path properties,path constraints, evolution operators, and

evaluation functions.

Tools. This approach has been implemented in a tool called

Ævol [2].All title and author details must be in single-

column format and must be centered.

D. ARCHITECTURE REFACTORING TO IMPROVE

QUALITY ATTRIBUTES DESCRIPTION.

Mapping architectural specifications to hypergraphs, then

using these to define architecture refactorings is another

technique that could be applied automatically [3].

Refactorings are formally specified and a mechanism must

be provided to automatically apply them.

Goal. The goal is to preserve architectural behavior and to

improve the quality attributes of the architecture. Thus it

reduces the development cost and improves the quality of

the final system because an automated and systematic

search will identify more and better design alternatives.

When the architect has to deal with a large number of

quality attributes such as safety, availability,reliability,

maintainability that conflict with one another and with

economic constraints, architecture trade-off analysis

methods are appropriate to evaluate design decisions and

design alternatives.

ADL. AADL (Architecture Analysis and Description

Language) [8] is the underlying ADL in this approach.

AADL has been designed on the foundation of MetaH [9].

The goal of AADL is to specifically support model-based

quality analysis (e.g. safety with a specific Error Annex [8,

10]) and specification of software and system architectures

for complex embedded systems. Architecture specifications

are defined as graph-based structures. Graph

transformations are identified as a suitable formalism for

refactorings. Graph transformations represent the set of

architectural design alternatives that are evaluated using

evolutionary algorithms and multi-objective optimization

strategies.

Multiple views. Only deployment view is considered.

Tools. There is a tool called ArcheOpterix [7] that

implements this approach.

E. EVOLUTIONARY OPTIMIZATION BASED ON

METAHEURISTIC SEARCH DESCRIPTION.

This approach encodes the challenge of improving SA

models as an optimization problem [1]. Metaheuristic search

techniques [11] (e.g.,genetic algorithms, simulated

annealing, etc.) are used to find better SA models.

Goal. The goal of transformation is to automatically

improve a given SA model with respect to performance,

reliability, and cost.

ADL. The approach is best suited for component-based

SAs. Components encapsulate functionality that can be

independently reused, and thus componentbased SAs

provide degrees of freedom to be exploited. In particular,

SAs models

are expressed with the Palladio Component Model (PCM).

Quality prediction is done using Layered Queueing

Networks (LQN) [13] (or SimuCom EQNs [12]) for

performance metrics, Markov models for reliability metrics

[14],and a newly introduced PCM cost extension for cost.

Multiple views. This approach does not consider the

problem of consistency between multiple views. A view of

interest is annotated, then is translated into an analysis

model.

Tools. This approach has been implemented in the

PerOpteryx tool.

V. PRINCIPLES FOR EVALUATING AUTOMATIC

ARCHITECTURAL TRANSFORMATIONS

The purpose of this section is to offer guidelines related to

the selection of the most suitable technique for an

automated SA model transformation during SA life cycle.

The comparison is based on the framework of the

presentation and the focus is mainly on three elements 1) the

goal of transformation, 2) the ADLs and multiple view-

based SA modeling and 3) the existent tools supporting

transformation.

Goal of transformation. The goal of automating the

process of transformation could be to reduce the effort of

consistently and correctly realizing patterns across a design,

to produce derivation in a sequence of transformations, to

extract views from an ADL metamodel, to provide

automated assistance for

expressing architectural evolution, and for reasoning about

the correctness and quality of evolution paths to achieve

business objectives of an organization by choosing an

optimal path, to preserve architectural behavior and to

improve the quality attributes of the architecture, to

automatically improve a given architecture model with

respect to performance, reliability, and cost. The general

problem with quality and software architecture is rooted in

the nature of the former. Quality refers to the whole

software and thus they cannot be presented in software

architecture as components or functions offered by the

Sachin Upadhyay, Ankit Agrawal, Himanshu Hora, Imran Khan, Ashish pandey / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2227-2233

2232 | P a g e

system, as it is the case with functional requirements.

Currently there are approaches that explicitly represent

quality requirements in specific models [13][14]. Also

software architecture and quality are closely related and

they are analyzed together during architectural automatic

transformation. Thus quality

driven model architecture transformation may be performed

automatically.

Architectural description language. According to the

level of detail for an SA model description these approaches

can be classified into three groups: highest level

transformations, which are applied on elements of a

deployment diagram [1]; middle level transformations

performed on component diagram [2];lowest level

transformations aimed at design patterns and their

compositions [4].Description language is a key issue in the

SA automatic transformation. It is impossible to provide any

architectural change without adopting a formal

architecture representation. Additionally, the complexity of

a software structure,the number of viewpoints from which

software architecture can be observed, and the great

majority of available approaches which can be applied to

model and transform architecture result in many alternative

description languages like ACME, AADL, UML. 2.0, PCM

and other specific quality models. Almost every ADL

concentrates on some particular aspects of SA and it is not

easy to find a language that can represent all architectural

perspectives, from static abstraction levels to system

behavior and architectural styles. Architectural

transformations cannot be defined before all nuances of the

SA are well described in a unified and formalized manner,

mainly because changing operations, especially their pre-

and post-conditions, must be expressed on the base of

established architectural description, to ensure that the

system structure is changed in a controlled manner.

UML is strongly related to ADLs and architectural

transformations. UML is more popular than any ADL and is

used in model driven development with related OCL and

QVT languages. Performing or presenting the results of

architectural transformations in UML would make them

comprehensible to everyone, not only to the specialists

acquainted with a specific ADL.

Tools. All the approaches described above supporting

automatic architecture model transformation have been

included in specific tools or in integrated development

environments. Some tools are just workbenches for the

proof of concept.

VI. CONCLUSIONS AND FURTHER RESEARCH
This paper discussed about current techniques for

supporting automatic architecture model transformations.

Automation in architectural transformations depends on the

formality and the completeness of the architectural model.

A more formal notation is more easily to automation than a

less formal one. Similarly, a model that captures a great

number of architectural design decisions for the given

system will be more agreeable to rigorous, automated

transformation than a model that is missing many of such

design decisions. Automation is possible in a design process

when this process is well understood. Most of the

techniques have shown how they can be used in

experiments and prototype implementations. Their results

are most often of a preliminary. nature and the prototype

implementations are limited and over-simplified. Also

compared to real-world systems, most of the case studies are

small and have a very limited problem/solution space. This

has the benefit that the results can be validated by

calculating and interpreting the results manually. However,

it remains to be proven that these approaches can handle

complex and convex solution spaces in an acceptable time

with an acceptable diversity of solutions. In case of

simulations the predictions are limited and their precisions

depend on the initial assumptions. However the simulation

can serve as a basis for experiments and comparisons with

real systems in order to improve the models.

Additionally, the applicability and understandability of SA

models and tools by common software architects requires

experiments to gain insights about the feasibility of these

approaches. For example, a special attention must be paid to

what kind of information is supplementary required for

annotating models. An open issue remains the toolsets to

support automated generation of design alternatives to cope

with run-time quality attributes such as performance or

reliability. Our current research work focuses on a tool

chain development for functional and quality-driven model

transformations for various embedded systems domains.

ACKNOWLEDGEMENTS
I would like to thank the reviewers and colleagues for their

valuable comments and suggestions to this work.

R E F E R E N C E S
[1]. A. Martens, H. Koziolek, S. Becker, R. Reussner,

―Automatically Improve Software Architecture

Models for Performance, Reliability, and Cost using

Evolutionary Algorithms‖, in Proceedings of

WOSP/SIPEW 2010, San Francisco Bay Area, USA.

[2]. D. Garlan, J.M. Barness, B. Schmerl, O. Celiku,

―Evolution Styles: Foundations and Tool Support for

Software Architecture Evolution‖, WICSA 2010.

[3]. L. Grunske, ―Identifying ―good‖ architectural design

alternatives with multi-objective optimization

strategies‖, in Procs of ICSE 2006, Shanghai, China.

[4]. R. France, S. Ghosh, E., Song, D.K, King, ―A

metamodelling Approach to Pattern-Based Model

Refactoring‖, in IEEE Software, 2011.

[5]. M. Matinlassi, Quality driven software architecture

model transformation. Towards automation, VTT

Publications 608, 2010.

Sachin Upadhyay, Ankit Agrawal, Himanshu Hora, Imran Khan, Ashish pandey / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2227-2233

2233 | P a g e

[6]. C. Oliveira, M.Wermelinger, ―A model driven

approach to extract views from an architectural

description language‖, in Procs of. WICSA 2010.

[7]. A. Aleti, S. Bjornander S., L. Grunske, I. Meedennya,

―ArcheOpterix: An extendable tool for architecture

optimization of AADL models‖, in Proceedings of

Mompes 2010.

[8]. P.H. Feiler, D.P. Gluch, J.J. Hudak, The

Architecture Analysis and Design Language

(AADL): An Introduction. Technical report,

CMU/SEI-2006-TN-011, 2009.

[9]. P. Binns, M. Englehart, M. Jackson, and S. Vestal,

“Domain specific software architectures for

guidance, navigation and control‖, in International

Journal of Software Engineering and

Knowledge Engineering, 6(2):201–227, 2008.

 [10]. L. Grunske, J. Han, ―A comparative study into

architect ure-based safety evaluation methodologies

using AADL‘s error annex and failure propagation

models‖, in 11th IEEE High Assurance Systems Eng.

Symp., HASE 2008, 283–292. IEEE Computer

Society

[11]. C. Blum, A. Roli, ― Metaheuristics in combinatorial

optimization: Overview and conceptual comparison‖,

in ACM Computing Surveys, 35(3):268-308, 2008

[12]. S. Becker, H. Koziolek, and R. Reussner, ―The

Palladio component model for model-driven

performance prediction‖, in J. of Systems and

Software, 82:3-22, 2007

[13]. G. Franks, T. Omari, C.M. Woodside, O. Das, and S.

Derisavi, ―Enhanced modeling and solution of

layered queueing networks‖, in IEEE Trans. Software

Eng, 35(2):148-161, 2009

[14]. H. Koziolek, F. Brosch, ―Parameter dependencies for

component reliability specifications‖, in Proc. of

Workshop on Formal Engineering approaches to

Software Components and Architectures. Elsevier,

2011

[15]. Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Tacheichi, H.

Mei, ―Towards Automatic Model Synchronization

from Model Transformations‖, in Procs. of ASE 07,

164-173, 2009

[16]. R. Krikhaar, A. Postma, A. Sellink, M. Stroucken, C.

Verhoef, ―A Two-phase Process for Software

Architecture Improvement‖, in Proceedings of

International Conference on Software Maintenance

1999, Oxford, UK, September 1999

[17]. J.L. Fiadeiro, Categories for Software Engineering,

Springer, 2004

[18]. L. Dobrica, E. Niemela, ―A survey on software

architecture analysis methods‖, in IEEE Transactions

on Software Engineering, vol. 28, no. 7, pg 628-653,

2002.

[19]. S.J. Carriere, S. Woods, R. Kazman, ―Software

Architecture Transformation‖, Proc. of the Conf. on

Reverse Engineering, October 1999

[20]. L. Bass, P. Clements, R. Kazman, Software

Architecture in Practice, Addison Wesley, Boston,

2003

[21]. A.M. Babar, I. Gorton, D.R. Jeffery, ―Capturing and

using software architecture knowledge for

architecture-based software development‖, in

Proceedings of the Quality Software International

Conference (QSIC ‗05), pp. 169–176, 2005

[22]. A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M.A.

Babar, ―A comparative study of architecture

knowledge management tools‖, J. of Syst. and

Software, 83 (2010), pp. 352-370

[23]. L. Dobrica, ―Integrating reusable concepts into

reference architecture design of complex

embedded systems‖, Procs. of the 6th Int. Conf. on

Informatics in Control, Automation and

Robotics (ICINCO 2009), vol. 3, pg. 234-237, 2009

[24]. *** Carnegie Mellon University. How Do You

Define Software Architecture?

<http://www.sei.cmu.edu/architecture/definitions.htm

l>, Software Eng. Institute, 2005

[25]. N. Medvidovic, R.N. Taylor, ―A Classification and

Comparison Framework for Software Architecture

Description Languages‖, IEEE Transactions on Soft.

Eng. 26 (1), 70–93

[26]. N. Medvidovic, E.M. Dashofy, R.N. Taylor, ―Moving

Architectural Description from under the technology

lampost”, Journal of Information and Software

Technology, 2007

[27]. I. Reinhartz-Berger, ―Towards automation of domain

modeling‖, Journal of Data and Knowledge

Engineering, 69 (2010), 491-515

[28]. A. Olteanu, A.D. Ionita, T. Ionescu, ―Leveraging Open

Source ELearning Systems with Web 2.0 and

Knowledge Structures‖, U.P.B Scientific Bulletin-

Series C; Electrical Engineering and Computers

Science, no.2, (2010), 3-16

[29]. L. Dobrica, R. Pietraru, ―Security Analysis at

Architectural Level in Embedded Software

Development‖, in Control and Applied Informatics, vol.

11, no. 2, pg. 51-58, 2009.

