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 Abstract-This paper presents removal of random 

noisenoise by complex double density dual tree discrete 

wavelet Transform. In general in images noise suppression 

is a particularly delicate and difficult task. A tradeoff 

between noise reduction and the preservation of actual 

image features has to be made in a way that enhances the 

relevant image content. The main properties of a good 

image denoising model are that it will remove noise while 

preserving edges and contours. However, wavelet 

coefficients of natural images have significant 

dependencies. For many natural signals, the wavelet 

transform is a more effective tool than the Fourier 

transform. The wavelet transform provides a 

multiresolution representation using a set of analyzing 

functions that are dilations and translations of a few 

functions (wavelets). In this paper we have evaluated & 

compared performances of Standard Double Density 

DWT(SDDDWT), Real Double Density Dual Tree 

(RDDDTDWT) and Complex Double Density Dual Tree 

DWT(CDDDTDWT). Simulation and experimental results 

demonstrate that the complex double density dual tree 

discrete wavelet transform (CDDDTDWT) outperforms a 

number of other existing wavelet transform techniques 

and it is particularly effective for the very highly 

corrupted images.  

KEYWORDS: DWT, SDDDWT, RDDDTDWT& 

CDDDTDWT. 

 

I. INTRODUCTION 
it is generally desirable for image brightness (or film density) 

to be uniform except where it changes to form an image. 

There are factors, however, that tend to produce variation in 

the brightness of a displayed image even when no image detail 

is present. This variation is usually random and has no 

particular pattern. In many cases, it reduces image quality and 

is especially significant when the objects being imaged are 

small and have relatively low contrast. This random variation 

in image brightness is designated random noise. 

Although noise gives an image a generally undesirable 

appearance, the most significant factor is that noise can cover 

and reduce the visibility of certain features within the image 

.The loss of visibility is especially significant for low-contrast 

objects. The visibility threshold, especially for low-contrast 

objects, is very noise dependent. In principle, when we reduce 

image noise, the "curtain" is raised somewhat, and more of the 

low-contrast objects within the body become visible. We can 

usually change imaging factors to reduce noise, we must 

always compromise. 

The wavelet transform is a simple and elegant tool that 

can be used for many digital signal and image 

processing applications. It overcomes some of the 

limitations of the Fourier transform with its ability to 

represent a function simultaneously in the frequency and 

time domains using a single prototype function (or wavelet) 

and its scales and shifts. The wavelet transform comes in 

several forms. The critically-sampled form of the wavelet 

transforms provides the most compact representation; 

however, it has several limitations.  For example, it lacks 

the shift-invariance property, and in multiple dimensions it 

does a poor job of distinguishing orientations, which is 

important in image processing. For these reasons, it turns 

out that for some applications, improvements can be 

obtained by using an expansive wavelet transform in place 

of a critically-sampled one.  

An expansive transform is one that converts an N-point 

signal into M coefficients with M > N. There  

are several kinds of expansive DWTs such as dual tree  

DWT [1-3] and double density DWT [4]. The dual-tree  

complex wavelet transform overcomes these limitations, it  

is nearly shift-invariant and is oriented in 2-D. The 2- D  

dual-tree wavelet transform produces six sub bands at each  

scale, each of which is strongly oriented at distinct angles  

while the double-density DWT is an improvement upon  

the  critically  sampled  DWT  with  important  additional  

properties: (1) It employs one scaling function and two  

distinct wavelets, which are designed to be offset from one  

another  by  one  half, (2)  The  double-density  DWT  is  

over complete by a factor of two, and (3) It is nearly shift- 

invariant. 

      The differences between the double-density 

DWT and the dual-tree DWT can be clarified with the 

following comparisons: 

In the dual-tree DWT, the two wavelets form an 

approximate Hilbert transform pair, whereas in the double-

density DWT, the two wavelets are offset by one half.  

For the dual-tree DWT, there are fewer degrees of 

freedom for design (achieving the Hilbert pair property adds 

constraints), whereas for the double-density DWT, there are 

more degrees of freedom for design.  
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Different filter bank structures are used to implement the 

dual-tree and double-density DWTs.  

The dual-tree DWT can be interpreted as a complex-

valued wavelet transform, which is useful for signal  

modeling and denoising (the double-density DWT cannot be 

interpreted as such).  

The dual-tree DWT can be used to implement 2-D 

transforms with directional Gabor-like wavelets, which is 

highly desirable for image processing (the double-density 

DWT cannot be, although it can be used in conjunction with 

specialized post-filters to implement a complex wavelet 

transform with low-redundancy [5].  

 

II. DISCRETE WAVELET TRANSFORM  
A. Wavelet Transform: The simplest wavelet transform for 

multi-dimensional digital data is the critically-sampled 

separable wavelet transform. This transform uses a 1-D 

wavelet transform in each dimension and is the one that is 

conventionally used. However, one way to improve the 

performance of wavelet-based signal and image processing 

algorithms is to use specialized wavelet transforms in place of 

the conventional wavelet transform. There are several 

advances in the design of specific wavelet transforms that lead 

to substantially improved performance. For example, the 

undecimated wavelet transform [6-7], the steerable pyramid 

[8], and curvelet transform [9] all give improved results in 

applications involving multidimensional data. Recently 

developed dual-tree transform, an oriented complex-valued 

wavelet transform shown to be highly beneficial for multi-

dimensional signal and image processing. This transform has 

several advantages over the conventional multi-dimensional 

wavelet transform: (1) near shift invariance, (2) directional 

selectivity, and (3) improved energy compaction. The discrete 

wavelet transform are based on perfect reconstruction two-

channel filter banks. It consists of recursively applying a 2-

channel filter bank - the successive decomposition is 

performed only on the low pass output [2][5].  

Mathematically the Discrete wavelet transform 

transform pair for one dimensional can be defined as 

 
Where , , and  are functions of 

discrete variable x = 0, 1, 2, ... ,  

In two dimensions, a two-dimensional scaling 

function,  , and three two-dimensional wavelet 

  are required. 

Each is the product of a one-dimensional scaling function Ф  

and corresponding wavelet Ψ.  

 

where  measures variations along columns (like 

horizontal edges),  responds to variations along rows 

(like vertical edges), and corresponds to variations along 

diagonals. 

 

a. 1-D filter Bank: The 1-D filter bank is constructed with 

analysis & synthesis filter bank. The analysis filter bank 

decomposes the input signal x(n) into two sub band signals, 

c(n) and d(n). The signal c(n) represents the low frequency 

part of x(n), while the signal d(n) represents the high 

frequency part of x(n). We have denoted the low pass filter by 

af1 (analysis filter 1) and the high pass filter by af2 (analysis 

filter 2).  

 
Figure 1.The Analysis filter bank Figure 2.The Synthesis 

filter bank 

 

As shown in the figure 1, the output of each filter is then 

down sampled by 2 to obtain the two sub band signals c(n) & 

d(n) [3][10-12].The Synthesis filter bank combines the two 

sub band signals c(n) & d(n) to obtain a single signal y(n). 

The synthesis filters bank up-samples each of the two sub 

band signals. The signals are then filtered using a low pass 

and a high pass filter. We have denoted the low pass filter by 

sf1 (synthesis filter1) and the high pass filter by sf2 (synthesis 

filter 2) as shown in the figure 2. The signals are then added 

together to obtain the signal y(n). If the four filters are 

designed so as to guarantee that the output signal y(n) equals 

the input signal x(n), then the filters are said to satisfy the 

perfect reconstruction condition [3][10-12]. 

b. 2-D Filter Banks: To use the wavelet transform for image 

processing we must implement a 2-D version of the analysis 

and synthesis filter banks. In the 2-D case, the 1-D analysis 

filter bank is first applied to the columns of the image and 

then applied to the rows. If the image has N1 rows and N2 

columns, then after applying the 1-D analysis filter bank to 

each column we have two sub-band images, each having N1/2 

rows and N2 columns; after applying the 1-D analysis filter 

bank to each row of both of the two sub-band images, we have 

four sub-band images, each having N1/2 rows and N2/2 

columns. This is illustrated in figure 3. The 2-D synthesis 
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filter bank combines the four sub-band images to obtain the 

original image of size N1 by N2 [3][10-12]. 

 

 
Figure3. One stage in multi-resolution wavelet 

decomposition of an image 

 

The two-dimensional DWT can be implemented using 

digital filters and downsamplers and it is shown in the figure 4 

& 5 respectively 

 
Figure 4. The two-dimensional DWT the analysis filter  

 

 

 
 

Figure 5. The two-dimensional DWT the synthesis filte 

 

B. Dual Tree Discrete Wavelet Transform  
The dual-tree complex DWT of a image x is implemented 

using two critically-sampled DWTs in parallel on the same 

data as shown in the figure 6.  

 
 

Figure 6. 2-D Dual Tree Discrete Wavelet Transform  

This transform is 2-times expansive because for an 

N-point signal it gives 2N DWT coefficients. If the filters in 

the upper and lower DWTs are the same, then no advantage is 

gained. However, if the filters are designed is a specific way, 

then the subband signals of the upper DWT can be interpreted 

as the real part of a complex wavelet transform, and subband 

signals of the lower DWT can be interpreted as the imaginary 

part. Equivalently, for specially designed sets of filters, the 

wavelet associated with the upper DWT can be an 

approximate Hilbert transform of the wavelet associated with 

the lower DWT. When designed in this way, the dual-tree 

complex DWT is nearly shift-invariant, in contrast with the 

critically-sampled DWT. Moreover, the dual-tree complex 

DWT can be used to implement 2-D wavelet transforms 

where each wavelet is oriented, which is especially useful for 

image processing. For the separable 2-D DWT, recall that one 

of the three wavelets does not have a dominant orientation. 

The dual-tree complex DWT outperforms the critically-

sampled DWT for applications like image enhancement. One 

of the advantages of the dual-tree complex wavelet transform 

is that it can be used to implement 2-D wavelet transforms 

that are more selective with respect to orientation than is the 

separable 2-D DWT[1-3][13-16].  

There are two types of the 2-D dual-tree wavelet 

transform: the real 2-D dual-tree DWT is 2-times expansive, 

while the complex 2-D dual-tree DWT is 4-times expansive. 

Both types have wavelets oriented in six distinct directions. 

We describe the real version first.  

1). Real 2-D Dual-Tree Discrete Wavelet Transform  
The real 2-D dual-tree DWT of an image x is 

implemented using two critically-sampled separable 2-D 

DWTs in parallel. Then for each pair of subbands we take the 

sum and difference.  

2).Complex 2-D Dual-Tree Discrete Wavelet Transform  
The complex 2-D dual-tree DWT also gives rise to 

wavelets in six distinct directions, however, in this case there 

are two wavelets in each direction. In each direction, one of 

the two wavelets can be interpreted as the real part of a 

complex-valued 2-D wavelet, while the other wavelet can be 

interpreted as the imaginary part of a complex-valued 2-D 

wavelet. Because the complex version has twice as many 

wavelets as the real version of the transform, the complex 

version is 4-times expansive. The complex 2-D dual-tree is 

implemented as four critically-sampled separable 2-D DWTs 

operating in parallel. However, different filter sets are used 

along the rows and columns. As in the real case, the sum and 

difference of sub-band images is performed to obtain the 

oriented wavelets [1-3][13-16].  

C. Bivariate Shrinkage Function  
We have considered non-Gaussian bivariate 

probability distribution function to model the statistics of 

wavelet coefficients of natural images. The model captures the 

dependence between a wavelet coefficient and its parent. 

Using Bayesian estimation theory we derive from this model a 
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simple non-linear shrinkage function for wavelet denoising, 

which generalizes the soft thresholding approach of Donoho 

and Johnstone. The shrinkage function, which depends on 

both the coefficient and its parent, yields improved results for 

wavelet-based image denoising [10-12].  

Let w2 represent the parent of w1 (w2 is the wavelet 

coefficient at the same spatial position as w1, but at the next 

coarser scale). Then     

                   y=w+n                            (8) 

 

where w = (w1,w2), y = (y1,y2) and n = (n1,n2). The noise 

values n1, n2 are IID zero-mean Gaussian with variance 

\sigma_n^2. Now we define the following non-Gaussian 

bivariate pdf 

 
With this pdf, w1 and w2 are uncorrelated, but not 

independent. The MAP estimator of w1 yields the following 

bivariate shrinkage function 

 
 

For this bivariate shrinkage function, the smaller the parent 

value, the greater the shrinkage. This is consistent with other 

models, but here it is derived using a Bayesian estimation 

approach beginning with the new bivariate non- Gaussian 

mode [10-12].  

D. MATLAB Implementation Procedure:  
1. Set the window size. The image variance of a coefficient 

will be estimated using neighboring coefficients in a 

rectangular region with this window size.  

2. Set how many stages will be used for the wavelet 

transform.  

3. Extend the noisy image. The noisy image will be extended 

using symmetric extension in order to improve the boundary 

problem.  

4. Calculate the forward dual-tree DWT.  

5. Estimate the noise variance. The noise variance will be 

calculated using the robust median estimator.  

6. Process each subband separately in a loop. First the real and 

imaginary parts of the coefficients and the corresponding 

parent matrices are prepared for each subband.  

7. Estimate the image variance and the threshold value: The 

signal variance for each coefficient is estimated using the 

window size and the threshold value for each coefficient will 

be calculated and stored in a matrix with the same size as the 

coefficient matrix [10-12].  

8. Estimate the magnitude of the complex coefficients  

The coefficients will be estimated using the magnitudes of the 

complex coefficient, its parent and the threshold value with 

the Bivariate Shrinkage Function.  

9. Calculate the inverse wavelet transform.  

10. Extract the image. The necessary part of the final image is 

extracted in order to reverse the symmetrical extension.  

 

III. DOUBLE DENSITY DISCRETE WAVELET 

TRANSFORM  
The double density Discrete Wavelet Transform is constructed 

with analysis & synthesis filter bank and it is shown in the 

figure 7. 

 
 

Figure 7. Oversampled analysis and synthesis filter bank.  

 

In two dimensions, this transform outperforms the 

standard DWT in terms of enhancement; however, there is 

need of improvement because not all of the wavelets are 

directional. That is, although the double-density DWT utilizes 

more wavelets, some lack a dominant spatial orientation, 

which prevents them from being able to isolate those 

directions [4-5].  

A solution to this problem is provided by the double-

density complex DWT, which combines the characteristics of 

the double-density DWT and the dual-tree DWT. The double-

density complex DWT is based on two scaling functions and 

four distinct wavelets, each of which is specifically designed 

such that the two wavelets of the first pair are offset from one 

other by one half, and the other pair of wavelets form an 

approximate Hilbert transform pair. By ensuring these two 

properties, the double-density complex DWT possesses 

improved directional selectivity and can be used to implement 

complex and directional wavelet transforms in multiple 

dimensions. We construct the filter bank structures for both 

the double-density DWT and the double-density complex 

DWT using finite impulse response (FIR) perfect 

reconstruction filter banks. These filter banks are then applied 

recursively to the low pass subband, using the analysis filters 

for the forward transform and the synthesis filters for the 

inverse transform. By doing this, it is then possible to evaluate 

each transforms performance in several applications including 

signal and image enhancement [4-5][17-20]. 

A. 1-D Double-Density DWT  
The double-density DWT is implemented by recursively 

applying the 3-channel analysis filter bank to the low pass 

subband. This process is illustrated in figure 8. Conversely, 
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the inverse double-density DWT is obtained by iteratively 

applying the synthesis filter bank.  

 
Figure 8. Three stage recursion of the 1-D double-density 

DWT  

B. 2-D Double-Density DWT  
To use the double-density discrete wavelet transform for  

2-D signal and image processing, we must implement a two-

dimensional analysis and synthesis filter bank structure. This 

can simply be done by alternatively applying the transform 

first to the rows, then to the columns of an image. 

 
Figure 9. An Oversampled Filter Bank for 2-D Images 

 

This gives rise to nine 2-D subbands, one of which is the 2-D 

low pass scaling filter, and the other eight of which make up 

the eight 2-D wavelet filters, as shown in figure 9.  

C. 2-D Double-Density Dual-Tree DWT  
The double-density dual-tree DWT, which is an over complete 

discrete wavelet transform (DWT) designed to simultaneously 

possess the properties of the double-density DWT and the 

dual-tree complex DWT. The double-density DWT and the 

dual-tree complex DWT are similar in several respects (they 

are both over complete by a factor of two, they are both nearly 

shift-invariant, and they are both based on FIR perfect 

reconstruction filter banks), but they are quite different from 

one another in other important respects. Both wavelet 

transforms can outperform the critically sampled DWT for 

several signal processing applications, but they do so for 

different reasons. It is therefore natural to investigate the 

possibility of a single wavelet transform that has the 

characteristics of both the double-density DWT and dual-tree 

complex DWT [4-5][17-20].  

There are two types of the 2-D double-density dual-tree DWT: 

(1) The 2-D double-density dual-tree real-oriented DWT, 

which is 2-times expansive and (2) the 2-D double-density 

dual-tree complex-oriented DWT, which is 4-times expansive 

[4-5] [17-20].  

1. Real 2-D Double-Density Dual-Tree DWT  
The 2-D double-density dual-tree real DWT of an image i is 

implemented by using two oversampled 2-D double-density 

DWTs in parallel. Then, for each pair of sub bands, we take 

the sum and difference [4-5][17-20].  

2. Complex 2-D Double-Density Dual-Tree DWT  
The 2-D double-density dual-tree complex DWT is 4-times 

expansive, which means it gives rise to twice as many 

wavelets in the same dominating orientations as the 2-D 

double-density dual-tree real DWT. For each of the directions 

illustrated in Figure 7, one of the wavelets can be interpreted 

as the real part of a complex-valued 2-D wavelet function, 

while the other can be interpreted as the imaginary part. This 

transform is implemented by applying four 2-D double-

density DWTs in parallel to the same input data with distinct 

filter sets for the rows and columns. As in the real DWT, we 

then take the sum and difference of the subband images. This 

operation yields the 32 oriented wavelets associated with the 

2-D double-density dual-tree complex DWT [4-5][17-20].  

D. MATLAB Implementation Procedure:  
1. Set the window size. The image variance of a coefficient 

will be estimated using neighboring coefficients in a 

rectangular region with this window size.  

2. Set how many stages will be used for the wavelet 

transform.  

3. Extend the noisy image. The noisy image will be extended 

using symmetric extension in order to improve the boundary 

problem.  

4. Calculate the Forward Double Density DWT.  

5. Estimate the noise variance. The noise variance will be 

calculated using the robust median estimator.  

6. Process each subband separately in a loop. First the real and 

imaginary parts of the coefficients and the corresponding 

parent matrices are prepared for each subband [1][5].  

7. Estimate the image variance and the threshold value: The 

image variance for each coefficient is estimated using the 

window size and the threshold value for each coefficient will 

be calculated and stored in a matrix with the same size as the 

coefficient matrix.  

8. Estimate the magnitude of the complex coefficients. The 

coefficients will be estimated using the magnitudes of the 

complex coefficient, its parent and the threshold value with 

the Bivariate Shrinkage Function.  

9. Calculate the inverse Double Density  

10. Extract the image. The necessary part of the final image is 

extracted in order to reverse the symmetrical extension  

 

IV. SIMULATION & EXPERIMENT RESULTS  

SIMULATION 

Five 8-bit images of dimensions MlxM2 (= 512x512) pixels is 

used for simulations. The pixels s(i, j) for 1 ≤i ≤ M1 and 1 ≤j 
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≤ M2, of the image is corrupted by adding random noise. The 

superiority of different wavelet transform is demonstrated. We 

have evaluated & compared performances of Standard Double 

Density DWT (SDDDWT), Real Double Density Dual Tree 

(RDDDTDWT) and Complex Double Density Dual Tree 

DWT (CDDDTDWT) by using peak signal to noise ratio 

(PSNR) value. Simulation and experimental results 

demonstrate that the Complex Double Density Dual Tree 

DWT (CDDDTDWT) noise removal transform outperform in 

comparison with others transform and it is particularly 

effective for highly corrupted image. 

.  

RESULTS  

The results of all the 3 algorithms ,Standard Double 

Density DWT (SDDDWT), Real Double Density Dual Tree 

(RDDDTDWT) and Complex Double Density Dual Tree 

DWT (CDDDTDWT)  when those are applied to denoise the 

8-bit images having  the same amount of random noise are 

given below. 

 

 

Image1: 

 

 

 
 

Image 2: 
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Image 3: 

 

 

 

 
Image 4: 
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Image 5: 
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Performance tables 

Image 

Noisy 

image 

PSNR 

(dB) 

Double 

Density 

dual tree 

method 

PSNR 

(dB) 

Double 

Density 

dual tree 

real 

method 

PSNR 

(dB) 

Double 

Density 

dual tree 

complex 

method 

PSNR 

(dB) 

Image1 21.4904 26.817 28.259 29.3031 

Image2 22.9494 27.0931 27.6692 27.7468 

Image3 21.8258 27.3337 28.6759 29.6901 

Image4 19.2518 23.6128 25.1515 26.3608 

Image5 22.9694 28.0677 28.6451 28.9643 

 

V. CONCLUSION  
This paper highlighted wavelet based enhancement of gray 

scale digital images corrupted by random noise. In this study 

we have evaluated and compared the performances of wavelet 

transforms. The complex double density dual tree discrete 

wavelet transform (CDDDTDWT) outperforms in comparison 

with others wavelet transform in the highly corrupted images. 

In terms of image enhancement, the double-density complex 

wavelet transform performed much better at suppressing noise 

over the double-density wavelet transform. However, to 

improve the performance further it is necessary to use a 

different threshold for each subband because for this 

transform the wavelets associated with different subbands 

have different norms. The simulation results indicate that the 

complex double density dual tree discrete wavelet transform 

performances better than others wavelet transform. 
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