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Abstract—In this paper we provide a thorough ser( 

symbol error rate) analysis of two well known adaptive 

algorithms for equalization based on a novel least 

squares reference model that allows to treat the 

equalizer problem equivalently as system identification 

problem. An adaptive algorithm is a procedure for 

adjusting the parameters of an adaptive filter to 

minimize a cost function chosen for the task at hand. 

Here we firstly proposed a noise-robust optimal-step-size 

frequency domain LMS (least mean square) algorithm 

for estimating the equalizer coefficients and after the 

modified LMS algorithm which is an extension of the 

standard LMS (least mean square) algorithm which 

bypasses this issue by calculating maximum step size 

value. The proposed algorithms conclude that the step-

size ambiguity of the LMS (least mean square) algorithm 

is solved by the NLMS (normalized mean square) 

algorithm, which gives faster convergence speed as 

compared to the LMS (least mean square) algorithm. 

Computer simulation results a represented to show its 

improved performance for trained adaptive 

equalization.  This paper focuses on the use of these two 

proposed algorithms to reduce this unwanted echo, thus 

increasing communication quality. 
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1. INTRODUCTION 
In modern digital communications, it is well known that 

channel equalization plays an important role in 

compensating channel distortion. Unfortunately, various 

channels have time varying characteristic and their transfer 

functions change with time. Furthermore, time-varying 

multipath interference and multiuser interference are two 

major limitations for high speed digital communications. 

Usually, adaptive equalizers are applied in order to cope 

with these issues [1]. For adaptive channel equalization, we 

need a suitable filter structure and proper adaptive 

algorithms. High-speed digital transmissions mostly suffer 

from inter-symbol interference (ISI) and additive noise. The 

adaptive equalization algorithms recursively determine the 

filter coefficients in order to eliminate the effects of noise 

and ISI. We consider only uncoded and quadrature 

amplitude modulation (4-QAM). 

 

 

 

The most popular design strategy in this setting is reduce the 

mean-squared-error (MSE) using suitable adaptive 

algorithm [3] . However, as recognized in, a better strategy 

is to choose the equalizer coefficients so as to minimize the 

error probability or symbol error rate (SER). Minimum-BER 

equalization first appeared in which among the numerous 

algorithms that can be used for adaptive filtering, the Least 

Mean Square (LMS) algorithm has enjoyed widespread 

popularity because of its simplicity in computation and 

implementation. However, it is well known that the least 

mean square (LMS) type algorithms can only minimize the 

current estimate error to some extent. It is known that a 

variable step size algorithm has to be applied to make a 

trade-off between the convergence rate and the steady-state 

mis adjustment. 

Our objective in this paper is firstly to compare a scatter 

results of both proposed algorithms in the generic adaptive 

filter and then after we compare their ser characteristics. The 

first adaptive LMS (least mean square) algorithm for 

approximating the minimum-BER equalizer was proposed 

in, where receiver estimates of the channel, noise power, 

and noiseless channel output were used to approximate a 

stochastic gradient algorithm [2]. This algorithm is 

significantly have slow convergence and poor tracking as 

compare to the the normalized least-mean-square (NLMS) 

algorithm, and even with perfect knowledge of the channel 

and noise power would be susceptible to mis convergence. 

By optimally selecting the step size during the adaptation, 

we can obtain both fast convergence rate and low steady 

state mean square error. 

 

2.     ADAPTIVE EQUALIZATION 
It is very difficult for estimating both the channel order and 

the distribution of energy among the taps and even it is very 

difficult to predict the effect of the environment on these 

taps. Hence it is a must for the equalization process to be 

adaptive. The equalizer need to be adapted very frequently 

with the changing environment. This includes two phases 

[3]. Firstly the equalizer needs to be trained with some 

known samples in the presence of some desired response 

(Supervised Learning). After training the weights and 

various parameters associated with the equalizer structure is 

frozen to function as a detector. These two processes are 

frequently implemented to keep the equalizer adaptive. We 

call the Equalizer is Frozen, if we keep the adaptable 

parameters of the equalizer constant. Figure.1 depicts how 

the equalization process is adaptive, After the initial training 

period (if there is one), the coefficients of an adaptive 
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equalizer may be continually adjusted in a decision-directed 

manner. 

 In this mode, the error signal ek = zk - xk is derived from the 

final (not necessarily correct) receiver estimate {xk} of the 

transmitted sequence { xk} . In normal operation, the receiver 

decisions are correct with high probability, so that the error 

estimates are correct often enough to allow the adaptive 

equalizer to maintain precise equalization. The larger the 

step size, the faster the equalizer tracking capability[5]. 

However, a compromise must be made between  fast 

tracking and the excess mean-square error of the equalizer. 

The excess MSE is that part of the error power in excess of 

the minimum attainable MSE (with tap gains frozen at their 

optimum settings). This excess MSE, caused by tap gains 

wandering around the optimum settings, is directly 

proportional to the number of equalizer coefficients, the step 

size, and the channel noise power[6].The step size that 

provides the fastest convergence results in an MSE which is, 

on the average, 3 dB worse than the minimum square error. 

 

 
                      Fig.1 Adaptive equalizer 

 

3. Gradient based Adaptive algorithm 
An adaptive algorithm is a procedure for adjusting the 

parameters of an adaptive filter to minimize a cost function 

chosen for the task at hand[7]. In this section, we describe 

the general form of many adaptive FIR filtering algorithms 

and present a simple derivation of the LMS(least mean 

square) adaptive algorithm. In our discussion, we only 

consider an adaptive FIR filter structure in Figure.2 Such 

systems are currently more popular than adaptive IIR filters 

because  

(1) The input-output stability of the FIR filter structure is 

guaranteed for any set of fixed coefficients, and  

(2) The algorithms for adjusting the coefficients of FIR 

filters are simpler in general than those for adjusting the 

coefficients of IIR filters. 

 

 
                Fig2.  Structure of an FIR filter 

 

Figure.2 shows the structure of a direct-form FIR filter, also 

known as a tapped- delay-line or transversal filter, where z-1 

denotes the unit delay element and each ω(t) is a 

multiplicative gain within the system. In this case, the 

parameters in ω(t) correspond to the impulse response 

values of the filter at time n. We can write the output signal 

y(t) as, 

                                        

(1) 

Where, 

                   S(t) = [s(t),s(t-1),……………..s(t-n+1)]
t   

(2) 

denotes the input signal vector and T denotes vector 

response 

 

(3) 

 

Are the n parameter of the system at time t. The general 

form of adaptive algorithm algorithm is 

                  (4) 

where G(ⱷ ) is a particular vector-valued nonlinear function, 

μ(t) is a step size parameter, e(t) and s(t) are the error signal 

and input signal vector, respectively, and is a vector of states 

that store pertinent information about the characteristics of 

the input and error signals. In the simplest algorithms, ψ(t) is 

not used[3]. 

The form of G(ⱷ ) in (4) depends on the cost function 

chosen for the given adaptive filtering task. The Mean-

Squared Error (MSE) cost function can be define as, 

              (5) 

Where, pt (e (t)) represents the probability density function 

of the error at time t and E{●} is the expectation integral on 

the right-hand side of (5). 

   

                                3.1 LMS Algorithm  

The LMS algorithm changes (adapts) the filter tap weights 

so that e(n) is minimized in the mean-square sense. When 

the processes x(n) & d(n) are jointly stationary, this 

algorithm converges to a set of tap-weights which, on 

average, are equal to the Wiener-Hopf solution[6]. 

The LMS algorithm is a practical scheme for realizing 

Wiener filters, without explicitly solving the Wiener-Hopf 

equation. This is shown in Figure 3. 

     
Fig.3 N tap transversal adaptive filter 
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       (6) 

             (7) 

 

The cost function J(t) chosen for the steepest descent 

algorithm of eq.(5) determines the coefficient solution 

obtained by using adaptive filter. If the MSE cost function in 

(5) is chosen, the resulting algorithm depends on the 

statistics of s(t) and d(t) because of the expectation operation 

that defines this cost function. One such cost function is the 

least-squares cost function given by 

 

      (8)  

 The weight update equation for LMS can be represented as 

                           W(t+1) =  W(t) + µe(t)S(t)                   (9) 

   Where μ is learning factor, equation (9) requires only 

multiplications and additions to implement. In fact, the 

number and type of operations needed for the LMS 

algorithm is nearly the same as that of the FIR filter 

structure with fixed coefficient values and hence LMS has 

become very popular [5].  

In effect, the iterative nature of the LMS coefficient updates 

is a form of time-averaging that smoothes the errors in the 

instantaneous gradient calculations to obtain a more 

reasonable estimate of the true gradient. 

 

 

                                    3.2 NLMS Algorithm 

The NLMS algorithm has been implemented in Matlab. As 

the step size parameter is chosen based on the current input 

values, the NLMS algorithm shows far greater stability with 

unknown signals[4]. This combined with good convergence 

speed and relative computational simplicity make the NLMS 

algorithm ideal for the real time adaptive echo cancellation 

system. 

As the NLMS is an extension of the standard LMS 

algorithm, the NLMS algorithms practical implementation is 

very similar to that of the LMS algorithm. Each iteration of 

the NLMS algorithm requires these steps in the following 

order [7].  

1. The output of the adaptive filter is calculated 

 

    (10) 

2. An error signal is calculated as the difference between 

the desired signal and the filter output 

         E(n) = d(n) – y(n) 

3.  The step size value for the input vector is calculated 

                                                          

                          (11) 

4.  The filter tap weights are updated in preparation for the 

next iteration. 

                      W(n+1) = W(n) + µ(n)e(n)x(n) 

Each iteration of the NLMS algorithm requires 3N+1 

multiplications, this is only N more than the standard LMS 

algorithm. This is an acceptable increase considering the 

gains in stability and echo attenuation achieve. 

 

                 

4. RESULTS FOR LMS & NLMS ALGORITHM 
 

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
training sequence

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Transmitted sequence

-5 0 5
-5

0

5
Received sequence

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Equalizer output

 
 

                      Fig4. Scattering fig of LMS algorithm 

 

Fig5. SER Performance of LMS algorithm 
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Fig6. Scattering fig of NLMS algorithm 

 

 

Fig7. SER performance of NLMS algorithm 

                             

5. CONCLUSION 
In these algorithms, the LMS algorithm is the most popular 

adaptive algorithm, because of their low computational 

complexity. However, the LMS algorithm suffers from slow 

and data dependent convergence behavior. The NLMS 

algorithm, an equally simple, but more robust variant of the 

LMS algorithm, exhibits a better balance between simplicity 

and performance than the LMS algorithm. Due to its good 

characteristics the NLMS has been largely used in real-time 

applications. 
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