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ABSTRACT  
Embedded multiprocessor design presents 

challenges and opportunities that stem from task 

coarse granularity and the large number of inputs 

and outputs for each task. We have therefore 

designed a new architecture called embedded 

concurrent computing (ECC), which is implement 

on FPGA chip using VHDL. The performances of a 

realistic application show scalable speedups 

comparable to that of the simulation. The design 

methodology is expected to allow scalable embedded 

multiprocessors for system expansion. In recent 

decades, two forces have driven the increase of the 

processor performance: Advances in very large-

scale integration (VLSI) technology and Micro 

architectural enhancements. Therefore, we aim to 

design the full architecture of an embedded 

processor for realistic to perform arithmetic, logical, 

shifting and branching operations. We will be 

synthesize and evaluated the embedded system 

based on Xilinx environment. Processor 

performance is going to be improving through clock 

speed increases and the clock speed increases and 

the exploitation of instruction- level parallelism. We 

synthesized and evaluated the embedded system 

based on an Modelsim environment.    

 

Keywords—Multiprocessor design, FPGA based 

embedded system design, APIC real time processor, 

Speed up, Parallel processing. 

 

I. INTRODUCTION 
 In recent decades, two forces have driven the increase 

of the processor performance: Firstly, advances in very 

large-scale integration (VLSI) technology and secondly 

micro architectural enhancements [1].  

   The Multiprocessor Specification, hereafter known as 

the ―MP specification,‖ defines an enhancement to the 

standard to which PC manufacturers design DOS-

compatible systems. MP-capable operating systems 

will be able to run without special customization on 

multiprocessor systems that comply with this 

specification. 

    

 Processor Performance has been improve through 

clock speed Increases and the exploitation of 

instruction-level Parallelism. While transistor counts 

continue to increase, recent attempts to achieve even 

more significant increase in single-core performance 

have brought diminishing returns [2, 3]. In response,  

 

architects are building chips With multiple energy-

efficient processing cores instead of investing the 

whole transistor count into a single, complex, and 

power-inefficient core [3, 4]. Modern embedded 

systems are design as systems-on a-chip (SoC) that 

incorporate single chip multiple Programmable cores 

ranging from single chip multiple programmable cores 

ranging from processors to custom designed 

accelerators. This paradigm allows the reuse of pre-

designed cores, simplifying the design of billion 

transistor chips, and amortizing costs. In the past few 

years, parallel-programmable SoC (PPSoC)have 

Successful PPSoC are high-performance embedded 

multiprocessors such as the STI Cell [3] .They are 

dubbed single-chip heterogeneous multiprocessors 

(SCHMs) because they have a dedicated processor that 

coordinates the rest of the processing units. A 

multiprocessor design with SoC like integration of less-

efficient, general-purpose processor cores with more 

efficient special-purpose helper engines is project to be 

the next step in computer evolution [5]. 

    First, we aim to design the full architecture of an 

embedded processor for realistic throughput. We used 

FPGA technology not only for architectural exploration 

but also as our target deployment platform because we 

believe that this approach is best for validating the 

feasibility of an efficient hardware implementation.  

   This architecture of the embedded processor resembles 

a superscalar pipeline, including the fetch, decode, 

rename, and dispatch units as parts of the in-order front-

end. The out of-order execution core contains the task 

queue, dynamic scheduler; execute unit, and physical 

register file. The in order back-end is comprised of only 

the retire unit. The embedded architecture will be 

implementing using the help of RTL descriptions in 

System VHDL. 

    We will integrate the embedded processor with a 

shared memory system, synthesized this system on an 

FPGA environment, and performed several experiments 

using realistic benchmarks. the methodology to design 

and implement a microprocessor or multiprocessors is 

presented. To illustrate it with high detail and in a useful 

way, how to design the most complex practical session is 

shown. In most cases, computer architecture has been 

taught with software simulators [1], [2]. These simulators 

are useful to show: internal values in registers, memory 

accesses, cache fails, etc. However, the structure of the 

microprocessor is not visible. 

      In this work, a methodology for easy design and real 
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Implementation of microprocessors is proposed, in order 

to provide students with a user-friendly tool. Simple 

designs of microprocessors are exposed to the students at 

the beginning, rising the complexity gradually toward a 

final design with two processors integrated in an FPGA; 

each of which has an independent memory system, and 

are intercommunicated with a unidirectional serial 

channel. 

 

II. MULTIPROCESSOR 
      Moving from single CPU systems to multiprocessor 

ones requires much more effort than it would seem. 

 Topology questions 

 Resource sharing 

 Message passing 

 Platform startup 

 

2.1 Processor Units Hierarchy 

 

 

Figure1. Processor Units hierarchy 

        A programming language designed to facilitate the 

development of memory hierarchy aware parallel 

programs that remain portable across modern machines 

featuring different memory hierarchy configurations. 

Sequoia abstractly exposes hierarchical memory in the 

programming model and provides language mechanisms 

to describe communication vertically through the 

machine and to localize computation to particular 

memory locations within it.       

      Multiprocessor system consists of two or more 

connect processors that are capable of communicating. 

This can be done on a single chip where the processors 

are connected typically by either a bus. Alternatively, the 

multiprocessor system can be in more than one chip, 

typically connected by some type of bus, and each chip 

can then be a multiprocessor system. A third option is a 

multiprocessor system working with more than one 

computer connected by a network, in which each 

Computer can contain more than one chip, and each chip 

can contain more than one processor. 

      A parallel system is presented with more than one 

task, known as threads. It is important to spread the 

workload over the entire processor, keeping the 

difference in idle time as low as possible. To do this, it is 

important to coordinate the work and workload between 

the processors. Here, it is especially crucial to consider 

whether or not some processors are special-purpose IP 

cores. To keep a system with N processors effective, it 

has to work with N or more threads so that each 

processor constantly has something to do. Furthermore, it 

is necessary for the processors to be able to communicate 

with each other, usually via a shared memory, where 

values that other processors can use are stored. This 

introduces the new problem of thread    safety. When 

thread safety is violated, two processors (working 

threads) access the same value at the same time. Some 

methods for restricting access to shared resources are 

necessary. These methods are known as thread safety or 

synchronization. Moreover, it is necessary for each 

processor to have some private memory, where the 

processor does not have to think about thread safety to 

speed up the processor. As an example, each processor 

needs to have a private stack. The benefits of having a 

multiprocessor are as follows: 

1. Faster calculations are made possible. 

2. A more responsive system is created. 

3. Different processors can be utilized for different 

Tasks. In the future, we expect thread and process 

parallelism to become widespread for two reasons: the 

nature of the Applications and the nature of the operating 

system. Researchers have therefore proposed two 

alternatives Micro architectures that exploit multiple 

threads of Control: simultaneous multithreading (SMT) 

and chip multiprocessors (CMP). Chip multiprocessors 

(CMPs) use relatively simple. 

        Single-thread processor cores that exploit only 

moderate amounts of parallelism within any one thread, 

while executing multiple threads in parallel across multiple 

processor cores.Wide-issue superscalar processors exploit 

instruction level parallelism (ILP) by executing multiple 

instructions from a single program in a single cycle. 

Multiprocessors (MP) exploit thread-level parallelism 

(TLP) by executing different threads in parallel on 

Different processors. 

   Multiprocessor Specifications and features: 

 

 A multiprocessor extension to the PC/AT 

platform that runs all existing uniprocessor 

shrink-wrapped binaries, as well as MP binaries. 

 

 Support for symmetric multiprocessing with one 

or more processors that are Intel architecture 

instruction set compatible, such as the CPUs in 

the Intel486™ and the Pentium® processor 

family. 

 Support for symmetric I/O interrupt handling 

with the APIC, a multiprocessor interrupt 

controller. 

 Flexibility to use a BIOS with minimal MP-

specific support. 

An optional MP configuration table to 

communicate    

      Configuration information to an MP operating   

      System. 
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2.2. Hyper threading 

 

    HT [1] works by duplicating certain sections of the 

processor  those that store the architectural state _ but not 

duplicating the main execution resources. 

Hyperthreading is a technology that was introduced by 

Intel, with the primary purpose of improving support for 

multi-threaded code. Under certain workloads 

hyperthreading technology provides a more efficient use 

of CPU resources by executing threads in parallel on a 

single processor. 

     A hyperthreading equipped processor pretends to be 

two "logical" processors to the host operating system, 

allowing the operating system to schedule two threads or 

processes simultaneously. The advantages of 

hyperthreading are improve support for multi-threaded 

code, allows multiple threads to run simultaneously, and 

provides an improved reaction and response time 

 

             
Figure 2. Hyperthreading 

   

III. SOFTWARE TOOL 
The Xilinx Platform Studio (XPS) is used to design 

Micro Blaze processors. XPS is a graphical IDE for 

developing and debugging hardware and software. XPS 

simplifies the procedure to the users, allowing them to 

select, interconnect, and configure components of the 

final system. Dealing with this activity, the student learns 

to add processors and peripherals, to connect them 

through buses, to determine the processor memory 

extension and allocation, to define and connect internal 

and external ports, and to customize the configuration 

parameters of the components. Once the hardware 

platform is built, the students learn many concepts 

about the software layer, such as: assigning drivers to 

Peripherals, including libraries, selecting the operative 

system (OS), defining processor and drivers parameters, 

assigning interruption drivers, establishing OS and 

libraries parameters. 

     An embedded system performed with XPS can be 

Summarized as a conjunction of a Hardware Platform 

(HWP) and a Software Platform (SWP), each defined 

separately. 

 

3.1. Hardware Platform 

 

The HWP is described in the Microprocessor Hardware 

Specification (MHS) file; it contains the description of 

the system architecture, the memory map and the 

configuration parameters. HWP can be defined as one or 

more processors connected to one or more peripherals 

through one or more buses. The definition of the activity 

follows this sequence: 

• To add processors and peripherals. 

• To connect them through buses. 

• To determine the processor memory allocation. 

• To define and connect internal and external ports. 

• To customize the configuration parameters of the 

Components. 

 

3.2. The Software Platform 

 

      The SWP is described in the Microprocessor 

Software Specification (MSS) file; it contains the 

description of drivers, component libraries, configuration 

parameters, standard input/output devices, interruption 

routines and other software features. The sequence of 

activities needed to define the SWP 

is the following: 

. 

 
                            

Figure 3 Multiprocessor system architecture. 

 

• To assign drivers to peripherals. 

• To assign interruption drivers. 

• To establish OS and libraries’ parameters. 

 

IV. HARDWARE TOOL 
 

4.1 Memory and Communication 

      Main memory in a parallel computer is either shared 

memory (shared between all processing elements in a 

single address space), or distributed memory (in which 

each processing element has its own local address space). 

Distributed memory refers to the fact that the memory is 

logically distributed, but often implies that it is 

physically distributed as well. Distributed shared 

memory and memory virtualization combine the two 

approaches, where the processing element has its own 

local memory and access to the memory on non-local 

processors. Accesses to local memory are typically faster 

than accesses to non-local memory. 

http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Distributed_memory
http://en.wikipedia.org/wiki/Distributed_shared_memory
http://en.wikipedia.org/wiki/Distributed_shared_memory
http://en.wikipedia.org/wiki/Distributed_shared_memory
http://en.wikipedia.org/wiki/Memory_virtualization
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Figure 4 Memory system and communication 

architecture. 

 

     A logical view of a Non-Uniform Memory Access 

(NUMA) architecture. Processors in one directory can 

access that directory's memory with less latency than 

they can access memory in the other directory's memory. 

     Computer architectures in which each element of 

main memory can be accessed with equal latency and 

bandwidth are known as Uniform Memory Access 

(UMA) systems. Typically, that can be achieved only by 

a shared memory system, in which the memory is not 

physically distributed. A system that does not have this 

property is known as a Non-Uniform Memory Access 

(NUMA) architecture. Distributed memory systems have 

non-uniform memory access. 

    Computer systems make use of caches—small, fast 

memories located close to the processor which store 

temporary copies of memory values (nearby in both the 

physical and logical sense). Parallel computer systems 

have difficulties with caches that may store the same 

value in more than one location, with the possibility of 

incorrect program execution. These computers require a 

cache coherency system, which keeps track of cached 

values and strategically purges them, thus ensuring 

correct program execution. Bus snooping is one of the 

most common methods for keeping track of which values 

are being accessed (and thus should be purged). 

Designing large, high-performance cache coherence 

systems is a very difficult problem in computer 

architecture. As a result, shared-memory computer 

architectures do not scale as well as distributed memory 

systems do. 

     Parallel multiprocessors based on interconnect 

networks need to have some kind of routing to enable the 

passing of messages between nodes that are not directly 

connected. The medium used for communication 

between the processors is likely to be hierarchical in 

large multiprocessor machines. 

 

V. APIC 
       Stands for Advanced Programmable Interrupt 

Controller Programmable interrupt controller (PIC) is a 

device that is used to combine several sources of 

interrupt onto one or more CPU lines, while allowing 

priority levels to be assigned to its interrupt outputs. 

               

 
Figure 5. Advanced Programmable Interrupt Controller 

 

VI. THE MICROBLAZE PROCESSOR 
       Micro Blaze is a 32-bit specific purpose processor 

Developed by Xilinx in VHDL. It can be parameterized 

using XPS to obtain an à-la-carte processor. It is a RISC 

processor, structured as Harvard architecture with 

separated data and instruction interfaces. Micro Blaze 

components are divided into two main groups depending 

on their configurability as shown in Fig.1. Some fixed 

feature components are: 

• 32 general purpose registers sized 32-bit each. 

• Instructions with 32 bits word-sized, with 3 operands 

and 2 addressing modes. 

• 32 bits address bus. 

• 3-stage Pipeline. 

Some of the most important configurable options are: 

• An interface with OPB (On-chip Peripheral Bus) data 

bus. 

• An interface with OPB instruction bus. 

• An interface with LMB (Local Memory Bus) data bus. 

• An interface with LMB instruction bus. 

• Instruction cache. 

• To include EDK libraries. 

• To select the operative system (OS). 

• To define processor and drivers’ parameters. 

• Data cache. 

• 8 Fast Simplex Link (FSL bus) Interfaces. 

• Cache Link bus support. 

• Hardware exception support. 

• Floating Point Unit (FPU). 

The suggested core embedded processor contains 

a dual-issue, superscalar, pipelined processing unit, 

Along with the other functional elements required to 

Implement embedded SoC solutions. This other 

Functions include memory management and timers. 

 

  VII. PRACTICAL DESIGNS 
 Practical sessions introduce gradual learning, allowing 

the fast design based on previous sessions. Essential 

problems in hardware programming will be raised: 

• HyperTerminal serial communication. 

• Using IO ports. 

• Memory controller. 

• Interruption routines and priority. 

•   Message passing in multiprocessors communication. 

Relation between practices is shown. For instance, 5th 

session is based on all previous sessions, 7th session is 

based on 3rd and 1
st
 Session. 

http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://en.wikipedia.org/wiki/Memory_latency
http://en.wikipedia.org/wiki/Bandwidth_%28computing%29
http://en.wikipedia.org/wiki/Uniform_Memory_Access
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://en.wikipedia.org/wiki/CPU_cache
http://en.wikipedia.org/wiki/Cache_coherency
http://en.wikipedia.org/wiki/Bus_sniffing
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/File:Numa.svg
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Figure 6. Design of Hardware Processor  

    SRAM external memory is added to the system at 

fourth session. Next session is dedicated to the External 

Memory Controller and how to split the bus. Micro Blaze 

interruptions are added in the sixth session, and external 

interruptions using the interruption controller are 

included in the seventh session. Finally, students build a 

biprocessor, using the Fast Simple Link channel at 

session eight. In fig. 6. 

      Relation between practices is shown. For instance, 

5th session is based on all previous sessions, 7th session 

is based on 3rd and 1
st
 Session. 

VII.   MULTICORE SYSTEM AND THEIR CATCHES 

 

 
Figure 7. Multicore system and their catches 

 

    Type of cache sharing depends on the system: it can be 

L2 that is shared.The memory consistency model for a 

shared-memory multiprocessor specifies the behaviour of 

memory with respect to read and write operations from 

multiple processors. We focuses on providing a balanced 

solution that directly addresses the trade-off  between 

programming ease and performance. 

 

7.1 Types  of  Coherence Protocols 

 

      Directory-based: The data being shared is placed in a 

common directory that maintains the coherence between 

caches. The directory acts as a _lter through which the 

processor must ask permission to load an entry from the 

primary memory to its cache.  When an entry is changed 

the directory either updates or invalidates the other 

caches with that entry. 

     Snooping: individual caches monitor address lines for 

accesses to memory locations that they have cached. 

When a write operation is observed to a location that a 

cache has a copy of, the cache controller invalidates its 

own copy of the snooped memory location. 

 
 

Figure 8. Caches coherency protocol example: MESI 

 

7.2 SMP 

 

Stands for Symmetric Multi Processing 

 Identical processing units 

 Single shared memory 

 Single bus, mesh interconnections 

 

7.3 NUMA 

      

     Stands for Non Uniform Memory Access Memory 

access time depends on the memory location relative to a 

processor. Under NUMA, a processor can access its own 

local memory faster than non-local memory. 

 Highly scalable 

 Requires special coherency protocols 

 Requires OS support 

 

7.4 Boot process 

 

1. The BSP1 executes the BIOS's boot-strap code to 

configure the APIC environment, sets up system-wide 

data structures, starts and initializes the AP2s. When the 

BSP and APs are initialized, the BSP then begins 

executing the operating-system initialization code. 

2. Following a power-up or reset, the APs complete a 

minimal self-configuration, then wait for a startup signal 

(a SIPI message) from the BSP processor. Upon 

receiving a SIPI message, an AP executes the BIOS AP 

configuration code, which ends with the AP being placed 

in halt state. 

 

 

1Boot strap processor. 

2Application processor 

 

 VIII. BIPROCESSOR SYSTEM DESIGN 
     The last and most complex practical session is the 

design and implementation of a biprocessor. A 

computational system composed of two Micro Blazes 

will be designed. Both Micro Blazes will be 

interconnected using message-passing protocol. Each 

Micro Blaze has its own non-shared memory for 

Instructions and data. In the Fig. 3 a diagram with the 

structure of the design is shown. In it, the buses and 

components used have been detailed. It also includes 

how they are interconnected At first, following the 

logical sequence exposed previously, a HWP will be 

created. This HWP will include the configuration of the 

MULTIPROCESSOR 
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components and buses, their interconnection, the memory 

map, ports and other parameters. In the following 

subsection, the steps needed to configure the system will 

be described. The parameters shown in this section 

depends on the FPGA chip, in this case the Spartan 3 

board [11]. 

 

8.1. Hardware   Platform Specifications 

 

This stage is described in the MHS file. Following, the 

Components specified in the structure of the system are 

Enumerated: 

• Two Micro Blaze processors. 

• Two on-chip RAM memory blocks (BRAM), one for 

Each processor. 

• One UART. 

• One OPB bus, to connect the UART with the slave 

Processor. 

• Two LMB buses to communicate each processor with 

Their respective data memory controller; and another 

Two LMB buses to interconnect the processors with 

Their instruction memory controller. 

• One FSL channel to intercommunicate each processor 

with the other. 

       A valid set of parameters for the UART and Micro 

Blaze are the following: 

 

1) UART parameters. 

a) C_CLK_FREQ = 50_000_000. Set the frequency of 

the OPB bus, connected to the UART. It has to coincide 

with the operational system speed. 

b) C_BAUDRATE = 19200. Set the bauds for the 

UART. The terminal used to receive characters has to be 

configured at the same baud rate. 

c) C\_USE\_PARITY = 0. Set whether the UART 

should work with parity bit or not. 

             

SOFTWARE  AND  HARDWARE REQUIREMENT 

 

For Software simulation I will prefer MODELSIM and 

for synthesis I will be prefer XILINX. Hardware 

requirement is SPARTAN-3. 

 

TEST BENCH FOR MULTIPROCESSOR 

 

LIBRARY IEEE; 

    USE IEEE.STD_LOGIC_1164.ALL; 

    USE IEEE.STD_LOGIC_ARITH.ALL; 

     

    ENTITY E_TestBench IS 

    END E_TestBench; 

     

    ARCHITECTURE A_TestBench OF E_TestBench IS 

         

        COMPONENT E_MultiProcessor 

            PORT 

            ( 

               clk:IN STD_LOGIC; 

               jmp_address:IN STD_LOGIC_VECTOR(11 

DOWNTO 0); 

               jmp_en:IN STD_LOGIC  

               result:OUT STD_LOGIC_VECTOR(7 

DOWNTO 0); 

               current_address:OUT 

STD_LOGIC_VECTOR(11 DOWNTO 0) 

            ); 

        END COMPONENT; 

         

        SIGNAL s_clk:STD_LOGIC := '0'; 

        SIGNAL 

s_jmp_address:STD_LOGIC_VECTOR(11 DOWNTO 

0); 

        SIGNAL s_jmp_en:STD_LOGIC; 

        SIGNAL s_result:STD_LOGIC_VECTOR(7 

DOWNTO 0); 

        SIGNAL 

s_current_address:STD_LOGIC_VECTOR(11 

DOWNTO 0); 

         

        BEGIN 

             

            MP:E_MultiProcessor PORT 

MAP(s_clk,s_jmp_address,s_jmp_en,s_result,s_current_

address); 

             

            s_clk <= NOT(s_clk) AFTER 100 ns; 

            s_jmp_address <= (OTHERS => '0'); 

            s_jmp_en <= '0'; 

             

    END A_TestBench; 

 

 
 

 

Figure 9..Simulation  Result of  Multiprocessor 
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