
Sumedh S.Jadhav, Prof.C.N.Bhoyar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1554-1560

1554 | P a g e

HDL- Based Embedded Multiprocessor Architecture

Sumedh S.Jadhav*, Prof.C.N.Bhoyar**
*(Department of Electronics Engineering, R.T.M.N.U University, Nagpur, India)

** (Department of Electronics Engineering, PCE R.T.M.N.U University, Nagpur, India)

ABSTRACT
Embedded multiprocessor design presents

challenges and opportunities that stem from task

coarse granularity and the large number of inputs

and outputs for each task. We have therefore

designed a new architecture called embedded

concurrent computing (ECC), which is implement

on FPGA chip using VHDL. The performances of a

realistic application show scalable speedups

comparable to that of the simulation. The design

methodology is expected to allow scalable embedded

multiprocessors for system expansion. In recent

decades, two forces have driven the increase of the

processor performance: Advances in very large-

scale integration (VLSI) technology and Micro

architectural enhancements. Therefore, we aim to

design the full architecture of an embedded

processor for realistic to perform arithmetic, logical,

shifting and branching operations. We will be

synthesize and evaluated the embedded system

based on Xilinx environment. Processor

performance is going to be improving through clock

speed increases and the clock speed increases and

the exploitation of instruction- level parallelism. We

synthesized and evaluated the embedded system

based on an Modelsim environment.

Keywords—Multiprocessor design, FPGA based

embedded system design, APIC real time processor,

Speed up, Parallel processing.

I. INTRODUCTION
 In recent decades, two forces have driven the increase

of the processor performance: Firstly, advances in very

large-scale integration (VLSI) technology and secondly

micro architectural enhancements [1].

 The Multiprocessor Specification, hereafter known as

the ―MP specification,‖ defines an enhancement to the

standard to which PC manufacturers design DOS-

compatible systems. MP-capable operating systems

will be able to run without special customization on

multiprocessor systems that comply with this

specification.

 Processor Performance has been improve through

clock speed Increases and the exploitation of

instruction-level Parallelism. While transistor counts

continue to increase, recent attempts to achieve even

more significant increase in single-core performance

have brought diminishing returns [2, 3]. In response,

architects are building chips With multiple energy-

efficient processing cores instead of investing the

whole transistor count into a single, complex, and

power-inefficient core [3, 4]. Modern embedded

systems are design as systems-on a-chip (SoC) that

incorporate single chip multiple Programmable cores

ranging from single chip multiple programmable cores

ranging from processors to custom designed

accelerators. This paradigm allows the reuse of pre-

designed cores, simplifying the design of billion

transistor chips, and amortizing costs. In the past few

years, parallel-programmable SoC (PPSoC)have

Successful PPSoC are high-performance embedded

multiprocessors such as the STI Cell [3] .They are

dubbed single-chip heterogeneous multiprocessors

(SCHMs) because they have a dedicated processor that

coordinates the rest of the processing units. A

multiprocessor design with SoC like integration of less-

efficient, general-purpose processor cores with more

efficient special-purpose helper engines is project to be

the next step in computer evolution [5].

 First, we aim to design the full architecture of an

embedded processor for realistic throughput. We used

FPGA technology not only for architectural exploration

but also as our target deployment platform because we

believe that this approach is best for validating the

feasibility of an efficient hardware implementation.

 This architecture of the embedded processor resembles

a superscalar pipeline, including the fetch, decode,

rename, and dispatch units as parts of the in-order front-

end. The out of-order execution core contains the task

queue, dynamic scheduler; execute unit, and physical

register file. The in order back-end is comprised of only

the retire unit. The embedded architecture will be

implementing using the help of RTL descriptions in

System VHDL.

 We will integrate the embedded processor with a

shared memory system, synthesized this system on an

FPGA environment, and performed several experiments

using realistic benchmarks. the methodology to design

and implement a microprocessor or multiprocessors is

presented. To illustrate it with high detail and in a useful

way, how to design the most complex practical session is

shown. In most cases, computer architecture has been

taught with software simulators [1], [2]. These simulators

are useful to show: internal values in registers, memory

accesses, cache fails, etc. However, the structure of the

microprocessor is not visible.

 In this work, a methodology for easy design and real

Sumedh S.Jadhav, Prof.C.N.Bhoyar / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1554-1560

1555 | P a g e

Implementation of microprocessors is proposed, in order

to provide students with a user-friendly tool. Simple

designs of microprocessors are exposed to the students at

the beginning, rising the complexity gradually toward a

final design with two processors integrated in an FPGA;

each of which has an independent memory system, and

are intercommunicated with a unidirectional serial

channel.

II. MULTIPROCESSOR
 Moving from single CPU systems to multiprocessor

ones requires much more effort than it would seem.

 Topology questions

 Resource sharing

 Message passing

 Platform startup

2.1 Processor Units Hierarchy

Figure1. Processor Units hierarchy

 A programming language designed to facilitate the

development of memory hierarchy aware parallel

programs that remain portable across modern machines

featuring different memory hierarchy configurations.

Sequoia abstractly exposes hierarchical memory in the

programming model and provides language mechanisms

to describe communication vertically through the

machine and to localize computation to particular

memory locations within it.

 Multiprocessor system consists of two or more

connect processors that are capable of communicating.

This can be done on a single chip where the processors

are connected typically by either a bus. Alternatively, the

multiprocessor system can be in more than one chip,

typically connected by some type of bus, and each chip

can then be a multiprocessor system. A third option is a

multiprocessor system working with more than one

computer connected by a network, in which each

Computer can contain more than one chip, and each chip

can contain more than one processor.

 A parallel system is presented with more than one

task, known as threads. It is important to spread the

workload over the entire processor, keeping the

difference in idle time as low as possible. To do this, it is

important to coordinate the work and workload between

the processors. Here, it is especially crucial to consider

whether or not some processors are special-purpose IP

cores. To keep a system with N processors effective, it

has to work with N or more threads so that each

processor constantly has something to do. Furthermore, it

is necessary for the processors to be able to communicate

with each other, usually via a shared memory, where

values that other processors can use are stored. This

introduces the new problem of thread safety. When

thread safety is violated, two processors (working

threads) access the same value at the same time. Some

methods for restricting access to shared resources are

necessary. These methods are known as thread safety or

synchronization. Moreover, it is necessary for each

processor to have some private memory, where the

processor does not have to think about thread safety to

speed up the processor. As an example, each processor

needs to have a private stack. The benefits of having a

multiprocessor are as follows:

1. Faster calculations are made possible.

2. A more responsive system is created.

3. Different processors can be utilized for different

Tasks. In the future, we expect thread and process

parallelism to become widespread for two reasons: the

nature of the Applications and the nature of the operating

system. Researchers have therefore proposed two

alternatives Micro architectures that exploit multiple

threads of Control: simultaneous multithreading (SMT)

and chip multiprocessors (CMP). Chip multiprocessors

(CMPs) use relatively simple.

 Single-thread processor cores that exploit only

moderate amounts of parallelism within any one thread,

while executing multiple threads in parallel across multiple

processor cores.Wide-issue superscalar processors exploit

instruction level parallelism (ILP) by executing multiple

instructions from a single program in a single cycle.

Multiprocessors (MP) exploit thread-level parallelism

(TLP) by executing different threads in parallel on

Different processors.

 Multiprocessor Specifications and features:

 A multiprocessor extension to the PC/AT

platform that runs all existing uniprocessor

shrink-wrapped binaries, as well as MP binaries.

 Support for symmetric multiprocessing with one

or more processors that are Intel architecture

instruction set compatible, such as the CPUs in

the Intel486™ and the Pentium® processor

family.

 Support for symmetric I/O interrupt handling

with the APIC, a multiprocessor interrupt

controller.

 Flexibility to use a BIOS with minimal MP-

specific support.

An optional MP configuration table to

communicate

 Configuration information to an MP operating

 System.

Sumedh S.Jadhav, Prof.C.N.Bhoyar / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1554-1560

1556 | P a g e

2.2. Hyper threading

 HT [1] works by duplicating certain sections of the

processor those that store the architectural state _ but not

duplicating the main execution resources.

Hyperthreading is a technology that was introduced by

Intel, with the primary purpose of improving support for

multi-threaded code. Under certain workloads

hyperthreading technology provides a more efficient use

of CPU resources by executing threads in parallel on a

single processor.

 A hyperthreading equipped processor pretends to be

two "logical" processors to the host operating system,

allowing the operating system to schedule two threads or

processes simultaneously. The advantages of

hyperthreading are improve support for multi-threaded

code, allows multiple threads to run simultaneously, and

provides an improved reaction and response time

Figure 2. Hyperthreading

III. SOFTWARE TOOL
The Xilinx Platform Studio (XPS) is used to design

Micro Blaze processors. XPS is a graphical IDE for

developing and debugging hardware and software. XPS

simplifies the procedure to the users, allowing them to

select, interconnect, and configure components of the

final system. Dealing with this activity, the student learns

to add processors and peripherals, to connect them

through buses, to determine the processor memory

extension and allocation, to define and connect internal

and external ports, and to customize the configuration

parameters of the components. Once the hardware

platform is built, the students learn many concepts

about the software layer, such as: assigning drivers to

Peripherals, including libraries, selecting the operative

system (OS), defining processor and drivers parameters,

assigning interruption drivers, establishing OS and

libraries parameters.

 An embedded system performed with XPS can be

Summarized as a conjunction of a Hardware Platform

(HWP) and a Software Platform (SWP), each defined

separately.

3.1. Hardware Platform

The HWP is described in the Microprocessor Hardware

Specification (MHS) file; it contains the description of

the system architecture, the memory map and the

configuration parameters. HWP can be defined as one or

more processors connected to one or more peripherals

through one or more buses. The definition of the activity

follows this sequence:

• To add processors and peripherals.

• To connect them through buses.

• To determine the processor memory allocation.

• To define and connect internal and external ports.

• To customize the configuration parameters of the

Components.

3.2. The Software Platform

 The SWP is described in the Microprocessor

Software Specification (MSS) file; it contains the

description of drivers, component libraries, configuration

parameters, standard input/output devices, interruption

routines and other software features. The sequence of

activities needed to define the SWP

is the following:

.

Figure 3 Multiprocessor system architecture.

• To assign drivers to peripherals.

• To assign interruption drivers.

• To establish OS and libraries’ parameters.

IV. HARDWARE TOOL

4.1 Memory and Communication

 Main memory in a parallel computer is either shared

memory (shared between all processing elements in a

single address space), or distributed memory (in which

each processing element has its own local address space).

Distributed memory refers to the fact that the memory is

logically distributed, but often implies that it is

physically distributed as well. Distributed shared

memory and memory virtualization combine the two

approaches, where the processing element has its own

local memory and access to the memory on non-local

processors. Accesses to local memory are typically faster

than accesses to non-local memory.

http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Distributed_memory
http://en.wikipedia.org/wiki/Distributed_shared_memory
http://en.wikipedia.org/wiki/Distributed_shared_memory
http://en.wikipedia.org/wiki/Distributed_shared_memory
http://en.wikipedia.org/wiki/Memory_virtualization

Sumedh S.Jadhav, Prof.C.N.Bhoyar / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1554-1560

1557 | P a g e

Figure 4 Memory system and communication

architecture.

 A logical view of a Non-Uniform Memory Access

(NUMA) architecture. Processors in one directory can

access that directory's memory with less latency than

they can access memory in the other directory's memory.

 Computer architectures in which each element of

main memory can be accessed with equal latency and

bandwidth are known as Uniform Memory Access

(UMA) systems. Typically, that can be achieved only by

a shared memory system, in which the memory is not

physically distributed. A system that does not have this

property is known as a Non-Uniform Memory Access

(NUMA) architecture. Distributed memory systems have

non-uniform memory access.

 Computer systems make use of caches—small, fast

memories located close to the processor which store

temporary copies of memory values (nearby in both the

physical and logical sense). Parallel computer systems

have difficulties with caches that may store the same

value in more than one location, with the possibility of

incorrect program execution. These computers require a

cache coherency system, which keeps track of cached

values and strategically purges them, thus ensuring

correct program execution. Bus snooping is one of the

most common methods for keeping track of which values

are being accessed (and thus should be purged).

Designing large, high-performance cache coherence

systems is a very difficult problem in computer

architecture. As a result, shared-memory computer

architectures do not scale as well as distributed memory

systems do.

 Parallel multiprocessors based on interconnect

networks need to have some kind of routing to enable the

passing of messages between nodes that are not directly

connected. The medium used for communication

between the processors is likely to be hierarchical in

large multiprocessor machines.

V. APIC
 Stands for Advanced Programmable Interrupt

Controller Programmable interrupt controller (PIC) is a

device that is used to combine several sources of

interrupt onto one or more CPU lines, while allowing

priority levels to be assigned to its interrupt outputs.

Figure 5. Advanced Programmable Interrupt Controller

VI. THE MICROBLAZE PROCESSOR
 Micro Blaze is a 32-bit specific purpose processor

Developed by Xilinx in VHDL. It can be parameterized

using XPS to obtain an à-la-carte processor. It is a RISC

processor, structured as Harvard architecture with

separated data and instruction interfaces. Micro Blaze

components are divided into two main groups depending

on their configurability as shown in Fig.1. Some fixed

feature components are:

• 32 general purpose registers sized 32-bit each.

• Instructions with 32 bits word-sized, with 3 operands

and 2 addressing modes.

• 32 bits address bus.

• 3-stage Pipeline.

Some of the most important configurable options are:

• An interface with OPB (On-chip Peripheral Bus) data

bus.

• An interface with OPB instruction bus.

• An interface with LMB (Local Memory Bus) data bus.

• An interface with LMB instruction bus.

• Instruction cache.

• To include EDK libraries.

• To select the operative system (OS).

• To define processor and drivers’ parameters.

• Data cache.

• 8 Fast Simplex Link (FSL bus) Interfaces.

• Cache Link bus support.

• Hardware exception support.

• Floating Point Unit (FPU).

The suggested core embedded processor contains

a dual-issue, superscalar, pipelined processing unit,

Along with the other functional elements required to

Implement embedded SoC solutions. This other

Functions include memory management and timers.

 VII. PRACTICAL DESIGNS
 Practical sessions introduce gradual learning, allowing

the fast design based on previous sessions. Essential

problems in hardware programming will be raised:

• HyperTerminal serial communication.

• Using IO ports.

• Memory controller.

• Interruption routines and priority.

• Message passing in multiprocessors communication.

Relation between practices is shown. For instance, 5th

session is based on all previous sessions, 7th session is

based on 3rd and 1
st
 Session.

http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://en.wikipedia.org/wiki/Memory_latency
http://en.wikipedia.org/wiki/Bandwidth_%28computing%29
http://en.wikipedia.org/wiki/Uniform_Memory_Access
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://en.wikipedia.org/wiki/CPU_cache
http://en.wikipedia.org/wiki/Cache_coherency
http://en.wikipedia.org/wiki/Bus_sniffing
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/File:Numa.svg

Sumedh S.Jadhav, Prof.C.N.Bhoyar / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1554-1560

1558 | P a g e

Figure 6. Design of Hardware Processor

 SRAM external memory is added to the system at

fourth session. Next session is dedicated to the External

Memory Controller and how to split the bus. Micro Blaze

interruptions are added in the sixth session, and external

interruptions using the interruption controller are

included in the seventh session. Finally, students build a

biprocessor, using the Fast Simple Link channel at

session eight. In fig. 6.

 Relation between practices is shown. For instance,

5th session is based on all previous sessions, 7th session

is based on 3rd and 1
st
 Session.

VII. MULTICORE SYSTEM AND THEIR CATCHES

Figure 7. Multicore system and their catches

 Type of cache sharing depends on the system: it can be

L2 that is shared.The memory consistency model for a

shared-memory multiprocessor specifies the behaviour of

memory with respect to read and write operations from

multiple processors. We focuses on providing a balanced

solution that directly addresses the trade-off between

programming ease and performance.

7.1 Types of Coherence Protocols

 Directory-based: The data being shared is placed in a

common directory that maintains the coherence between

caches. The directory acts as a _lter through which the

processor must ask permission to load an entry from the

primary memory to its cache. When an entry is changed

the directory either updates or invalidates the other

caches with that entry.

 Snooping: individual caches monitor address lines for

accesses to memory locations that they have cached.

When a write operation is observed to a location that a

cache has a copy of, the cache controller invalidates its

own copy of the snooped memory location.

Figure 8. Caches coherency protocol example: MESI

7.2 SMP

Stands for Symmetric Multi Processing

 Identical processing units

 Single shared memory

 Single bus, mesh interconnections

7.3 NUMA

 Stands for Non Uniform Memory Access Memory

access time depends on the memory location relative to a

processor. Under NUMA, a processor can access its own

local memory faster than non-local memory.

 Highly scalable

 Requires special coherency protocols

 Requires OS support

7.4 Boot process

1. The BSP1 executes the BIOS's boot-strap code to

configure the APIC environment, sets up system-wide

data structures, starts and initializes the AP2s. When the

BSP and APs are initialized, the BSP then begins

executing the operating-system initialization code.

2. Following a power-up or reset, the APs complete a

minimal self-configuration, then wait for a startup signal

(a SIPI message) from the BSP processor. Upon

receiving a SIPI message, an AP executes the BIOS AP

configuration code, which ends with the AP being placed

in halt state.

1Boot strap processor.

2Application processor

 VIII. BIPROCESSOR SYSTEM DESIGN
 The last and most complex practical session is the

design and implementation of a biprocessor. A

computational system composed of two Micro Blazes

will be designed. Both Micro Blazes will be

interconnected using message-passing protocol. Each

Micro Blaze has its own non-shared memory for

Instructions and data. In the Fig. 3 a diagram with the

structure of the design is shown. In it, the buses and

components used have been detailed. It also includes

how they are interconnected At first, following the

logical sequence exposed previously, a HWP will be

created. This HWP will include the configuration of the

MULTIPROCESSOR

Sumedh S.Jadhav, Prof.C.N.Bhoyar / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1554-1560

1559 | P a g e

components and buses, their interconnection, the memory

map, ports and other parameters. In the following

subsection, the steps needed to configure the system will

be described. The parameters shown in this section

depends on the FPGA chip, in this case the Spartan 3

board [11].

8.1. Hardware Platform Specifications

This stage is described in the MHS file. Following, the

Components specified in the structure of the system are

Enumerated:

• Two Micro Blaze processors.

• Two on-chip RAM memory blocks (BRAM), one for

Each processor.

• One UART.

• One OPB bus, to connect the UART with the slave

Processor.

• Two LMB buses to communicate each processor with

Their respective data memory controller; and another

Two LMB buses to interconnect the processors with

Their instruction memory controller.

• One FSL channel to intercommunicate each processor

with the other.

 A valid set of parameters for the UART and Micro

Blaze are the following:

1) UART parameters.

a) C_CLK_FREQ = 50_000_000. Set the frequency of

the OPB bus, connected to the UART. It has to coincide

with the operational system speed.

b) C_BAUDRATE = 19200. Set the bauds for the

UART. The terminal used to receive characters has to be

configured at the same baud rate.

c) C_USE_PARITY = 0. Set whether the UART

should work with parity bit or not.

SOFTWARE AND HARDWARE REQUIREMENT

For Software simulation I will prefer MODELSIM and

for synthesis I will be prefer XILINX. Hardware

requirement is SPARTAN-3.

TEST BENCH FOR MULTIPROCESSOR

LIBRARY IEEE;

 USE IEEE.STD_LOGIC_1164.ALL;

 USE IEEE.STD_LOGIC_ARITH.ALL;

 ENTITY E_TestBench IS

 END E_TestBench;

 ARCHITECTURE A_TestBench OF E_TestBench IS

 COMPONENT E_MultiProcessor

 PORT

 (

 clk:IN STD_LOGIC;

 jmp_address:IN STD_LOGIC_VECTOR(11

DOWNTO 0);

 jmp_en:IN STD_LOGIC

 result:OUT STD_LOGIC_VECTOR(7

DOWNTO 0);

 current_address:OUT

STD_LOGIC_VECTOR(11 DOWNTO 0)

);

 END COMPONENT;

 SIGNAL s_clk:STD_LOGIC := '0';

 SIGNAL

s_jmp_address:STD_LOGIC_VECTOR(11 DOWNTO

0);

 SIGNAL s_jmp_en:STD_LOGIC;

 SIGNAL s_result:STD_LOGIC_VECTOR(7

DOWNTO 0);

 SIGNAL

s_current_address:STD_LOGIC_VECTOR(11

DOWNTO 0);

 BEGIN

 MP:E_MultiProcessor PORT

MAP(s_clk,s_jmp_address,s_jmp_en,s_result,s_current_

address);

 s_clk <= NOT(s_clk) AFTER 100 ns;

 s_jmp_address <= (OTHERS => '0');

 s_jmp_en <= '0';

 END A_TestBench;

Figure 9..Simulation Result of Multiprocessor

ACKNOWLEDGEMENTS

 Authors wish to remark the great task carried out by the

Xilinx and Modelsim user guide; and the authors wish to

thank Prof.C.N.Bhoyar for his contribution in the design

process.

Sumedh S.Jadhav, Prof.C.N.Bhoyar / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1554-1560

1560 | P a g e

REFERENCES

[1] John L. Hennessy and David A. Patterson.

Computer architecture:a quantitative approach.

MorgaKaufmann Publishers Inc.,San Francisco,

CA, USA, fourth edition 2007.

[2] Doug Burger and James R. Goodman. Billion-

Transistor Architectures: There and Back Again.

IEEE Computer, 37(3):22–28, 2004.

[3] David Geer. Industry Trends: Chip Makers Turn

to Multicore Processors. Computer, 38(5):11–13,

May,2005.

[4] AMD Corporation. Multi-core processors: the next

revolution in computing White paper, 2005.

[5] B. Ackland, A. Anesko, D. Brinthaupt, S.J.

Daubert, A. Kalavade,J. Knobloch, E. Micca, M.

Moturi, C.J. Nicol, J.H.O’Neill, J. Othmer, E.

Sackinger, K.J. Singh, J. Sweet, C.J.Terman, and

J. Williams. A Single-chip, 1.6-billion, 16-b

MAC/s Multiprocessor IEEE Journal of,

35(3):412–424, Mar2000.

[6] Asawaree Kalavade, Joe Othmer, Bryan Ackland,

and K. J.Singh.Software environment for a

multiprocessor DSP. In DAC 99: Proceedings of

the 36th ACM/IEEE conference on Design

 automation, pages 827–830, New York, NY,

USA, 1999. ACM..

[7] V.Sklyarov,andI.Skliarova.―Teaching

Reconfigurable

 Systems: Methods, Tools, Tutorials, and Projects,‖

IEEE Trans. on Education, vol. 48, no. 2, 290–

300, 2005.

[8]

OpenSPARChttp://www.opensparc.net/edu/univer

sity- program.html. Last accessed on 8th

November 2009.

[9] ―Platform Studio User Guide,‖ Application notes,

Xilinx, 2005.

[10] ―Microblaze Processor Reference Guide,‖

Application notes, Xilinx.2005.

[11] ―Embedded System Tools Reference Manual,‖

Application notes,Xilinx, 2008.

[12] ―OS and Libraries Document Collection,‖ Xilinx,

Application notes September 2007.

http://www.opensparc.net/edu/university-%20program.html
http://www.opensparc.net/edu/university-%20program.html
http://www.opensparc.net/edu/university-%20program.html

