
Rakesh S / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1288-1291

1288 | P a g e

Design and Implementation of LRC and CRC algorithms in Netsim

Rakesh S*
*(Assistant Professor, Department of Computer Science & Engg. Siddaganga Institute of Technology, Tumkur,

Visvesvaraya Technological University, Belgaum,)

Abstract
Error detection is a technique that enables reliable delivery

of digital data over unreliable communication channels.

Many communication channels are subject to channel noise,

and thus errors may be introduced during transmission

from the source to a receiver. Basically error detection

mechanism contains various methods but LRC and CRC

are the most commonly used methods. A longitudinal

redundancy check (LRC) is a form of redundancy check

that is applied independently to each of a parallel group of

bit streams. A Cyclic Redundancy Check (CRC) is one of

the most powerful redundancies checking technique. The

problem is user knows these concepts of the LRC and CRC

techniques while reading the text book but they don’t know

practically how LRC and CRC techniques are working.

Initially on NetSim these LRC and CRC techniques are

implemented as a static. That is user give the inputs of the

LRC and CRC techniques to NetSim and displays the

outputs on the same system where the user gives the input.

So that user can’t understand the concepts of the LRC and

CRC techniques clearly. Animations of the LRC and CRC

techniques are also presented on the NetSim but it fails to

clear the concepts of the LRC and CRC techniques to the

user. For the above problem, the frontend designs of LRC

and CRC techniques can be created by using Java Swing on

NetSim that is to change the static implementation of the

LRC and CRC techniques to dynamic implementation by

making NetSim to work on LAN. That is user give the

inputs to NetSim by using this frontend and displays the

output corresponding to this input in another system. So

that user can easily understand the LRC and CRC

techniques, because while the input given by the user is

transmitted on the network it may or may not get changed.

By analyzing the output at the other system user can easily

understand the concepts of the LRC and CRC techniques.

At the backend the LRC and CRC techniques are coded

using C. In NetSim the C-Editor is uploaded so that user

can write their own codes of LRC and CRC techniques and

compile the codes by using C-Compiler.

Keywords – CCITT, CRC, LRC, LAN, NetSim

1. Introduction
NetSim is a first of its kind educational Network Simulation

software and has proved to be an indispensable tool for

network lab experiments, research and development and

which takes user inputs and provides output metrics. NetSim

has also been featured with Computer Networks and Internet.

NetSim provides network performance metrics at various

abstraction levels such as network, sub-network, node and a

detailed packet trace. NetSim features a development

environment with a source code editor and a compiler. Model

libraries with source code are provided for user modification

and options are not limited to the listing as it is possible to

develop any type of protocol or device model with NetSim’s

protocol editing facilities. NetSim is a popular tool developed

by TETCOS, in association with Indian Institute of Science,

Bangalore.

The objective of this thesis is to make concepts easy

and clear about difficult techniques of algorithms of

computer networks with the help of animation and practical

implementations of techniques and algorithms. In NetSim the

techniques and algorithms of the computer networks were

implemented as a static system. Because of the static

implementation, user was unable to clearly understand the

techniques and algorithms of the computer networks on

NetSim. By designing and implementing static system to

dynamic system on NetSim, the user can easily understand

the techniques and algorithms of the computer networks.

This thesis will give the easy way of understanding

the error detection techniques such as LRC and CRC through

dynamic implementation on NetSim. In earlier days the

NetSim was worked only on a static system, i.e. NetSim was

implemented on single system and user must give the input

data to one system where the NetSim software is installed

and NetSim displays the output on the same system. Because

of this the user can’t understand the computer networks

concepts clearly. Then the question that arises is that why we

can’t try to work NetSim on LAN? For this, we got the

answer and we were successful to work NetSim on LAN.

Once if NetSim is implemented on LAN, then user can easily

identify whether the data is received with error or without

error. In this project NetSim is implemented on dynamic

system i.e. user can give the input data to one system,

through LAN the data is transmitted to another system and

the user can analyze the output displayed on another system.

The concepts of LRC and CRC techniques for error

detection through text book was difficult to understand

because it will give theoretical concepts about LRC and CRC

techniques but not practical. In NetSim initially these LRC

and CRC techniques for error detection was implemented as

a static i.e. user give the inputs and see the outputs on the

same system where the user can give the input and some

Rakesh S / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1288-1291

1289 | P a g e

animations of the LRC and CRC techniques for error

detection are displayed. Again the static implementation of

the LRC and CRC techniques was difficult to understand.

Even though through animation wise the static

implementation was good but for working wise it was

difficult to understand.

For the above problem, the solution is to change the

static implementation of the LRC and CRC techniques to

dynamic implementation. User gives the input from one

system and sees the output on other system. For this,

designing the frontends of the LRC and CRC techniques in

NetSim. By using this frontend user gives the input and

through LAN given inputs are transmitted and output will be

displayed on this system design is the new version of the

other system. Animation wise of the LRC and CRC

techniques are also changed and uploaded in NetSim. In

backend user can write their own source codes and execute

their codes and give this executable file .exe as input and see

the output on other system.

Initially the frontend designs of the LRC and CRC

techniques are created. The frontend designs are created by

using Java Swings on NetSim. In frontend there are two

modes, sample mode and user mode. In sample mode, some

in built library codes of the LRC and CRC techniques are

uploaded on NetSim. Users select the sample mode, browse

the .txt file for input and click the run button. NetSim display

the output and also display the animation part of the CRC

technique. In LRC technique user directly give the input, this

input contains less than or equal to 8 characters and NetSim

displays the corresponding output for the input. Another

mode is the user mode, here user can write their own source

code of the LRC and CRC techniques execute their codes and

after executing .exe files are created. This .exe file acts like

an input to the NetSim and click the run button, the output

will display on the other system. In backend, user can write

their own source codes of the LRC and CRC techniques in C-

Editor and also C-Complier is provided for compilation of

the codes.

2. Procedure
2.1 Steps for doing LRC:

 A block of bits is organized in a table (rows and

columns).

 For example instead of sending 32 bits, we organize

them in a table made of 4 rows and 8 columns.

 We then calculate the Parity bit for each column and

create a new row of 8 bits which are the parity bits for

the whole block.

 Note that the first parity bit in the 5th row is calculated

based on all the first bits.

 The second parity bit is calculated based on all the

second bits and so on..

 We then attach the 8 parity bits to the original data and

send them to the receiver.

2.2 Steps for doing CRC:

Steps performed by Sender:

 Get the raw frame.

 Left shift the raw frame by n bits and divide it by

divisor.

 The remainder is the CRC bit.

 Append the CRC bit to the frame and transmit.

 Steps performed by Receiver:

 Receive the frame.

 Divide it by divisor.

 Check the reminder.

3. System Design

3.1 System design of LRC technique on NetSim

This system design is the new version of the NetSim design

of the LRC technique In this new version of the system

design it has overcome the draw backs of the earlier version

system design of the LRC technique on the NetSim. From the

scratch it has been fully redesign the frontend design of the

LRC technique in the NetSim by making the frontend design

to user friendly. In frontend it has been provided Five

modules which helps the user to give the inputs to NetSim.

This design gives consistent look and feel newly

designed frontend. Tre re-architected frontend or UI

improves productivity and usability. Increased consistency in

the way input parameter are modeled and how performance

metrics are reported. We simplified the configuration of the

NetSim. The scenario configuration has been re-designed to

follow the 5-layer TCP/IP stack providing a simpler and layer

wise configuration. This project provides the superior

graphing to the NetSim.

In newly designed system contains 64-bit format of

the LRC technique. User can give only 8-bit data, remaining

56 bits are already exists on the NetSim. These 56-bits are

divided into 8 columns each and each row contains 7 bits and

8th bit is taken from the user input to each row.

3.2 System design of CRC technique on NetSim

In this system design contains all the 4 polynomials of the

CRC technique such as CRC-12, CRC-16, CRC-32 and

CRC-CCITT. In frontend design we have provided separate

http://free-books-online.org/tag/parity-bits/
http://free-books-online.org/tag/parity-bits/
http://free-books-online.org/tag/data/

Rakesh S / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1288-1291

1290 | P a g e

buttons for all these 4 polynomials so that user can choose

any one polynomial and execute it.

When the user selects the CRC-12 polynomial, it

computes the 12-bit value. User create the .txt file and in this

file user store the input data up to 5000 bytes. If CRC-12

polynomial means user can store the data of 12-bits for easy

understanding. This file acts like a input and we have

provided the file browser on the frontend. By using this

browser user can browse the .txt file and can give this file as

a input to the NetSim. Similary for all the remaining

polynomials user can follow the above procedure.

4. Implementation
In frontend design, GUI’s are designed with the help of Java

Swings on NetSim. In Java Swings there exist many built in

functions to design a GUI. With the help of these built in

functions frontend of the LRC and CRC techniques are

created. The frontend of the LRC technique consists of six

modules. They are: Mode, Parity, Input, Data, Action, and

Help. The Mode module contains Sample and User modes

and Parity module contains Even parity and Odd parity

modes.

In Sample mode, when the user wants to know how the LRC

technique is working then the user can click on this mode.

Here some samples of built in codes are uploaded. When the

user clicks on this mode some animations of the LRC

technique is displayed on the output window of the NetSim

on another system for the easy understanding of these

techniques.

In User mode, when the user click on this mode

another new window will be opened. In this new window two

options are provided, one for creating the file and writing

source codes in C-Editor and another for selecting the .exe

file. This .exe file is created after executing the source codes

in C-Editor. This .exe file is given as input in input mode and

this input data will be transmitted on network using LAN and

displays the output in output window of the NetSim on

another system. That is through LAN, PC to PC

communication is established so that input is given in one PC

and output will be displayed on the other PC.

When the user click on Sample mode, Even parity

mode and user can give the input bits in Input mode then

built in codes are executed by taking this user input bits and

appending the even parity according to the user input bits and

this is transmitted on the network through LAN and displays

the output in NetSim on another system. Similarly when the

user click on Sample mode, Odd parity mode and user can

give the input bits in Input mode then built in codes are

executed by taking this user input bits and appending the odd

parity according to the user input bits and this is transmitted

on the network through LAN and displays the output in

NetSim on another system.

The input will have only 8-bits but the built in codes

will work on 64-bits format. So that we need to upload the

remaining 56-bits i.e. these 56-bits are constant and these 56-

bits can be divided by 8 columns and each column contains

7-bits and the 8th bit is taken from the user input bits in the

output display on the NetSim i.e. the user input bits are

presented in 8th column in the output.

The Original data field can display up to 64-bits

since the built in bits of the LRC technique contains 56-bits

and user can give 8-bits as input. So all these 56 bits plus 8-

bits together known as original data and these 64-bits are

displayed in the Original data field. The Error field also

displays up to 64-bits.

In Action module, two buttons are created. The first

button is RUN button and second button is REFRESH

button.

The help module contains the hyperlink to

Concepts, Algorithms and Flow charts for the LRC

technique. If the user wants any information about LRC

technique, then they can click on this link and it will display

all the details about the LRC technique.

The frontend of the CRC technique also contains six

modules. They are: Mode, Algorithm, Condition, Input,

Action and Help. The Mode module is same as that of the

LRC technique. The Algorithm module contains CRC-12,

CRC-16, CRC-32 and CRC-CCITT polynomials. The

Condition module contains No Error and Error modes. The

Action and Help modules are same as that of LRC technique.

Rakesh S / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1288-1291

1291 | P a g e

When the user selects the Sample in Mode module

and CRC-12 or CRC-16 or CRC-32 or CRC-CCITT in

Algorithm module and gives the .txt file as input in Input

module, then the built in code of the CRC-12 or CRC-16 or

CRC-32 or CRC-CCITT will be running in the NetSim and

stores the output in the output .txt file (this file is present in

the application path of the NetSim) on another system i.e. the

output is transmitted on the network through LAN and stores

the output in the file. The animation about the CRC-12 or

CRC-16 or CRC-32 or CRC-CCITT polynomial is also

displayed.

When the user selects the User in Mode module then

user can write their own source codes in the C-Editor for the

CRC-12 or CRC-16 or CRC-32 or CRC-CCITT polynomials

and execute the code in C-Compiler and user gets the .exe

file after executing the CRC-12 or CRC-16 or CRC-32 or

CRC-CCITT code. Then the selection the CRC-12 or CRC-

16 or CRC-32 or CRC-CCITT polynomials in Algorithm

module gives the .exe file as input to the NetSim in Input

module. The CRC-12 or CRC-16 or CRC-32 or CRC-CCITT

codes written by the user will be running in the NetSim. The

output will be transmitted on network through LAN and

stores this output in the file (this file is present in the

application path of the NetSim) on another system. The

animation about the CRC-12 or CRC-16 or CRC-32 or CRC-

CCITT polynomial is also displayed.

In Input mode, the user can give input either .txt file

format or .exe file format only to the NetSim. Here the sizes

of the files are fixed to 5000 bytes. If the user gives more

than this size then an error message will be displayed. For the

loading of the file to the NetSim, we created one browse

button. By using this button user can browse the .txt file or

.exe file and can give this file as input to the NetSim. If the

user can select the Sample mode in the Mode module then

they can give .txt file as input to the NetSim and if they can

select the User mode in the Mode module then they can give

.exe file as input to the NetSim.

5. Conclusion
In this thesis dissertation, “Design and Implementation of

Error Detection Mechanism in NetSim” under Java

environment using Java Swings and C language, an attempt

has been made to facilitate the user to select different modes

on different modules in NetSim for the LRC and CRC

techniques according to the user requirements. If the user

wants to know about how the LRC and CRC techniques are

working, then the user can select the Sample mode and can

give appropriate inputs to NetSim and if the user wants to

write his own source codes then he can select the User mode

and can give executable file as input to the NetSim.

This thesis was started with the requirement analysis

in which collecting the materials from the books, internet and

other sources. The designing and the system implementation

comprises the developing of source codes for the LRC and

CRC techniques. After this deployed the codes of the LRC

and CRC techniques to NetSim software and found it is

working satisfactory as per the requirement.

6. References
[1] Dennis McGrath, Doug Hill, Amy Hunt, Mark Ryan,

and Timothy Smith “NetSim: A Distributed Network

Simulation to Support Cyber Exercises” Institute for

Security Technology Studies, Dartmouth College 2005,

[Online]. Available FTP:

http://www.ists.dartmouth.edu/library/59.pdf

[2] W. Todd Sneed, Van Miller, Brian Baker “TVA Browns

Ferry Simulator EHC System Upgrade Using

Woodward's NetSim
TM

 Simulation Package” nHance

Technologies, Lynchburg, VA 2008, [Online].

Available FTP:

http://www.nhancetech.com/nht_web.nsf/vwTechPapers

/TVABrownsFerrySimulatorEHCSystemUpgradeUsing

WoodwardsNetSimSimulationPackage/$FILE/BFNetsi

m.pdf!OpenElement

[3] Dr. Alptekin Erkollar1 and MBM Birgit J. Oberer,” The

NETSIM Concept and Global Optimization”

1Department of Business Organization and Business

Informatics, University of Applied Sciences Wiener

Neustadt, Austria, 2006, [Online]. Available FTP:

http://www.citeseerx.ist.psu.edu/10.1.1.131.3604.pdf

[4] Erkollar, A “The NETSIM Modeling Concept” In (M.

Engeli, V. Hrdliczka ed.) Proc. ASIM’98, Zurich,

Switzerland, 1998, Germany, 1996, pp. 323-330.

[5] Stigge, Martin; Plötz, Henryk; Müller, Wolf; Redlich,

Jens-Peter (May 2006). Reversing CRC – Theory and

Practice. Berlin: Humboldt University Berlin. pp. 24.

http://sar.informatik.hu-

berlin.de/research/publications/SAR-PR-2006-05/SAR-

PR-2006-05_.pdf. Retrieved 21 July 2009.

http://www.ists.dartmouth.edu/library/59.pdf
http://www.citeseerx.ist.psu.edu/10.1.1.131.3604.pdf
http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf
http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf
http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf.%20Retrieved%2021%20July%202009
http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf.%20Retrieved%2021%20July%202009
http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf.%20Retrieved%2021%20July%202009

