
Meenu Talwar, Karan Gumber, Sharmelee Thangjam / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp.1226-1229

1226 | P a g e

Performance analysis of Floating point adder using Sequential Processing

on Reconfigurable hardware

Meenu Talwar*, Karan Gumber**, Sharmelee Thangjam
*(M. Tech (CSE), Department of Computer Science, CGC landran, PTU)

** (M. E (ECE), Department of Electronics and communication, Panjab University, Chandigarh)

*** (Assistant Professor, Department of Electronics and communication, Panjab University, Chandigarh)

ABSTRACT
The main objective of implementation of floating point

adder using sequential processing on the reconfigurable

hardware i.e. on FPGAs is to utilize less chip area, less

number of destination paths/ports, less clock period, less

combinational delay and faster speed. Less chip area

means less number of slices is used in reconfigurable

hardware i.e. on FPGAs. Less combinational delay

means less latency i.e. less time is required to appear an

output after the input response is applied and if there is

less latency then there will be the faster speed. If there is

less number of components are used on FPGAs then less

number of paths are used to connect them. Floating

point adder implementation on FPGA utilizes 349 slices

with a combinational delay of 69.987 nsec consuming

187244 Kbytes of memory with 1 Global clock.

Keywords – Floating point adder, Xilinx, FPGAs.

I. INTRODUCTION

Many scientific problems require floating point arithmetic

with high level of accuracy in their calculations. Therefore

VHDL programming for IEEE single precision floating

point adder in have been explored. For implementation of

floating point adder using Sequential processing on FPGAs

module various parameters i.e. clock period, latency, area

(number of slices used), total number of paths/ destination

ports, combinational delay, modeling formats etc will be

outline in the synthesis report. VHDL code for floating point

adder is written in Xilinx 8.1i and its synthesis report is

shown in Design process of Xilinx which will outline

various parameters like number of slices used, number of

slice flip flop used, number of 4 input LUTs, number of

bonded IOBs, number of global CLKs. Floating point

addition is most widely used operation in DSP/Math

processors, Robots, Air traffic controller, Digital computers

because of its raising application the main emphasis is on

the implementation of floating point adder effectively such

that it uses less chip area with more clock speed[1][2].

II. FLOATING POINT FORMAT

Floating point number is composed of three fields and can

be of 16, 18, 32 and 64 bit. Figure shows the IEEE standard

for floating point numbers consists of 32 bits [3] [4].1 bit

sign of signifies whether the number is positive or negative.

„0‟ indicate positive number whether „1‟ indicates negative

 positive number. 8 bit exponent provides the exponent

range from E

 31 30 22 0

 (min) =-126 to E (max) =127. 23 bit mantissa signifies the

fractional part of a number the mantissa must not be

confused with the significand. The leading „1‟ in the

significand is made implicit [2].

2.1 Conversion of Decimal to Floating numbers

Conversion of Decimal to Floating point 32 bit format is

explained with example. Let us take an example of a

decimal number that how could it will be converted into

floating format. Enter a decimal number suppose 129.85

before converting into floating format this number is

converted into binary value which is 10000001.110111.

After conversion move the radix point to the left such that

there will be only one bit which is left of the radix point and

this bit must be 1 this bit is known as hidden bit and also

made above number of 24 bit including hidden bit which is

always „1‟ like 1.00000011101110000000000 the number

which is after the radix point is called mantissa which is of

23 bits and the whole number is called significand which is

of 24 bits. Count the number of times the radix point is

shifted say „x‟. But in above case there is 7 times shifting of

radix point to the left. This value must be added to 127 to

get the exponent value i.e. original exponent value is 127 +

„x‟. In above case exponent is 127 + 7 = 134 which is

10000110. Sign bit i.e. MSB is „0‟ because number is +ve.

Now assemble result into 32 bit format which is sign,

exponent,mantissa. 01000011000000011101110000000000.

Now take another example which is totally different from

above let us enter a decimal number -0.5 which is converted

into binary value which is .000011. After conversion move

the radix point to the right in this case such that there will be

only one bit which is left of the radix point and this bit must

be 1 this bit is known as hidden bit and also made above

number of 24 bit including hidden bit which is always „1‟

1.10000000000000000000000 the number which is after the

radix point is called mantissa which is of 23 bits and the

whole number is called significand which is of 24 bits.

Count the number of times the radix point is shifted to the

right say „x‟. In this case there is 5 times shifting of radix

point to the right. This value must be subtracted to 127 to

get the exponent value i.e. original exponent value is 127 -

„x‟. In above case exponent is 127 - 5= 122 which is

01111010. Sign bit i.e. MSB is „1‟ because number is -ve.

Now assemble result into 32 bit format which is sign,

exponent, mantissa 10111101010000000000000000000000.

 Sign Exponent Mantissa

Meenu Talwar, Karan Gumber, Sharmelee Thangjam / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp.1226-1229

1227 | P a g e

#Note: - Hidden bit is not included into 32 bit format this bit

is implicit. When performing operation with this format this

implicit bit is made explicit [5].

III. ADDITION ALGORITHM FOR FLOATING

POINT NUMBERS
VHDL coding for floating point adder is done is in

Xilinx8.1i and simulation waveform is shown in Model Sim.

Synthesis report in Xilinx 8.1i will tell us all the information

about the project summary, Device utilization summary

(estimated values) and project status. The floating point

addition is the most complex operation then the floating

point multiplication since the alignment of mantissa is

required before mantissa addition. I would like to explain

floating point addition algorithm in 2 cases with example.

Case I is when both the numbers are of same sign i.e. when

both the numbers are either +ve or –ve means the MSB of

both the numbers are either 1 or 0. Case II when both the

numbers are of different sign i.e. when one number is +ve

and other number is –ve means the MSB of one number is 1

and other is 0. The flowchart of the algorithm is given below

in next page and it is explained in following steps with

proper example.

A. Case I: - When both numbers are of same sign

Step 1:- Enter two numbers N1 and N2. E1, S1 and E1, S2

represent exponent and significand of N1 and N2.

Step 2:- Is E1 or E2 =‟0‟. If yes set hidden bit of N1 or N2 is

zero. If not then check is E2 > E1 if yes swap N1 and N2

now contents of N2 in N1 and N1 in N2 and if E1 > E2

make contents of N1 and N2 same there is no need to swap.

Step 3:- Calculate difference in exponents d=E1-E2. If d =

„0‟ then there is no need of shifting the significand and if d

is more than „0‟ say „y‟ then shift S2 to the right by an

amount „y‟ and fill the left most bits by zero. Shifting is

done with hidden bit.

Step 4:- Amount of shifting i.e. „y‟ is added to exponent of

N2 value. New exponent value of E2= previous E2 + „y‟.

Now result is in normalize form because E1 = E2.

Step 5:- Is N1 and N2 have different sign „no‟. In this case

N1 and N2 have same sign.

Step 6:- Add the significands of 24 bits each including

hidden bit S=S1+S2.

Step 7:- Is there is carry out in significand addition. If yes

then add „1‟ to the exponent value of either E1 or new E2

and shift the overall result of significand addition to the

right by one by making MSB of S is „1‟ and dropping LSB

of significand.

Step 8:- If there is no carry out in step 6 then previous

exponent is the real exponent.

Step 9:- Sign of the result i.e. MSB = MSB of either N1 or

N2.

Step 10:- Assemble result into 32 bit format excluding 24
th

bit of significand i.e. hidden bit [6][7].

Example Step 1: Enter N1 and N2.

N1=2.3=0 10000000 100100100000000000000000

N2=7.4=0 10000001 111011000000000000000000

E1= 10000000

E2= 10000001

S1=100100100000000000000000

S2= 111011000000000000000000

Step 2: If E2>E1. Yes then swap N1 & N2.

New N1=0 10000010 111011000000000000000000

New N2=0 10000000 100100100000000000000000

Step 3: Calculate d =E1-E2.

10000001-10000000 = 1

Step 4: Shifting of S2 to the right by one and also add 1 to

E2.

N2 =0 10000000 100100100000000000000000(original)

N2= 0 10000000 010010010000000000000000 (one time

shifted)

Shifting by 1 time means add „1‟ to exponent.

Step 5: New exponent value E2 = 10000001, new

significand value S2 = 010010010000000000000000 here

E1 = E2.

Step 6: S=S1+S2.

S1=111011000000000000000000

S2=010010010000000000000000

S=1001101010000000000000000

Step 7: Here is carry out add „1‟ to exponent and shift result

to the right by one bit and discard the LSB of „S‟.

Original exponent=10000010

Original significand=100110101000000000000000

Step 8: MSB of result is „0‟.

Step 9: Assemble into 32 bit format.

0 10000010 00110101000000000000000

B. Case II: - When both numbers are of different sign

Step 1, 2, 3 & 4 are same as done in case I.

Step 5:- Is N1 and N2 have different sign „Yes‟.

Step 6:- Take 2‟s complement of S2 and then add it to S1

i.e. S=S1+2‟s complement of S2.

Step 7:- Is there is carry out in significand addition. If yes

then discard the carry and also shift the result to left until

there is „1‟ in MSB also counts the amount of shifting say

„z‟.

Step 8:- Subtract „z‟ from exponent value either from E1 or

E2. Now the original exponent is E1-„z‟. Also append the

„z‟ amount of zeros at LSB.

Step 9:- If there is no carry out in step 6 then MSB must be

„1‟ and in this case simply replace „S‟ by 2‟s complement.

Step 10:- Sign of the result i.e. MSB = Sign of the larger

number either MSB of N1or it can be MSB of N2.

Step 10:- Assemble result into 32 bit format excluding 24
th

bit of significand i.e. hidden bit [6][7].

Example

Step 1: Enter N1 and N2.

N1=128.5=0 10000110 100000001000000000000000

N2=-18.25=1 10000011 100100100000000000000000

E1=10000110

E2=10000011

S1=100000001000000000000000

S2=100100100000000000000000

Meenu Talwar, Karan Gumber, Sharmelee Thangjam / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp.1226-1229

1228 | P a g e

Step 2: E1>E2 no need to swap.

Step 3: Calculate „d‟=E1-E2.

10000110-10000011=00000011=>3 in decimal.

Step 4: Shifting of S2 to the right by three and also add 3 to

E2.

N2 = 0 10000011 100100100000000000000000 (original)

N2 = 0 10000100 010010010000000000000000 (1 time

shifting)

N2 = 0 10000101 001001001000000000000000 (2 time

shifting)

N2 = 0 10000110 000100100100000000000000 (3 time

shifting)

Shifting by 1 time means add „1‟ to exponent.

Step 5: New exponent value E1 = 10000110, new

significand value S2 = 000100100100000000000000 here

E1=E2 i.e. result is in normalized form.

Step 6: Take 2‟s complement of S2 because S2 is -ve i.e.

S=S1+2‟s complement of S2.

S1=100000001000000000000000

S2=111011011100000000000000

S=1011011100100000000000000

Step 7: Here is carry out add lets discard the carry and shift

result to the leftt by one bit to make MSB „1‟ and then

subtract the amount of shifting from E1 or E2 to form

original exponent of result.

Original exponent=10000110-1=10000101

Original significand=110111001000000000000000

Step 8:- Sign bit of result i.e. MSB= Sign of 128.5 which is

larger number.

Step 9: Assemble into 32 bit format.

0 10000101 110111001000000000000000

C. Special Conditions

There are some special conditions while implementing

floating point adder which needs to be handle these are

explained below

1: If N1 = N2 = „0‟ then overall result is „0‟.

2: If E1=E2 and sign bit of E1 ≠ E2 then again overall result

is „0‟.

3: If E1= „0‟ and E2 ≠ „0‟ then overall result is equal to E2.

4: If E2= „0‟ and E1 ≠ „0‟ then overall result is equal to E1

5: If d= E1-E2 ≥24 then overall result is larger of E1 or E2

[3].

D. Problems associated in addition

There are two problems which occurs when we are going to

add two floating point numbers

1: When the exponent of two numbers are different this can

be solved by shifting the significand of smaller number to

the right by an amount equal to exponent difference and this

amount is added to exponent value of smaller number to

make exponent of both the numbers are same means in

normalized form

2: When there is carry out in significand addition if both the

number are of different sign then add „1‟ to the exponent

and shift the result of significand to the right by one

discarding LSB and if both the number are of different sign

then discard the carry and shift the result to the left until

there is „1‟ at MSB the amount of shifting is subtracted from

exponent to form real exponent [7][8].

IV. SYNTHESIS REPORT

Parameters Sequential Processing

Number of Slices 349 (7% utilization)

Number of GCLKs 1(4% utilization)

Combinational Delay 69.987nsec

Total number of

paths/Destination ports

33/33

Memory 187244 Kbytes

Flip Flop/Latches 103

Clock Buffers 1

I/O Buffers 99

Global Fan out 500

Input Format Mixed

Comparator 4(1-24 bit, 3-8 bit)

Xor 133

Cell Usage 749

V. SIMULATION WAVEFORM(USING MODEL SIM)

Input

1=7.5=010000001111100000000000000000000

Input

2=9.25=010000010100101000000000000000000

Meenu Talwar, Karan Gumber, Sharmelee Thangjam / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp.1226-1229

1229 | P a g e

Desired

Result=16.75=010000011100001100000000000000000

Simulation Result=010000011100001100000000000000000

Input 1=-
3.5=110000000111000000000000000000000

Input 2=-

120.75=110000101111100011000000000000000

Desired Result=-
124.25=110000101111110001000000000000000

Simulation

Result=110000101111110001000000000000000

ACKNOWLEDGEMENTS
I would like to thanks the anonymous users for their

insightful comments.

REFERENCES
[1] Ali malik, Dongdong chenand Soek bum ko, “Design

tradeoff analysis of floating point adders in FPGAs,”
Can. J. elect. Comput. Eng., ©2008IEEE.

[2] Loucas Louca, Todd A cook and William H. Johnson,
“Implementation of IEEE single precision floating point
addition and multiplication on FPGAs,”©1996 IEEE.

[3] Alexandru, Mircea, Lucian and Oana, “Exploiting
parallelism in double path adder structure for increase
througput of floating point addition ,” ©2007 IEEE.

[4] V. Y. Gorshtein, A. I Grushin, S>R Shevtsov, “Floating
point addtion method and apparatus,” Sun microsystem
U.S patent 5808926,1998.

[5] IEEE std. 1076-2002, “IEEE stsndard VHDL reference
manual,” Sponsored by Design Automation standards
Committee published by IEEE.

[6] Metin Mete, Mustafa Gok, “A multiprecision floating
point adder,” ©2011 IEEE.

[7] Florent de Dinechin, “Pipelined FPGA adders,” ©2010
IEEE.

[8] Ali malik, Soek bum ko , “Effective implementation of
floating point adder using pipelined LOP in FPGAss,”
©2010 IEEE.

