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ABSTRACT 
The main objective of implementation of floating point 

adder using sequential processing on the reconfigurable 

hardware i.e. on FPGAs is to utilize less chip area, less 

number of destination paths/ports, less clock period, less 

combinational delay and faster speed. Less chip area 

means less number of slices is used in reconfigurable 

hardware i.e. on FPGAs. Less combinational delay 

means less latency i.e. less time is required to appear an 

output after the input response is applied and if there is 

less latency then there will be the faster speed. If there is 

less number of components are used on FPGAs then less 

number of paths are used to connect them. Floating 

point adder implementation on FPGA utilizes 349 slices 

with a combinational delay of 69.987 nsec consuming 

187244 Kbytes of memory with 1 Global clock.  

Keywords – Floating point adder, Xilinx, FPGAs. 

I. INTRODUCTION 

Many scientific problems require floating point arithmetic 

with high level of accuracy in their calculations. Therefore 

VHDL programming for IEEE single precision floating 

point adder in have been explored. For implementation of 

floating point adder using Sequential processing on FPGAs 

module various parameters i.e. clock period, latency, area 

(number of slices used), total number of paths/ destination 

ports, combinational delay, modeling formats etc will be 

outline in the synthesis report. VHDL code for floating point 

adder is written in Xilinx 8.1i and its synthesis report is 

shown in Design process of Xilinx which will outline 

various parameters like number of slices used, number of 

slice flip flop used, number of 4 input LUTs, number of 

bonded IOBs, number of global CLKs. Floating point 

addition is most widely used operation in DSP/Math 

processors, Robots, Air traffic controller, Digital computers 

because of its raising application the main emphasis is on 

the implementation of floating point adder effectively such 

that it uses less chip area with more clock speed[1][2].  

II. FLOATING POINT FORMAT 

Floating point number is composed of three fields and can 

be of 16, 18, 32 and 64 bit. Figure shows the IEEE standard                                                                       

for floating point numbers consists of 32 bits [3] [4].1 bit 

sign of signifies whether the number is positive or negative. 

„0‟ indicate positive number whether „1‟ indicates negative   

 positive number. 8 bit exponent provides the exponent 

range from E 
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 (min) =-126 to E (max) =127. 23 bit mantissa signifies the 

fractional part of a number the mantissa must not be 

confused with the significand. The leading „1‟ in the 

significand is made implicit [2]. 

2.1 Conversion of Decimal to Floating numbers 

Conversion of Decimal to Floating point 32 bit format is 

explained with example. Let us take an example of a 

decimal number that how could it will be converted into 

floating format. Enter a decimal number suppose 129.85 

before converting into floating format this number is 

converted into binary value which is 10000001.110111. 

After conversion move the radix point to the left such that 

there will be only one bit which is left of the radix point and 

this bit must be 1 this bit is known as hidden bit and also 

made above number of 24 bit including hidden bit which is 

always „1‟ like 1.00000011101110000000000 the number 

which is after the radix point is called mantissa which is of 

23 bits and the whole number is called significand which is 

of 24 bits. Count the number of times the radix point is 

shifted say „x‟. But in above case there is 7 times shifting of 

radix point to the left. This value must be added to 127 to 

get the exponent value i.e. original exponent value is 127 + 

„x‟. In above case exponent is 127 + 7 = 134 which is 

10000110. Sign bit i.e. MSB is „0‟ because number is +ve. 

Now assemble result into 32 bit format which is sign, 

exponent,mantissa. 01000011000000011101110000000000. 

Now take another example which is totally different from 

above let us enter a decimal number -0.5 which is converted 

into binary value which is .000011. After conversion move 

the radix point to the right in this case such that there will be 

only one bit which is left of the radix point and this bit must 

be 1 this bit is known as hidden bit and also made above 

number of 24 bit including hidden bit which is always „1‟ 

1.10000000000000000000000 the number which is after the 

radix point is called mantissa which is of 23 bits and the 

whole number is called significand which is of 24 bits. 

Count the number of times the radix point is shifted to the 

right say „x‟. In this case there is 5 times shifting of radix 

point to the right. This value must be subtracted to 127 to 

get the exponent value i.e. original exponent value is 127 - 

„x‟. In above case exponent is 127 - 5= 122 which is 

01111010. Sign bit i.e. MSB is „1‟ because number is -ve. 

Now assemble result into 32 bit format which is sign, 

exponent, mantissa 10111101010000000000000000000000. 

    Sign        Exponent        Mantissa 
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#Note: - Hidden bit is not included into 32 bit format this bit 

is implicit. When performing operation with this format this 

implicit bit is made explicit [5]. 

III. ADDITION ALGORITHM FOR FLOATING 

POINT NUMBERS  
VHDL coding for floating point adder is done is in 

Xilinx8.1i and simulation waveform is shown in Model Sim. 

Synthesis report in Xilinx 8.1i will tell us all the information 

about the project summary, Device utilization summary 

(estimated values) and project status. The floating point 

addition is the most complex operation then the floating 

point multiplication since the alignment of mantissa is 

required before mantissa addition. I would like to explain 

floating point addition algorithm in 2 cases with example. 

Case I is when both the numbers are of same sign i.e. when 

both the numbers are either +ve or –ve means the MSB of 

both the numbers are either 1 or 0. Case II when both the 

numbers are of different sign i.e. when one number is +ve 

and other number is –ve means the MSB of one number is 1 

and other is 0. The flowchart of the algorithm is given below 

in next page and it is explained in following steps with 

proper example. 

A. Case I: - When both numbers are of same sign 

Step 1:- Enter two numbers N1 and N2. E1, S1 and E1, S2 

represent exponent and significand of N1 and N2. 

Step 2:- Is E1 or E2 =‟0‟. If yes set hidden bit of N1 or N2 is 

zero. If not then check is E2 > E1 if yes swap N1 and N2 

now contents of N2 in N1 and N1 in N2 and if E1 > E2 

make contents of N1 and N2 same there is no need to swap. 

Step 3:- Calculate difference in exponents d=E1-E2. If d = 

„0‟  then there is no need of shifting the significand and if d 

is more than „0‟ say „y‟ then shift S2 to the right by an 

amount „y‟ and fill the left most bits by zero. Shifting is 

done with hidden bit. 

Step 4:- Amount of shifting i.e. „y‟ is added to exponent of 

N2 value. New exponent value of E2= previous E2 + „y‟. 

Now result is in normalize form because E1 = E2. 

Step 5:- Is N1 and N2 have different sign „no‟. In this case 

N1 and N2 have same sign. 

Step 6:- Add the significands of 24 bits each including 

hidden bit S=S1+S2. 

Step 7:- Is there is carry out in significand addition. If yes 

then add „1‟ to the exponent value of either E1 or new  E2 

and shift the overall result of significand addition to the 

right by one by making MSB of S is „1‟ and dropping LSB 

of significand. 

Step 8:- If there is no carry out in step 6 then previous 

exponent is the real exponent. 

Step 9:- Sign of the result i.e. MSB = MSB of either N1 or 

N2.  

Step 10:- Assemble result into 32 bit format excluding 24
th

 

bit of significand i.e. hidden bit [6][7]. 

Example Step 1: Enter N1 and N2. 

N1=2.3=0 10000000 100100100000000000000000 

N2=7.4=0 10000001 111011000000000000000000 

E1= 10000000 

E2= 10000001 

S1=100100100000000000000000 

S2= 111011000000000000000000 

 

Step 2: If E2>E1. Yes then swap N1 & N2. 

New N1=0 10000010 111011000000000000000000 

New N2=0 10000000 100100100000000000000000 

Step 3: Calculate d =E1-E2. 

10000001-10000000 = 1 

Step 4: Shifting of S2 to the right by one and also add 1 to 

E2. 

N2 =0 10000000 100100100000000000000000(original) 

N2= 0 10000000 010010010000000000000000 (one time 

shifted) 

Shifting by 1 time means add „1‟ to exponent. 

Step 5: New exponent value E2 = 10000001, new 

significand value S2 = 010010010000000000000000 here 

E1 = E2. 

Step 6: S=S1+S2. 

S1=111011000000000000000000 

S2=010010010000000000000000 

S=1001101010000000000000000 

Step 7: Here is carry out add „1‟ to exponent and shift result 

to the right by one bit and discard the LSB of „S‟. 

Original exponent=10000010 

Original significand=100110101000000000000000 

Step 8: MSB of result is „0‟. 

Step 9: Assemble into 32 bit format. 

0 10000010 00110101000000000000000 

B. Case II: - When both numbers are of different sign 

Step 1, 2, 3 & 4 are same as done in case I. 

Step 5:- Is N1 and N2 have different sign „Yes‟. 

Step 6:- Take 2‟s complement of S2 and then add it to S1 

i.e. S=S1+2‟s complement of S2. 

Step 7:- Is there is carry out in significand addition. If yes 

then discard the carry and also shift the result to left until 

there is „1‟ in MSB also counts the amount of shifting say 

„z‟. 

Step 8:- Subtract „z‟ from exponent value either from E1 or 

E2. Now the original exponent is E1-„z‟. Also append the 

„z‟ amount of zeros at LSB. 

Step 9:- If there is no carry out in step 6 then MSB must be 

„1‟ and in this case simply replace „S‟ by 2‟s complement. 

Step 10:- Sign of the result i.e. MSB = Sign of the larger 

number either MSB of N1or it can be MSB of N2. 

Step 10:- Assemble result into 32 bit format excluding 24
th

 

bit of significand i.e. hidden bit [6][7]. 

Example 

Step 1: Enter N1 and N2. 

N1=128.5=0 10000110 100000001000000000000000 

N2=-18.25=1 10000011 100100100000000000000000 

E1=10000110 

E2=10000011 

S1=100000001000000000000000 

S2=100100100000000000000000 
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Step 2: E1>E2 no need to swap. 

Step 3: Calculate „d‟=E1-E2. 

 

10000110-10000011=00000011=>3 in decimal. 

Step 4: Shifting of S2 to the right by three and also add 3 to 

E2. 

N2 = 0 10000011 100100100000000000000000 (original) 

N2 = 0 10000100 010010010000000000000000 (1 time 

shifting) 

N2 = 0 10000101 001001001000000000000000 (2 time 

shifting) 

N2 = 0 10000110 000100100100000000000000 (3 time 

shifting) 

 

Shifting by 1 time means add „1‟ to exponent. 

Step 5: New exponent value E1 = 10000110, new 

significand value S2 = 000100100100000000000000 here 

E1=E2 i.e. result is in normalized form. 

Step 6: Take 2‟s complement of S2 because S2 is -ve i.e. 

S=S1+2‟s complement of S2. 

S1=100000001000000000000000 

S2=111011011100000000000000 

S=1011011100100000000000000 

Step 7: Here is carry out add lets discard the carry and shift 

result to the leftt by one bit  to make MSB „1‟ and then 

subtract the amount of shifting from E1 or E2 to form 

original exponent of result. 

Original exponent=10000110-1=10000101 

Original significand=110111001000000000000000 

Step 8:- Sign bit of result i.e. MSB= Sign of 128.5 which is 

larger number. 

Step 9: Assemble into 32 bit format. 

0 10000101       110111001000000000000000 

C. Special Conditions 

There are some special conditions while implementing 

floating point adder which needs to be handle these are 

explained below 

1: If N1 = N2 = „0‟ then overall result is „0‟. 

2: If E1=E2 and sign bit of E1 ≠ E2 then again overall result 

is „0‟. 

3: If E1= „0‟ and E2 ≠ „0‟ then overall result is equal to E2. 

4: If E2= „0‟ and E1 ≠ „0‟ then overall result is equal to E1  

5: If d= E1-E2 ≥24 then overall result is larger of E1 or E2 

[3].  

D. Problems associated in addition 

There are two problems which occurs when we are going to 

add two floating point numbers 

1: When the exponent of two numbers are different this can 

be solved by shifting the significand of smaller number to 

the right by an amount equal to exponent difference and this 

amount is added to exponent value of smaller number to 

make exponent of both the numbers are same means in 

normalized form 

2: When there is carry out in significand addition if both the 

number are of different sign then add „1‟ to the exponent 

and shift the result of significand to the right by one 

discarding LSB and if both the number are of different sign 

then discard the carry and shift the result to the left until 

there is „1‟ at MSB the amount of shifting is subtracted from 

exponent to form real exponent [7][8]. 

IV. SYNTHESIS REPORT 

Parameters Sequential Processing 

Number of Slices  349 (7% utilization) 

Number of GCLKs 1(4% utilization) 

Combinational Delay 69.987nsec 

Total number of 

paths/Destination ports 

33/33 

Memory 187244 Kbytes 

Flip Flop/Latches 103 

Clock Buffers 1 

I/O Buffers 99 

Global Fan out 500 

Input Format Mixed 

Comparator  4(1-24 bit, 3-8 bit) 

Xor 133 

Cell Usage 749 

V. SIMULATION WAVEFORM(USING MODEL SIM) 

Input 

1=7.5=010000001111100000000000000000000 

Input 

2=9.25=010000010100101000000000000000000 
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Desired 

Result=16.75=010000011100001100000000000000000 

Simulation Result=010000011100001100000000000000000 

 

Input 1=-
3.5=110000000111000000000000000000000    

Input 2=-

120.75=110000101111100011000000000000000 

 

Desired Result=-
124.25=110000101111110001000000000000000 

Simulation 

Result=110000101111110001000000000000000 
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