
U.Rahamathunnisa, S. Pragadeeswaran / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.959-963

959 | P a g e

COLLISION DETECTION GAME USING COCOS2DX-A

CROSS PLATFORM

U.Rahamathunnisa
1
, S. Pragadeeswaran

2

*Assistant Professor, SITE, VIT University, Vellore.

**MS(SE) Student, SITE, VIT University, Vellore.

Abstract
This paper discusses an interactive third person single user game which works on different platform like

iPhone and android. Generally 2D games are developed in the win32 platform using cocos2D-x game

engine and the objective is to port the game to different platforms like iPhone and android. The

development environment is Visual Studio. There are several games existing in the real world like doodle

jump, twee jump and this game will be unique in its own way.

Keywords:- Cross platform, collision detection, sprite, Rendering

1. INTRODUCTION
According to Mr.Sawyer,playing games is a problem solving activity and they solve social problems of

entertainment[1].Developers prefer to use cross platforms for game development[2].The comparisons of

mobile game development environment in swerve studio and xforge has been discussed[3].Collision

detection is an essential part and it ensures that game physics are relatively realistic. The two main parts in

collision detection are detecting whether or not a collision has happened, and if so, responding to the

collision. Discovering if a collision has occurred is the basis of this problem.

 While responding to the collision is computationally much easier than discovering a collision, it

can still pose several problems in how objects are going to react to each other. Developers prefer to use

cross platform tools to develop their software to ensure that their products run in as many hardware

platforms are available[4].Interpreted languages provide more control over the user interface[5][6].

2. GAME DEVEOPMENT OVERVIEW
The collision detection game has been developed for the users not only for entertainment but it

incorporates the problem solving techniques such as laws of physics.The game is a cross platform game

developed with features in box 2d.The important part of the game is the collision detection and collision

response.

2.1 BOX -2D FEATURES

 Continuous collision detection

 Contact callbacks: begin, end, pre-solve, post-solve

 Convex polyons and circles.

 Multiple shapes per body

 One-shot contact manifolds

 Dynamic tree broadphase

 Efficient pair management

 Fast broadphase AABB queries

 Collision groups and categories

Physics

 Continuous physics with time of impact solver

 Persistent body-joint-contact graph

 Island solution and sleep management

 Contact, friction, and restitution

U.Rahamathunnisa, S. Pragadeeswaran / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.959-963

960 | P a g e

 Stable stacking with a linear-time solver

 Revolute, prismatic, distance, pulley, gear, mouse joint, and other joint types

 Joint limits, motors, and friction

 Momentum decoupled position correction

 Fairly accurate reaction forces/impulses

System

 Small block and stack allocators

 Centralized tuning parameters

 Highly portable C++ with no use of STL containers

3. GAME DEVELOPMENT ARCHITECTURE

Fig 1. Overall System Architecture

Cocos2D-X

initialization

Visual studio -

Cocos2D-X

integration

Level creator

using Tiled

Sprite selection

in the level

Sprite

animation

Collision detection

using Box2D

Develop menus

(pause, play

resume, sound)

Manage memory

for high scores

U.Rahamathunnisa, S. Pragadeeswaran / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.959-963

961 | P a g e

Fig 1 describes the overall system architecture of the game development. It contains the various stages are

as follows:

.

a) Level Generation

b) Character(Sprite) Animation

c) Collision Detection

d) Score & Memory Management

e) Menu Development

 f) Porting to iPhone/android

a) Level Generation

This module deals with the level generation by creating the maps, selecting maps, arranging them in

the order which we like either random or user defined. We use Tiled software for creating tmx files (map

files). It contains many tile layers and object layers.

1. Tile layer- for the background tiles

2. Object layers- for the objects (polygon/ordinary objects)

Here we arrange the platforms where the player should jump, enemies which the player should not collide

and collectables for collecting and providing extra scores.

b) Sprite Animation

 This module deals with the sprite selection for the game. Sprites can be used as Hero for the game,

enemies, collectables and background . The sprite in Cocos2d-x is selected using CCSprite,

CCSpriteFrameCache and CCSpriteBatchNode. The frame cache is for plist files. Plist is nothing but the

sprite sheet. Thus the sprite is selected and for animating it we use CCAnimation. The animation should be

carried at regular intervals.

c) Collision Detection

 This is the important part of the game development where sprites need to collide and their collision is to

be detected or not. Here we are using the concept of box2d. We create polygons or other shapes around the

bodies in the box2d world. Now we check if the polygons collide or not by checking the point of contact or

contact listener. Contact listener contains

1.Begin Contact-what is to be done at the beginning of contact

2.End Contact-what is to be done at the end of contact

The collision is between player-enemy, player-collectables.

d) Score & Memory Management

 This module deals with the score calculation and maintaining the high scores. The score is calculated

based on the number of pixels the character has travelled and the ratio is considered. If he collects the

collectables extra points will be added to the net score. For maintaining the high scores we need to create a

memory allocation for the scores and display the top five or ten scores. The memory can be created by

using the CCUserdefaults or new operator. The memory management technique should be used to optimize

the performance of the game.

U.Rahamathunnisa, S. Pragadeeswaran / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.959-963

962 | P a g e

e) Menu Development

This module deals with the menu development such as the pause/play toggling, sound on/off

toggling, close and to check the high scores options. The menu is created using CCMenu, CCLabel and

CCLabelBMFont. The menu provides ease of gaming. There will be a main menu for starting the game

and exiting the game the other menus will be inside the game screen.

f) Porting

Porting to different platforms is based on the release version that is developed using the windows.

The exe file is used for running in the windows platform. The release version contains compatible game for

other versions. The platform specific code is coded again and deployed. It is then release for iPhone and

android platforms. A DLL is taken from the windows platform and it is used for other platforms.

4. RESULT ANALYSIS

 Fig 2 describes the sample output for the game scenario in windows platform. This scenario

includes the sprite Animation and based on the collision detected, the scores are displayed on the score

board. Fig 3 shows debugging of the game. Fig 4 describes the sample output for the game scenario in

Iphone.

 Fig 2.Sample Game scenario[Windows]

U.Rahamathunnisa, S. Pragadeeswaran / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.959-963

963 | P a g e

 Fig 3.Game debugging

 Fig 4.Sample Game scenario [IPhone]

U.Rahamathunnisa, S. Pragadeeswaran / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.959-963

964 | P a g e

CONCLUSION
 This paper discusses the collision detection game development. The game includes several

features incorporating game physics in it.It works for various platform like iphone and android.Most of the

game development is not only for entertainment but they involve the problem solving method in it and this

collision detection game development scenario paves way to learn the laws of physics.

REFERENCES
[1] Sawyer, B. (2004). Presentation in GDC 2004

[2] Wang, G. G. (2004). Semi-structured Questionnaire. Mr. Guo Guang Wang is the Java Engineer in

Wireless Technology Department of NetEase, China. His responsibilities involve: mobile phone

game based on J2ME development and Java programmes maintenance and debug.

[3] Chen Xin(2009),Cross-Platform Mobile Phone Game Development Environment International

Conference on Industrial and Information Systems

[4] Zhang, S. J. (2004). Telephone Interview. Mr. Sheng Jing Zhang is product manager in

Tianxingyuanjing Company (www.81088.com) in Beijing China. He is responsible for the

development of a game simulator for Symbian 60 Series mobile phone.

 [5] Introduction to Mobile Game Development. Nokia Corporation. Released in January 2003.

[6] Costikyan, G. (2002). J2ME & BREW Game Design: Designing games for J2ME and BREW

technology. Game Developers Conference 2002.

