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Abstract 
                In this paper introducing a novel 

technique so called redundant binary booth 

algorithm.The redundant binary in design of high 

speed digital multiplier is beneficial due to high 

modularity and carry free addition. Generally,in 

high radix modified booth encoding algorithm the 

partial products are reduced in multiplication 

process. But it yields complexity in producing in 

generation of hard multiples.Therefore booth 

encoding scheme along with redundant binary 

scheme solves this problem by using booth 

encoding,RB partial product generator,RB partial 

product accumulator,RB to NB converter stage.In 

this paper implemented in VHDL. 

                 

INTRODUCTION 

          The digital multiplier is a ubiquitous 

arithmetic unit in microprocessors, digital signal 

processors, and emerging media processors. It is 

also a kernel operator in application- specific data 

path of video and audio codecs, digital filters, 

computer graphics, and embedded systems. 

Compared with many other arithmetic operations, 

multiplication is time-consuming and power 

hungry. The critical paths dominated by digital 

multipliers often impose a speed limit on the entire 

design. Hence, VLSI design of high-speed 

multipliers, with low energy dissipation, is still a 

popular research. Redundant binary (RB) 

representation is one of the signed digit 

representations first introduced by Avizienis in 

1961 for fast parallel arithmetic. This new 

arithmetic was applied for fast multiplication by 

Takagi et al and implemented in VLSI by 

Edamatsu In conventional RB multiplier design, a 

modified Booth encoding algorithm in NB regime 

is employed to reduce the number of partial 

products, and then pairs of NB partial products are 

encoded to form RB partial products. In this 

process, an additional constant binary vector is 

introduced to compensate for the aggregate errors  

 

 

resulting from both the RB and Booth encodings. 

This correction vector incurs hardware overhead in 

the RB summing tree and, to a certain extent, 

offsets the regularity of the layout and increases 

switching activities. 

RB multipliers for power-of-two operand 

length. 

Redundant Binary representation: 

        A redundant binary representation (RBR) is 

a numeral system that uses more bits than needed 

to represent a single binary digit so that most 

numbers have several representations. RBR is 

unlike usual binary numeral systems, 

including two's complement, which use a single bit 

for each digit. Many of RBR's properties differ 

from those of regular binary representation 

systems. Most importantly, RBR allows addition 

without using a typical carry. When compared to 

non-redundant representation, RBR makes bitwise 

logical operation slower, but Arithmetic 

operation are faster when large bit width are 

used. Usually, every bit has a sign that is not 

necessarily the same as the sign of the number 

represented. When digits have signs, the RBR is 

also a signed-digit representation. 

RBR is a place-value notation system. In 

RBR, digits are pairs of bits, that is, for every 

place; RBR uses a pair of bits. The value 

represented by an RBR digit can be found using a 

translation table. This table indicates the 

mathematical value of each possible pair of bits. As 

in conventional binary representation, the integer 

value of a given representation is a weighted sum 

of the values of the digits. The weight starts at 1 for 

the rightmost position and goes up by a factor of 2 

for each next position. Usually, RBR allows 

negative values. There is no single sign bit that 

tells if a RBR represented number is positive or 

negative. Most integers have several possible 

representations in an RBR. 

http://en.wikipedia.org/wiki/Numerical_digit
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An integer value can be converted back 

from RBR using the following formula, where n is 

the number of digit and dk is the interpreted value 

of the k-th digit, where k starts at 0 at the rightmost 

position: 

                   

The conversion from RBR to two's 

complement can be done in O(log(n)) using prefix 

adder where n is the number of digit.  

               
RB Booth Encoding (RBBE): 

Hard multiples could be obtained from the 

differences of two simple power-of-two multiples. 

In radix-16 RB Booth encoding, the multiplier bits 

are y4i+3y4i+2y4i+1 y4iy4i-1 and each of the original 

hard multiples selected 

by are replaced 

by  , 

respectively. The partial products generated in this 

way conform to the format of the RB coding. The 

only exception is that, hard multiples selected by 

                                          

 
 Figure 1.1: Radix-16 RBBE and its partial 

product generator. 

 Cannot be readily generated in this manner, a 

simple carry-free RB adder is used to add 4X and 

X. The advantage of this method is the correction 

vector due to the two‟s complement arithmetic and 

the RB coding has been completely eliminated. 

Comparing with NBBE, the ease of generating the 

hard multiples by RBBE, to a certain extent has 

been offset by its complex circuitry.  

High-radix RBBE requires high fan-in 

gates in the partial product generator circuit. Since 

the circuit for each digit of the RB partial product 

will be duplicated in a large number, the overhead 

of high fan-in gates is more prominent in long 

operand length multipliers. Besides, as 

 

only one Booth encoded digit is consumed for one 

RB partial product, half of the binary bits 

representing an RB partial product generated from 

a simple power-of-two multiple in the RBBE are 

filled with “0”s, which is rather inefficient.[6] 

 

 
Table 1.1: Radix-16 redundant binary booth 

encoding (RBBE-4) 

 
2. COVALENT REDUNDANT BINARY 

BOOTH ENCODING (CRBBE) 

ALGORITHM 
      Covalent redundant binary booth encoding 

(CRBBE) algorithm is used to simplify the 

generation of hard multiples and reduce the number 

of RB partial products without introducing any 

form of correction vector.  

2.1 CRBBE-4 Algorithm: 

CRBBE-4 is composed of two adjacent 

radix-4 Booth encoders. Its gate-level 

implementation is represented, where the sign and 

magnitude of the radix-4 Booth encoded digit di are 

represented with three binary bits, sgni , mi
(2)

, mi
(1)

 

, and as follows:   

                   di   = (-1)
sgn(i)

(mi
(2)   

+ mi
(1)

)                                                      

             
 Figure 2.1: Two adjacent radix-4 Booth 

encoder 
` 

    The above figure shows the „l‟ th slice of a 

radix-16 CRBBE-4 circuit for the generation of the 

control signals clMl. The indexes ‘i‟ and „l‟ are 

related by i=2l. The lower encoder takes three 

consecutive bits y2i+1y2iy2i-1 = y4l+1y4ly4l-1 from the 

multiplier to generate the magnitude bits m2l
(2)

 and 

m2l
(1) 

of di Its sign bit sgni = y4l+1. The upper 

encoder takes the binary bits y2i+3y2i+2y2i+1 = 



Vamsi Krishna Pedarla,  P.Nagaraju / International Journal of Engineering Research and 

Applications (IJERA)         ISSN: 2248-9622        www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp. 349-353 

351 | P a g e  

 

y4l+3y4l+2y4l+1 and generates the magnitude bit 

m2l+1
(2)

 and m2l+1
(1)

 of di+1. Its sign bit sgni+1 = y4l+3. 

All of these output signals are mapped to the 

polarization circuit. The control signals clMl, 

generated are used to select the RB partial products 

correspond to the multiples clX. [7]       
 

                                         

                        
.Figure 2.1: Polarization circuit                                        

The polarization circuit performs the mapping (di+1, 

di )         ( pl
+
, pl

- 
) .  

The control signals 1Ml, 2Ml, 4Ml and 8Ml   are 

computed as follows:  

                                       

 
The  5M multiple is generated as 

                                         

 
The control flag, swap is used to exchange pl

+
 and 

pl
-
 in the partial product generator to negate the 

selected RB partial product. When di+1 is 0, the 

sign bit of di+1 is complemented before it is used as 

an active high swap flag to 

the RBPPG. Otherwise, the original sign of di+1  is 

used as the swap flag. Therefore, the swap signal 

can be generated by: 

                                          

 
 

 

 

 

 

 

 

 

 

 

 

 

3. DESIGN OF CRBBE-4-BASED RB 

MULTIPLIER 

            

  
Figure 3.1: Block diagram of 64*64 RB 

multiplier 
The block diagram of 64*64 consists of 3 stages: 

 (1)Booth encoder and partial product 

generator stage (BEPPG stage) 

 (2)Redundant binary adder summing tree 

stage (RBA summing stage) 

 (3)Redundant binary to NB conversion 

stage (RB-to-NB stage) 

Booth encoder and partial product 

generator stage (BEPPG stage): 
Booth encoder and partial product 

generator affect the efficiency of the partial product 

generation. The number of partial products that can 

be saved by this stage impacts the cost, 

performance, and power consumption of the RB 

summing tree and the multiplier as a whole. In the 

first stage, 16 CRBBE-4 slices are used to generate 

the control signals from the multiplier. The hard 

multiple 5X is generated. The multiplicand bits 

are shifted and selected into 16 rows of RB 

partial products in 16 slices of RBPPG. 

                                         

 
 Figure 3.2: RB partial product generator 

(RBPPG) of CRBBE-4. 
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Redundant binary adder summing tree 

stage (RBA summing stage): 
In the second stage, a 4-stage RBA summing tree is 

used to sum 16 RB partial products. Each RBA 

block contains 64 RB full adder (RBFA) cells and 

a varying number of RB half adder (RBHA) cells 

depending on where it is located. The RBA block 

in the i-th level, designated RBAi (i=1 to 4) 

contains 2
i+1

 RBHA cells in its most significant 

digit positions. Due to the positive-negative-

complement coding, the second binary bit ppl,j
-
of 

the RB partial product generated from CRBBE-4 

and RBPPG circuit should be inverted before it is 

input to the RBA. A preprocessing circuit is needed 

for each RB digit to avoid the inconsistent 

representations of “0” prior to the RBA summing 

tree stage. An important benefit of the coding 

format adopted in this design is that these 

preprocessing circuits can be completely 

eliminated due to its symmetry.                           

                                                  

    
   Figure 3.3: RB Half adder 

                                    
    Figure 3.4: RB Full adder 

 
Redundant binary to NB conversion stage 

(RB-to-NB stage): 
       An RB-to-NB converter converts the final 

accumulation result to NB representation. Due to 

the unequal delay profile of the final RB result bits, 

the conversion can be carried out in uneven groups 

of consecutive digits according to their arrival 

time. Groups of 4, 4, 8, 16 and 96 digits from the 

least significant digit position are evaluated 

concurrently. The first three groups of 4, 4, and 8 

digits can be independently converted with ripple-

carry adders to reduce the circuit complexity. The 

carry generation of the next group of 16 digits can 

be evaluated with a carry-look ahead adder as they 

do not depend on the final summation results in the 

RBA tree stage.  

 
Figure 3.5: 4-Bit carry look ahead adder 
          The conversion speed of the RB-to-NB 

stage depends solely on the conversion time of the 

most significant 96-digit group. This group is 

converted with a hybrid carry-look ahead or carry-

select adder since it is widely known as one of the 

most efficient structures for fast parallel adder 

design.[8] 

 
RESULT: 

Simulation is performed successfully. By 

taking the input values of the multiplicand and 

multiplier, the product is obtained without any 

error. 

Here X= 307445734561825860 

 Y= 6148914691236517215 

PRODUCT=189045759400521369154414184115

877419505 

 
SIMULATION REPORTS: 

FINAL MODULE:                   

 
 

CONCLUSION 
                 Hence, a high-speed and energy-

efficient RB multiplier is designed based on new 

covalent RB Booth encoding algorithm. The idea is 

to polarize two adjacent Booth-encoded digits into 

a differential pair to restore the effective RB partial 
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product reduction rate without the NB-to-RB 

conversion overhead. This method fully exploits 

the characteristics of the positive–negative 

complement coding of RB number to directly 

generate an RB partial product from two adjacent 

Booth-encoded digits. Consequently, it shares the 

same advantages of RB Booth encoder for the ease 

of generating hard multiples and avoidance of error 

compensation vector, the two problems that are 

confronted by RB multiplier with normal binary 

Booth encoding.  
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