# **Design of High Speed Variable Width Integer Multiplier**

Rajeev Kumar<sup>1</sup>, Mandeep Singh Saini<sup>2</sup>

<sup>1</sup>Assistant Professor Deptt of ECE,IITT College, Pojewal Punjab <sup>2</sup>Assistant Professor,Deptt of ECE, IITT College,Pojewal,Punjab

### Introduction

In mathematical calculation multiplication is done using multiplier. Various types of multipliers are designed using different techniques. Here we present the design of a multiplier in which we can multiply two numbers with different size.

So there is no need to design various multipliers to perform multiplication. One multiplier is sufficient. Also this multiplier provides the high speed during multiplication.

## **Experimental Details**

In order to design the multiplier containing different bit width encoding is done first. After that architecture of the multiplier is designed according to the specifications. Then these specifications are converted into RTL (Register Transfer Level).So RTL coding is done in Verilog HDL.

Functionality is checked using simulation on Modelsim 6.4a.After that gate level netlist is generated using Xilinx ISE 9.2i.

The block diagram of the multiplier is shown in the following figure.



## Architecture Design of Variable Width Multiplier

Here a, b is the variable input, clk is the negative edge clock, ctrl is the control input. To decide the bit width encoding is done using four bits of the Binary Code.

| All | the | bit | width | is | shown | in | the | following table. |
|-----|-----|-----|-------|----|-------|----|-----|------------------|
|-----|-----|-----|-------|----|-------|----|-----|------------------|

| Operation | Code |
|-----------|------|
| 4x4       | 0000 |
| 8x4       | 0001 |
| 8x8       | 0010 |

| 16x4  | 0011 |
|-------|------|
| 16x8  | 0100 |
| 16x16 | 0101 |
| 32x4  | 0110 |
| 32x8  | 0111 |
| 32x16 | 1000 |
| 32x32 | 1001 |

As shown in the following table two 4 bit numbers are multiplied according to first row. In second row first number contains 8 bit and second number contains four bit.

Only one multiplier is required to perform all the calculations.

# Experimental Results: Simulation Result



### Synthesis Report Device Utilization Report

To generate the gate level netlist synthesis is done on Xilinx ISE 9.2i.For that purpose Virtex 4 FPGA with **4vlx15ff668** speed grade -12 is used.

| Device utilization summary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     | Slack Report                                                                                                                                                                                                                                                                                 |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Selected Device : 4vlx15ff668-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     | Constraint   Check   Worst Case   Best Case   Timi                                                                                                                                                                                                                                           | ng   Ti<br>rs   S |
| Number of Slices:<br>Number of Slice Flip Flops:<br>Number of 4 input LUTs:<br>Number of IOs:<br>Number of bonded IOBs:<br>IOB Flip Flops:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 195 out of 6144 3%<br>32 out of 12288 0%<br>359 out of 12288 2%<br>133<br>133 out of 320 41%<br>32                  | Autotimespec constraint for clock net clk   SETUP   N/A  0.862ns <br>_BUFGP   HOLD   0.383ns                                                                                                                                                                                                 | N/A <br>0         |
| Number of GCLKs:<br>Number of DSP48s:<br><br>Partition Resource Summary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 out of 32 3%<br>11 out of 32 34%                                                                                  | Generating Clock Report                                                                                                                                                                                                                                                                      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                     | +++++++                                                                                                                                                                                                                                                                                      | elay(ns)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                     | clk_BUFGP  BUFGCTRL_X0Y15  No   64   0.188   1.9                                                                                                                                                                                                                                             | 99                |
| ning Report: Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Asta.                                                                                                               | * Net Skew is the difference between the minimum and maximum routing<br>only delays for the net. Note this is different from Clock Skew which<br>is reported in TRCE timing report. Clock Skew is the difference between<br>the minimum and maximum path delays which includes logic delays. | n                 |
| Speed Grade: -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     | The Delay Summary Report                                                                                                                                                                                                                                                                     |                   |
| Maximum output required of<br>Maximum combinational par<br>Timing Detail:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | time after clock: 3.766n<br>th delay: No path found                                                                 | The AVERAGE CONNECTION DELAY for this design is: 1.188<br>The MAXIMUM PIN DELAY IS: 3.270<br>The AVERAGE CONNECTION DELAY on the 10 WORST NETS is: 2.959                                                                                                                                     |                   |
| All values displayed in name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oseconds (ns)                                                                                                       | RTL Schematic                                                                                                                                                                                                                                                                                | •                 |
| constraint: Default OFFSET IN BEFORE for Clock 'clk<br>1 number of paths / destination ports: 115376192 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>t'<br>128                                                                                                       |                                                                                                                                                                                                                                                                                              |                   |
| 10.996ns (Levels of Logic = 6)<br>e: bcl> (BAD)<br>nation: c 26 (FT)<br>nation Clock: clk falling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                     | a(31:0) c(63:0)                                                                                                                                                                                                                                                                              |                   |
| Path: b<1> to c_26<br>Gate Net<br>11:in->out fanout Delay Delay Logical Name<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e (Net Name)<br>-                                                                                                   | b(31:0)                                                                                                                                                                                                                                                                                      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>mult_mult0000_a&lt;0&gt; x b&lt;1&gt; mand) 0002_(Mmult_mult0002_PCOUT to Mmult_mult0002</pre>                 | otr/(2:0)                                                                                                                                                                                                                                                                                    |                   |
| BUF:1->0         63         0.754         0.775         b_1_IBUF (Mm           SF48:81->FCOUT47         1         3.523         0.000         MmLir_mit0           SF48:FCIH47>FCOUT47         1         1.680         0.000         MmLir_mit0           SF48:FCIH47>FCOUT47         1         1.816         0.486         MmLir_mit0           SF48:FCIH47>FCOUT47         1         1.816         0.486         MmLir_mit0           SF48:FCIH47>FCO         1         1.816         0.486         c21           VF11:2>O         1         0.147         0.266         c21           UT4:12>         0.805         c.21         0.805         c.21 | ult00021 (Mmult_mult0021_FCOUT_to_Hmult_mul<br>00022 (_mult0002/27>)<br>134_SM2 (N1451)<br>134 (c_27_mux0000_map12) |                                                                                                                                                                                                                                                                                              |                   |



Chip Floor plan

**Power Report** 

| Power | summary:                     |        |            | I(mA) | P(mW) |  |
|-------|------------------------------|--------|------------|-------|-------|--|
| Total | estimated power consumption: |        | ption:<br> |       | 251   |  |
|       |                              | Vccint | 1.207:     | 49    | 58    |  |
|       |                              | Vccaux | 2.507:     | 77    | 193   |  |
|       |                              | Vcco25 | 2.507:     | 0     | 0     |  |
|       |                              |        |            |       |       |  |
|       |                              | C      | locks:     | 0     | 0     |  |
|       |                              | I      | nputs:     | 0     | 0     |  |
|       |                              | :      | Logic:     | 0     | 0     |  |
|       |                              | Ou     | tputs:     |       |       |  |
|       |                              |        | Vcco25     | 0     | 0     |  |
|       |                              | Si     | gnals:     | 0     | 0     |  |
|       |                              |        |            |       |       |  |
|       | Quiescent                    | Vccint | 1.20V:     | 49    | 58    |  |
|       | Quiescent                    | Vccaux | 2.507:     | 77    | 193   |  |

29C

#### Thermal summary:

| Estimated | junction temperature: |       |  |  |  |  |
|-----------|-----------------------|-------|--|--|--|--|
|           | Ambient temp:         | 25C   |  |  |  |  |
|           | Case temp:            | 28C   |  |  |  |  |
|           | Theta J-A:            | 14C/W |  |  |  |  |
|           |                       |       |  |  |  |  |

### **Final Report**

| Parameter            | Value        |  |  |
|----------------------|--------------|--|--|
| Speed                | 1183.712 MHz |  |  |
| Gate Delay           | 10.996ns     |  |  |
| Net Delay            | 9.082ns      |  |  |
| Slack                | 0.383ns      |  |  |
| Net Skew             | 0.188ns      |  |  |
| Clock Fanout         | 64           |  |  |
| Setup Time           | 10.996ns     |  |  |
| Hold Time            | 3.766ns      |  |  |
| Power Consumption    | 251mW        |  |  |
| Gate Count           | 3,848        |  |  |
| Additional JTAG Gate | 6,384        |  |  |
| Count                |              |  |  |

### Discussion

Here only one multiplier is required to perform variable size multiplication no separate multiplier is required .Hardware is develop using Xilinx ISE 9.2i.In future we can develop a variable bit multiplier to perform Floating Point Multiplication using IEEE 754 format. The proposed multiplier provides high speed during multiplication. In future we can design the multiplier for low power consumption. To increase speed further multiplier can be pipelined.

### References

[1]Jung-Yup Kang and Jean- Luc Gaudiot, "A simple high speed multiplier design,"IEEE Trans on Computers, vol 55, issue 10 Oct. pp 1253-1258, 2006 [2] Wen Chang Yeh and Chein –Wei Jen, High Speed Booth Encoded parallel multiplier design, "IEEE Trans on Computers, vol 49, issue 7, pp 692-701, July 2000

[3] C.S Wallace, "A suggestion for a fast multiplier", IEEE Trans. on Computers, vol .BCB13, pp. 14-17, Feb 1964

[4] Computer Architecture and Parallel Architecture, Kai Hwang

