Optimization of High Power Co₂ Laser Machining Centre's Machining Parameters by Experimental Analysis

Prof. Dhaval P. Patel*, Mrugesh B. Khatri**

*(Mechanical Engineering Department, Gujarat Technology University, Ahmedabad-15) ** ((Mechanical Engineering Department, Gujarat Technology University, Ahmedabad-15)

ABSTRACT

An experimental investigation is presented, which analyses the Co_2 , laser cutting process for S.S and M.S sheet. It shows that by proper control of the cutting parameter, good quality cuts are possible at high cutting rates. Some kerf characteristics such as the width, heat affected zone (HAZ) and dross; in terms of the process parameters are also discussed.

Keywords - HAZ, Laser Cutting, Process parameter

I. INTRODUCTION

A statistical analysis has arrived at the relationships between the cutting speed, laser power and work piece thickness, from which a recommendation is made for the selection of optimum cutting parameters for processing S.S and M.S material. The analysis of kerf width for constant cutting speed by varying power and assist gas pressure and for constant assist gas pressure by varying power and cutting speed. The author has explained the variation in cutting speed by changing plate thickness at constant power for both the materials of S.S. and M.S., by using experimental data. Some experiments also carried out for power by changing the thickness of plate at constant cutting speed for same materials.

The author has also carried out the comparison between M.S and S.S for various process parameters and microscopic examination results. Finally, here some general conclusions are concluded from various experiments carried out for different process parameters.

II. RELATION BETWEEN CUTTING SPEED AND LASER POWER

2.1. Experiement-1

Material Thickness (mm)	2	3	4	5	6	8
Assist gas (Oxygen) pressure (KPa)	10	10	10	8	7	7
Laser Power (Watt)	700	700	800	800	800	900
Cutting Speed (mm/min)	3000	2600	1800	1200	1000	800

Table 2.1 General data of process parameter

Standard sheet of M.S. has taken for an experiment. The variation of cutting speed by varying the laser power and material thickness is shown in Table 2.1

From above data it can be seen that

Material	Laser	Cutting
Thickness (\uparrow) \rightarrow	Power $(\uparrow) \rightarrow (but)$	Speed (\downarrow)
(mm)	(watt)	(mm/min)

If we have increase material thickness of sheet metal then laser power increase but cutting speed decrease.

2.2. Experiement-2

At constant thickness, to check other process parameter such as Laser Power and Cutting Speed.

Material – Mild Steel Assist gas pressure – 10 KPa 2.2.1 At 2 mm thickness:

Figure 2.1 Cutting Speed Vs Laser Power

for 2mm M.S. Sheet		
Laser Power (watt)	Cutting Speed (mm/min)	
400	800	
500	1000	
600	1500	
700	2500	
800	3000 to 3500	

2.2.2 At 3 mm thickness:

Figure 2.2 Cutting Speed Vs Laser Power

for 3mm M.S. Shee

Laser Power (watt)	Cutting Speed (mm/min)
400	600
500	800
600	1000
700	2000
800	2500 to 2700

2.2.2 At 4 mm thickness:

for 4mm M.S. Sheet

Laser Power (watt)	Cutting Speed (mm/min)
500	300
600	500
700	800 to 900
800	1000 to 1200
900	1500 (MAX.)

Conclusion:

If we have increased Laser Power then increase Cutting Speed at constant thickness.

2.3. Experiement-3

For stainless steel (S.S.) material:

(2.3.1) 400 Watt Power

Thickness (mm)	Cutting Speed (mm/min)
2	1500
3	1200
4	800 to 850

(2.3.2) 500 Watt Power

Thickness (mm)	Cutting Speed (mm/min)
2	2000
3	1500
4	1200

(2.3.3) 700 Watt Power

Thickness (mm)	Cutting Speed (mm/min)
2	3000
3	1800
4	1400

For mild steel (M.S.) material:

(2.3.4) 400 Watt Power

Thickness (mm)	Cutting Speed (mm/min)
2	800
3	600
4	300

(2.3.5) 500 Watt Power

Thickness (mm)	Cutting Speed (mm/min)
2	1000
3	800
4	300

(2.3.6) 700 Watt Power

Thickness (mm)	Cutting Speed (mm/min)
2	2500
3	2000
4	800 to 900

From above experimental data, we can see that the cutting speed decreases with increase in material thickness at constant power supply.

III. EXPERIEMENT FOR KERF CHARACTERISTIC

3.1. Experiment -1 (Kerf width in µm)

Material - Mild Steel; Thickness - 4 mm; Cutting Speed -1350 mm/min

Laser Power	Pressure (KPa)			
(Watt)	137	205	274	
800	460	465	470	
700	440	440	455	
600	440	435	450	
500	450	435	440	

(3.1.2) Bottom surface of work-piece: 500 450 400 350 300 250 200 150 400 137KPa 205KPa 274KPa **Kerf** 100 50 0 800 700 600 500 Laser Power(Watt)

Figure 3.2 Kerf width Vs Laser Power for V=1350mm/min, e=4mm, M.S. (Bottom surface)

Laser Power	Pressure (KPa)		
(Watt)	137	205	274
800	410	420	450
700	360	370	380
600	300	320	330
500	300	310	330

3. 2 Experiment – 2 (Kerf width in µm)

Material - Mild Steel; Thickness - 4 mm; Pressure - 102KPa (3.2.1) Top surface of work-piece:

Figure 3.3 Kerf width Vs Laser Power for V=1350mm/min, e=4mm, M.S. (Top surface)

Laser Power	Cutting Speed (mm/min)			
(Watt)	600	800	1000	1200
900	590	530	520	530
800	540	510	510	510
600	470	480	460	450
500	430	430	470	440

(3.2.2) Bottom surface of work-piece:

Figure 3.4 Kerf width Vs Laser Power for V=1350mm/min, e=4mm, M.S. (Bottom surface)

Laser Power	Cutting Speed (mm/min)			
(Watt)	<mark>600</mark>	800	1000	1200
900	410	420	360	350
800	410	360	360	320
600	370	300	290	250
500	380	310	320	290

3.3 Experiment –3 (HAZ -Heat Affected Zone in μm)

Material – Mild Steel; Thickness – 4 mm; Cutting Speed – 1350 mm/min

Laser Power	Pressure (KPa)			
(Watt)	137	205	274	
800	100	100	50	
700	70	110	120	
600	200	150	130	
500	150	150	120	

Material - Mild Steel; Thickness - 4 mm; Pressure - 102KPa

P = 102KPa, e=4mm, M.S.

Laser Power	Cutting Speed (mm/min)			
(Watt)	600	800	1000	1200
900	100	90	80	60
800	100	50	45	40
600	60	50	40	35
500	130	140	80	50

Conclusion:

The kerf width generally increases with increase in assist gas pressure and laser power and decrease in cutting speed.

By actual ready of M.S. material of thickness 4mm in which kerf width increase with increase in assist gas pressure and laser power and decrease in cutting speed.

Size of HAZ increases with an increase in laser power, but reduces with an increase in cutting speed.

3.4. Experiment – 1 (Kerf width in μ m)

Material – Stainless Steel; Thickness – 4 mm; Cutting Speed – 1350 mm/min

(3.4.1) Top surface of work-piece:

Figure 3.7 Kerf width Vs Laser Power for V=1350mm/min, e=4mm, S.S. (Top surface)

Laser Power	Pressure (KPa)		
(Watt)	137	205	274
800	340	350	360
700	330	345	360
600	320	340	350
500	320	330	340

Laser Power	Pressure (KPa)					
(Watt)	137 205 274					
800	250	260	320			
700	235	250	300			
600	220	250	270			
500	210	230	260			

3.5. Experiment – 2 (kerf width in μ m)

Material – Stainless Steel; Thickness – 4 mm; Pressure – 102 Kpa

(3.5.1.)Top surface of work-piece:

Figure 3.9 Ke	rf widh	Vs Ct	itting	speed for	r
P = 102KPa,	e=4mm	, S.S.	(Top	Surface)	

Laser Power	Cutting Speed (mm/min)			n)
(Watt)	600	800	1000	1200
900	350	340	300	280
800	330	310	<mark>3</mark> 00	270
600	310	300	280	260
500	300	280	270	240

Figure 3.10 Kerf widh Vs Cutting speed for P = 102KPa, e=4mm, S.S. (Bottom Surface)

Laser Power	Cutting Speed (mm/min)			
(Watt)	600	800	1000	1200
800	310	300	270	250
700	300	260	250	240
600	280	250	240	230
500	270	240	230	230

3.6. Experiment -3 (HAZ -Heat Affected Zone in µm)

Material – Stainless Steel; Thickness – 4 mm;

Cutting Speed - 1350 mm/min

Laser Power	Pressure (KPa)		
(Watt)	137	205	274
800	100	90	60
700	100	90	115
600	120	130	140
500	140	170	130

Material – Stainless Steel; Thickness – 4 mm; Pressure – 102KPa

Laser Power (Watt)	Cutting Speed (mm/min)				
	600	800	1000	1200	
900	150	130	70	40	
800	110	80	90	70	
600	110	90	100	80	
500	150	140	80	50	

Conclusion:

The kerf width generally increases with increase in assist gas pressure and laser power and decrease in cutting speed. By actual ready of S.S. material of thickness 4mm in which kerf width increase with increase in assist gas pressure and laser power and decrease in cutting speed.

Size of HAZ increases with an increase in laser power, but reduces with an increase in cutting speed.

IV. COMPARISON OF QUERRY'S MODEL AND MIYAZAKI'S MODELS FOR PROCESS PARAMETERS:

There are three classes of through cuts. In class I cut, the kerf width at bottom is greater than that of top surface and also cuts were obtained with massive dross attached at the bottom edges and surrounding area. In class II cuts also obtained with massive dross attached at the bottom edges and surrounding area. To achieve class III cuts are very difficult, because class III cuts are very accurate. For getting class III cuts with optimize process parameters, here considering the comparison of two models given by Querry and Miyazaki. For this comparison all reading are taken from the previous experimental data.

Querry's model:

$$V = 7430 \text{ e}^{-1.06} \text{ P}^{-0.63}$$

Miyazaki model:

$$V = 3500 e^{-0.56} P^{0.5}$$

Where,

V = Cutting speed

e = Material thickness

P = Laser power supply (kW)

Table. (4.1)

For analysis, if cutting speed and energy consumption (laser

Thick -ness (mm)	Assist oxygen pre. (kPa)	Laser Power (W)	Cutting Speed (mm/m in)	Querry model	Miyazaki model
2	10	600	1500	2593	1839
3	10	700	2000	1857	1582
4	10	800	1200	1489	1440

energy input) are considered as economic measures, and cut quality is the technological performance measure, the combinations of process parameters, which may be used for good quality cuts, are given in Table (4.1). This

recommendation is also consistent with that derived from the energy efficiency analysis presented above. The calculated cutting speeds for a given laser power and assist gas pressure from the two empirical models (curve fitted from experimental data) in the literature for sheet metals are also obtained for comparison. It is apparent that Querry's model can give cutting speeds to obtain class III cuts for the materials. But Miyazaki's model may be more applicable because all calculated cutting speeds are lower than that of Querry's model. Nevertheless, higher productivity can be achieved by using the recommendation from this study.

V. COMPARISON OF PROCESS PARAMETER FOR M.S. AND S.S

- From the observed results, we can conclude that, for the same Laser Power, Kerf Width in M.S. is greater than that of the S.S.
- At same Laser Power, Kerf width in M.S. for top surface is comparatively greater than that of the S.S. by varying the Assist gas pressure at constant Cutting Speed.
- At same Laser Power, Kerf width in M.S. for bottom surface is comparatively greater than that of the S.S. by varying the Assist gas pressure at constant Cutting Speed.
- At same Laser Power, Kerf width in M.S. for top surface is comparatively greater than that of the S.S. by varying the Cutting Speed at constant Assist gas pressure.
- At same Laser Power the HAZ in M.S. and S.S. is nearly same by varying Assist gas pressure at constant Cutting Speed.
- At same Laser Power the HAZ in S.S. is comparatively greater than that of M.S. by varying Cutting Speed at constant Assist gas pressure.

VI. CONCLUSION

- For the same Laser Power, Kerf width in M.S. is greater than that of S.S.
- At the same Laser Power. Kerf width in M.S. for top surface is comparatively greater to the tune of 23% than that of the S.S. when the Assist gas pressure is varying, keeping cutting speed constant.
- At the same Laser Power, Kerf width in M.S. for bottom surface is comparatively greater to the tune of 28% than that of the S.S. when the Assist gas pressure is varying, keeping cutting speed constant.
- At the same Laser Power, Kerf width in M.S. for top surface is comparatively greater to the tune of 47% than that of the S.S. when the Cutting speed is varying, keeping Assist gas pressure constant.

- At the same Laser Power, Kerf width in M.S. for bottom surface is comparatively greater to the tune of 28% than that of the S.S. when the Cutting speed is varying, keeping Assist gas pressure constant.
- At same Laser Power the HAZ in M.S. and S.S. is nearly same when Assist gas pressure is varying, keeping Cutting speed constant.
- At same Laser Power the HAZ in S.S. is comparatively greater than that of M.S. when Cutting speed is varying, keeping Assist gas pressure constant.

REFERENCES

- Charles L. Caristan "Laser Cutting Guide for manufacturing", Society of Manufacturing Engineers, 2004, pp 1-13.
- [2] J. wang, "An experimental analysis and optimization of CO₂ laser cutting process for metallic coated sheet steels", the International Journal of Advance Manufacturing Technology, 200, pp 334-340.
- [3] Konig W., Meis F.U., Willerschied H., Schmitz-Justen C1, "Process Monitoring of high power CO₂ lasers in manufacturing", Proceedings of the second international Conference on Lasers in Manufacturing, IFS, 26-28 March, Birmingham, UK, 1985, pp 129-140.
- [4] M.Querry, "*Laser cutting*", in A. Niku-Lari and B. L. Mordike (ed.), High Power Lasers, Institute for Technology Transfer, Pergamon, 1989, pp 195-211.
- [5] Sang-Heon Lim, Choon-Man Lee and Won Jee Chung, "A study on the optimal cutting condition of a high speed feeding type laser cutting machine by using Taguchi method", the International Journal of Precision Engineering and Manufacturing, Vol.7, No.1.
- [6] O' Neil, W., Steen, W.M., "Review of mathematical Model of laser cutting of steels", Laser in Engineering, Vol. 3, 1994, pp 281-299.