
P.Sivakumar, Dr. R.M.S Parvathi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.719-722

719 | P a g e

Mainly significant Content Mining of Entire Web Page

P.Sivakumar
Department of computer science and engineering,

KSR College of Engineering,

Namakkal, Tamilnadu, India

Dr. R.M.S Parvathi
Department of Computer science and Engineering

 Sengunthar College of Engineering,

 Tamilnadu, India.

Abstract- User explore for the necessary information

with search engines. Search engines crawl and index

web pages according to their informative content. User

is attracted only in the useful contents and not in non-

informative content blocks. Web pages often contain

navigation sidebars, advertisements, search blocks,

copyright notices, etc which are not content blocks.

The information contained in these non-content blocks

can harm web mining. So having an algorithm to

extracts only most important content could help better

quality on web page indexing. Almost all algorithms

have been proposed are tag dependent means they

could only look for primary content among specific

tags such as <TABLE> or <DIV>.The proposed

technique is tag free and has two phases to achieve the

extraction work. primary it transform contribution

DOM tree obtain from input HTML detailed web page

into a block tree based on their visual representation

and DOM structure in a way that on every node it will

have specification vector, then it traverses the obtained

small block tree to find main block having dominant

computed value in comparison with other block nodes

based on its requirement vector values. This introduce

technique doesn’t have any knowledge phases and can

find educational content on any casual input complete

web page.

Keywords

Web mining, Noise elimination, Informative content,

Information retrieval, Information extraction

1. INTRODUCTION
A web page structure and layout varies depend on

different content type it will represent or the tastes of

designer styling its content. Thereby main content

position or the main tag containing main content

differs in variety of websites. Even there might be

some content in page view that are besides each other

but actually in DOM tree they are not in the same level

and same parents, so finding the main content in this

area that doesn’t follow any specific rules for

arranging and positioning elements needs complicated

and costly algorithms. Algorithms that could simulate

a user visiting a website, in high probability could find

informative content as result because in most cases

actual users in internet could find the area of the main

content. But which specifications and structures could

help an algorithm to find main content?

The VIPS algorithm uses obtained content structure

and tries to simulate how actual user finds a main

content by blocking the page based on structure and

visual delimiters. The blocking result is satisfactory

but the algorithm does many loops to reach its desire

granularity. Content structure and tries to simulate

how actual user finds a main content by blocking the

page based on structure and visual delimiters. The

blocking result is satisfactory but the algorithm does

many loops to reach its desire granularity.

CE [7] considers all detailed pages of a website as

pages with the same class. It runs a learning phase

with two or more pages as its input and finds the

blocks that their pattern repeats between input pages

and marks them as non-informative blocks then stores

them in storage. These non-informative blocks are

mostly copyright information, header, footer, sidebars

and navigation links. Then when we use CE algorithm

in actual world it first eliminate non informative

patterns from the structure of its input pages based on

the stored patterns in its storage for specific class of

input pages. Finally from the remaining blocks in the

page it will return the text of block containing the

most text length. CE needs a learning phase so it

couldn’t extract the main content from random one

input web page.

FE [7] extracts the text content of a block that has the

most probability of having text so it will work fine in

web pages that text content of main content dominates

other types of content. In addition FE could return just

one block of the main content, so [7] proposed K-FE

that returns k blocks with high probability of having

the main content. Algorithm steps of K-FE and FE are

the same except the last part. In K-FE the algorithm

P.Sivakumar, Dr. R.M.S Parvathi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.719-722

720 | P a g e

final section, sorts the blocks depends on their

probability then it uses k-means clustering and takes

high probability clusters.So the proposed paper intends

to introduce an algorithm which could extract main

content that is not necessarily the dominant content

and without any learning phase, with one random page

and by using visual cues to simulate user page visit

and block the page based on it and gains higher

precision.

2. PROPOSED ALGORITHM
The proposed algorithm called Visual Gathering

Extractor (VGE). It gets DOM tree of input web page

as its input and returns the informative content block

as its output.

Algorithm (Visual Gathering Extractor)

Step 1: Read HTML File

Step 2: Convert DOM File of HTML (consider as a

input File)

Step 3: Read Function (GetBlockTree (DOMTree

,outGeneralParameters, outBlockTree)

 {Final computation of the average of Computations

parameters}

Step 4: Check Function (FindMainBlocks (

BlockTree ,GeneralParameters, outCandidate

Blocks,outMainBlocks)

 { MainBlcok }(output)

Step 5: PrimaryContentBlock (output)

The third step of the algorithm use GetBlockTree sub-

algorithm and sends the DOM tree as its input. The

GetBlockTree subalgorithm recursively traverses the

input DOM tree in pre-order and returns block tree and

general parameters as its output. Each node in block

tree clusters one or more nodes from DOM tree so the

number of elements in block tree is significantly lower

than the number of nodes in DOM tree. Each node in

block tree has specification vector that we will use it to

find the main block later. General parameters contain

general total value of specifications for text. Link

density, width and height and we can use these values

to compute average values before starting to find the

main block.

2.1 Constructing Block Tree

Here, process of block tree construction through

GetBlockTree algorithm. This algorithm recursively

loops through input DOM tree and it produces block

tree as final result and meanwhile it flags the blocks

such as comment blocks which their patterns repeats in

unordinary manner and they should not consider as the

main content. In addition besides constructing the

block tree, the algorithm append the text of child

blocks to their parent so we will have text

manipulation just in this section without any need for

additional loop for text computation later on the block

tree. This subalgorithm contains sub-sections which

will introduce in the next parts.

Algorithm: GetBlockFunction(Visual Gathering

Extractor cont)

Step 1: GeneralParametters, BlockTree(Input)

Step 2: Updated Root element, Updated

GeneralParametters, Updated BlockTree(Output)

Step 3: Recursive (Type)

Step 4:

1) PatternCache ←Null

2) DetectedBlock(RootElement,out

BlockTree)

3) AddText(RootElement)

4) IfRootElement has child then

5) Foreach Child in RootElement’s children

do
6) If CheckElementIs Valid(Child) then

a. GetBlockTree(Child,out

enteralParametters,outBlockTree

)

b. Patten

Verifier(RootElement,Out

patternCache)

c. TextManipulation(Child)

7) Else
Step 5:PattenVerifier (RootElement ,outPattenCache

)

Step 6:FinalElementManipulation (RootElement,

outGentralParamentter)

2.1.1 Why Block

First I define the concept of block in this paper. A

block is a family of elements with same visual styles

and order in DOM tree and their conceptual purpose to

appear in the page are the same. The algorithm

proposed in this paper tries to first divide the page into

some blocks. One thing that we should consider here

is why we should make block tree in content

extraction algorithms? Or further why we should have

block? I answer this question with an example.

Consider we want to remove the navigation links in

sidebar, to accomplish this target we should eliminate

the parts of the page which have high link density. If

you don’t use block then the algorithm will consider

each individual node element as a page part and

removes all the links in the page even if the links are

in the main content, because the link density on each

individual link is high. But when you are using block,

the algorithm would decide on blocks instead of each

individual DOM node. So in our example algorithm

will remove the navigation links in side bars and it

doesn’t remove the links in the main content.

P.Sivakumar, Dr. R.M.S Parvathi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.719-722

721 | P a g e

<DIV>

Text <SPA

N>
<A> <DIV>

Text Immediate

Text

Immediate Link

Text

2.1.3 DetectBlock Method

This method will specify either its input node should

form a new block or it should use the block of its

parent node in DOM tree. This method makes this

decision by checking if the visual distance of current

node in contrast with its parent is more than a

threshold value or not. If its distance was not valid

then it would make a new block and the algorithm

flags the current DOM node as the parent of new

block. If the distance was valid it means we should

only add the current element to the block of its DOM

parent node. The visual distance is the number of

differences on their visual styles which are important

in this algorithm, such as width, height, font-size,

background color, top and left. Actually these visual

styles are the parts of a block specification vector.

2.1.4 AddText Method.

This method will compute the immediate text of

current node and immediate link text of current node

and add them to the relevant attribute of its block.

Other child nodes could add their text to these texts

later. Figure 1 shows the immediate text and

immediate link text of a DOM node. The text length

and link text length are some of the specifications in a

block specification vector.

Figure 1. Immediate text and Immediate Link text for

a DOM Element

2.1.5 Children Manipulations

For each DOM children of input element first we do

the recursive GetBlockTree algorithm. The recursive

algorithm make sub block tree for each child node and

their subordinating child nodes. Then PatternVerifier

algorithm runs for the child block with additional

input called PatterCache. PatternVerifier checks if the

current block pattern has any same pattern among its

siblings. To accomplish this task, it uses PatternCache

which contains unique pattern of the current block

siblings (Figure 2). No of repetitive patterns is a

negative specification in a block specification vector.

Algorithm: PattenVerifier Function (Visual

Gathering Extractor cont)

 Step 1: Elements, Pattern catch holds its sibling block

Patterns (Input)

Step 2: Upatedted Number of repetitive block pattern

in the parent of input element and update Pattern

catches (output)

Step 3: Block Pattern set Base on root tag types its

children blocks

Step 4: Pattern Cache Unique Patterns

 Step 5: if input element block root and

Step 6: foreach pattern in PatternCache do

Step 7: if the pattern Block of input element is equal

with current pattern then

 {Ingress the number of reparative Pattern in the

parent of input element} break

{ Add Block Pattern of input element to pattern cache

if there wasn’t any equal pattern in the for each loop

for it }

Step 8:end

The last process which operates the block of child

node is TextManipulation method that add the text of

child node to its parent if the link density of child node

was ok depend on a threshold. Figure 6 depicts more

detail for TextManipulation method.

Algorithm: FindMainBlock Function (Visual

Gathering Extractor cont)

Step 1: Block Tree, Gentral parameters,

CandiatateBlocks, MainBlock (Input)

Step 2: Updated candidateBlocks,MainBlock(Output)

Step 3: Recursive (Type)

Step 4: Foreach ChildBlock in the root of BlockTree

do

 { FindMainBlock (BlockTree of ChildBlock,

GeneralParameters, CandidateBlocks, MainBlock)

 IfGeneralProperties of ChildBlock based on

GeneralParameters was ok then

{Compute FactorValue for the ChildBlock based on

following formula }

 FactorValue = Text length + width+ Average font

size+Bottom

 Link density + (Number of repetitive

Patten * Top

{ Add ChildBlock to CandidateBlock list.}

 If MainBlcok is Null OR

 FactorValue→Factorvalue of Main

Block then

 MainBlock←ChildBlock

Step 5: End

P.Sivakumar, Dr. R.M.S Parvathi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.719-722

722 | P a g e

Finally FindMainBlock sub-algorithm returns The

Main Block which has the highest FactorValue and the

content of this block represented in the output.

3. EXPERIMENTAL RESULTS
In this section we evaluate our algorithm with the

dataset in [7] which contains over 5000 pages and

compare it with K-FE [7] (because it seems to have

better result in comparison with other

Algorithms), in block-level based on Block-Precision,

Block- Recall and Block-F-Measure factors which are

introduced in [7], [3] (Table 1).

Web sites Address b-F Measure

of VCE

b-F

ReCall of

VCE

b-F Prec

of

 VCE

b-F Measure

of K-FE

b-F

ReCall of

K-FE

b-F

Prec of

K-FE

ABC abcnews.com 1 1 1 1 1 1

BBC bbcnews.com 0.98 1 0.98 1 1 1

CBS cbsnews.com 1 1 1 0.978 0.77 0.98

CNN cnn.com 1 1 1 0.98 0.98 0.98

FOX23 fox23news.com 1 1 1 1 1 1

MSNBS Msnbs.com 1 1 1 0.95 1 0.92

Table 1. Block-Level comparison between VCE

(proposed algorithm in this paper) and K-

FeatureExtracor [7]

4. Conclusion
We proposed an algorithm called VCE here, which

could extract the main content from a random

detailed web page. As we saw in section 3 this

algorithm gains higher b-Precision, b-Recall and b-

F-measure so we gain higher precision in extracted

content. The VCE algorithm is not dependant on any

tag type and it just has an iteration to block its input

page while it doesn’t have any learning phase.

Furthermore it could detect and eliminate comments

from the extracted content.

5. REFERENCES
[1] Alberto H. F. Laender, Berthier A. Ribeiro-Neto,

Altigran Soares da Silva, Juliana S. Teixeira: A

Brief Survey of Web Data Extraction Tools.

SIGMOD Record 31(2): 84-93 (2002).

 [2] Deng Cai, Shipeng Yu, Ji-Rong Wen and Wei-

Ying Ma: Extracting Content Structure for Web

Pages based on Visual Representation. In: The

Fifth Asia Pacific Web Conference

(APWeb2003), Springer Lecture Notes in

Computer Science (2003).

[3] Deng Cai, Xiaofei He, Ji-Rong Wen and Wei-

Ying Ma: Block Level Link Analysis. In: Proc.

 2004 Int. Conf. on Research and Development

in Information Retrieval (SIGIR’04), Sheffield,

UK (July 2004).

 [4] Jeff Pasternack, Dan Roth: Extracting Article

Text from the Web with Maximum Subsequence

Segmentation. In: www '09: proceedings of the

18th international conference on World Wide

Web, New York, ny, usa, acm, 971—980 (2009).

[5] Lakshmish Ramaswamy, Arun Iyengar, Ling Liu

and Fred Douglis: Automatic Detection of

Fragments in Dynamically Generated Web

Pages. In: 13th International Conference on the

World Wide Web (WWW-2004), pp. 443-454

(2004).

[6] Lan Yi, Bing Liu, and Xiao-Li Li: Eliminating

Noisy Information in Web Pages for Data

Mining. In: Proceedings of the ACM SIGKDD

International Conference on Knowledge

Discovery & Data Mining (KDD-2003),

Washington, DC, USA, August 24 – 27 (2003).

[7] Sandip Debnath, Prasenjit Mitra, Nirmal Pal, C.

Lee Giles: Automatic Identification of

Informative Sections of Web Pages. In: IEEE

Transactions on Knowledge and Data

Engineering, 17(9): 1233-1246 (2005).

[8] Shian-Hua Lin and Jan-Ming Ho: Discovering

informative content blocks from web documents.

In: Proceedings of the eighth ACM SIGKDD

international conference on Knowledge

discovery and data mining, pages 588–593

(2002).

[9] Suhit Gupta, Gail Kaiser, David Neistadt, Peter

Grimm: DOMbased Content Extraction of

HTML Documents. In: 12
th

 International World

Wide Web Conference, 12th International

World Wide Web Conference (May 2003).

